EirGrid Policy

Policy on Wind Turbine Clearance to OHL's Rev 1

Background
Commercial wind turbines absorb energy from the wind and this has the effect of reducing the wind speed in their wake. Conductors on overhead transmission lines are susceptible to damage from vibration initiated by wind, in particular at low wind speeds. EirGrid's policy reduces the likelihood of premature wear on conductors and fittings as a result of this arrangement which, if uncontrolled, may lead to a significant reduction in asset life, increased maintenance, unplanned outages or ultimately conductor failure.

Policy
EirGrid's current policy, based on international experience, is that the distance between an overhead transmission line ($110 \mathrm{kV}, 220 \mathrm{kV}$ or 400 kV) and a commercial wind turbine should not be less than three and a half rotor diameters unless EirGrid have risk assessed and approved a reduction in clearance, as shown in Figure 1 and Figure 2.

Minimum clearance for all turbines and overhead transmission lines shall be falling distance plus flashover distance for the relevant voltage. Falling distance shall be measured from the turbine foundation edge.

Flashover distance at $110 \mathrm{kV}=1.1 \mathrm{~m}$
Flashover distance at $220 \mathrm{kV}=2.4 \mathrm{~m}$
Flashover distance at $400 \mathrm{kV}=4.1 \mathrm{~m}$
The distance between a wind turbine and an overhead transmission line shall be measured horizontally from the closest point on the centre-line of the overhead transmission line (not the tower locations) to the centre-line of the turbine body.

Small and Micro Wind Turbines are covered in the Planning and Development Regulations 2008.

Risk

Assessments
The risk of damage to overhead transmission lines depends on the line/turbines relationship with the wind rose from each site and so a full assessment should be made. Developers proposing turbines within $3.5 \times \mathrm{D}$ of an overhead transmission line should submit to EirGrid wind roses for proposed turbine locations so a risk assessment can be performed.
Wind roses should be based on a minimum of 12 months measured data.

EirGrid Policy

Figure 2: As per figure 1 but given the proposed tower location, vibrational impact on the overhead transmission line is minimal.

Who this
applies to:

Pre Planning Submission:

All projects at the pre planning submission stage should engage with EirGrid if their plans include turbines within $3.5 \times \mathrm{D}$ of an existing or proposed overhead transmission line.

Mid Planning Submission*:

Developers of projects currently being considered by the planning authorities and where the clearance distances set out in this policy are applicable, should engage with EirGrid at the earliest opportunity. (*This clause is only applicable at date of publication - July 2014)

EirGrid Policy

	Post Planning Permission: This policy does not apply to wind turbines with planning permission in place or already constructed on the date of publication. Where the clearance distances set out in this policy are applicable, developers should engage with EirGrid at the earliest opportunity.			
Derogation	Derogation requests from this policy will be by exception and will follow the derogation policy issue 1 (internal document, signed May 2013).			
Revision History				
Revision	Date	Description	Originator	Approvers
Ro	Dec 2012	First issue drafted as a guidance document.	Paul Moran	Christy Kelleher Andrew Cooke
R1	July 2014	Second issue post stakeholder consultations. Risk assessment included.	Paul Moran	Liam Ryan Claire Kane John Fitzgerald
Sign-Off	Prepared by: Paul Moran TEM Consultant Engineer Approved by: Liam Ryan TEM Manager		iste: July Date: $2 / 71$ Date: $2 / 7 / 2014$ Date: $3 / 7 / 1$	

EirGrid Policy

Worked

Example 1 -
Minimum
Falling
Distance
Calculation
> The turbine is much higher than the conductors and so the distance will be to the closest horizontal position of the conductors at maximum electrical sag or with a galloping ellipse due to rime or wet snow icing.
$>$ The centre of the circular envelope will be the conductor position at worst case scenario (45 ${ }^{\circ}$ angle swing) from the crossarm support i.e. the typical 12 m sag plus 2.5 m insulator length.
$>$ This gives a horizontal distance from the crossarm support position of $14.5 \sin 45^{\circ}$ plus the envelope radius of 6 m plus a 3.1 m flashover distance at 400 kV .
$>$ This totals $10.25+6+3.1=19.35 \mathrm{~m}$. Plus crossarm length $=30 \mathrm{~m}$ approx. for a 400 kV tower.

Figure 3: Conductor Swing

Figure 4: Conductor Swing

Figure 5: Fallen Turbine

EirGrid Policy

Worked
Example 1
Minimum
Falling
Distance
Calculation

Figure 6: Worked Example 1

The calculation for figure 6 is as follows for a typical 400 kV single circuit lattice tower with a crossarm length of 9.5 m :

11 m to foundation edge +125 m falling distance (turbine tip height) + flashover \& swing distance $(10.25+6+3.1+9.5)=153.85 m$ Minimum

EirGrid Policy

Figure 7: Worked Example 2

The calculation for figure 7 is as follows for a typical 400 kV single circuit lattice tower with a crossarm length of 9.5 m :

11 m to foundation edge +169 m falling distance (turbine tip height) + flashover $\&$ swing distance $(10.25+6+3.1+9.5)=\mathbf{2 0 8 . 8 5 m}$ Minimum

