All-Island Ten-Year Transmission Forecast Statement 2024 ### **Disclaimer** EirGrid PLC and SONI Limited have followed accepted practice in the collection and analysis of data available. While all reasonable care has been taken in the preparation of this statement, EirGrid and SONI are not responsible for any loss that may be attributed to the use of this information. Prior to taking business decisions, interested parties are advised to seek separate and independent opinion in relation to the matters covered by this statement and should not rely solely upon data and information contained herein. Information in this document does not amount to a recommendation in respect of any possible investment. This document does not purport to contain all the information that a prospective investor or participant in the wholesale electricity market may need. Furthermore, all interested parties are strongly advised to channel any enquiries through EirGrid and SONI. This document incorporates the Transmission System Capacity Statement for Northern Ireland and the Transmission Forecast Statement for Ireland. For queries relating to this document or to request a copy contact info@soni.ltd.uk or info@eirgrid.com. ### Copyright Notice All rights reserved. This entire publication is subject to the laws of copyright. This publication may not be reproduced or transmitted in any form or by any means, electronic or manual, including photocopying without the prior written permission of EirGrid and SONI. 12 Manse Rd, Belfast, BT6 9RT, Northern Ireland The Oval, 160 Shelbourne Road, Ballsbridge, Dublin 4, Ireland ### **Document Structure** This document contains an Abbreviations and Terms section, an Executive Summary, eight main sections and eight appendices. The structure of the document is as follows: **Abbreviations and Terms** provides a list of abbreviations and terms used in the document. The Executive Summary gives an overview of the main highlights of the document. **Chapter 1:** Introduction: presents the purpose and context of the All-Island Transmission Forecast Statement. Our statutory and legal obligations are also introduced. Chapter 2: The Electricity Transmission System: describes the existing all-island transmission system. A brief outline of transmission system development plans for both Ireland and Northern Ireland is also given. **Chapter 3:** Demand: describes the demand forecast assumptions over the study period of 2024 – 2033. **Chapter 4:** Generation: describes the projected generation connection assumptions over the study period of 2024 – 2033. **Chapter 5:** Transmission System Performance: provides information on power flow and short circuit study results. Chapter 6: Overview of Transmission System Capability Analysis: outlines the analysis methods used to carry out the demand and generation opportunities' analyses. **Chapter 7:** Transmission System Capability for New Generation: describes the opportunities for connection of new generation on the allisland transmission system. **Chapter 8:** Transmission System Capability for New Demand: describes the opportunities for connection of new demand on the all-island transmission system. **Appendix A:** Maps and Schematic Diagrams **Appendix B:** Transmission System Characteristics **Appendix C:** Demand Forecasts at Individual Transmission Interface Stations **Appendix D:** Generation Capacity and Dispatch Details **Appendix E:** Short Circuit Currents **Appendix F:** Approaches to Consultation for Developing the Grid **Appendix G: References** **Appendix H:** Power Flow Tables # Abbreviations and Terms ### 1.1 Abbreviations | AC | Alternating Current | MW | Megawatt | |-------|--|--------|---| | ACS | Average Cold Spell | NI | Northern Ireland | | | | NTC | Net Transfer Capacity | | BETTA | The British Electricity Trading and
Transmission Arrangements | PU | Per Unit | | BSP | Bulk Supply Point | PST | Phase Shifting Transformer | | CCGT | Combined Cycle Gas Turbine | RES | Renewable Energy Schemes | | СНР | Combined Heat and Power | RIDP | Renewable Integration Development Project | | CRU | Commission for the Regulation of Utilities | RMS | Root Mean Square | | DC | Direct Current / Double Circuit | SEM | Single Electricity Market | | DfE | Department for the Economy | SONI | System Operator for
Northern Ireland | | DSO | Distribution System Operator | SOEF | Shaping Our Electricity Future | | ESB | Electricity Supply Board | SVC | Static Var Compensator | | EU | European Union | SP | Summer Peak | | GCS | Generation Capacity Statement | SS | Substation | | GIS | Gas Insulated Switchgear | SV | Summer Valley | | HVDC | High Voltage Direct Current | TDP IE | Transmission Development | | IA | Interconnector Administrator | | Plan Ireland | | IRL | Ireland | TDPNI | Transmission Development | | ITC | Incremental Transfer Capability | | Plan Northern Ireland | | kV | Kilo Volts | TYTFS | Ten Year Transmission Forecast Statement | | LFG | Land Fill Gas | TSO | Transmission System Operator | | MIL | Moyle Interconnector Limited | TX | Transformer | | MEC | Maximum Export Capacity | WP | Winter Peak | | MIC | Maximum Import Capacity | ••• | | | MVA | Megavolt-Amperes | | | ### 1.2 Terms ### **Active Power** The product of voltage and the in-phase component of alternating current measured in Megawatts (MW). When compounded with the flow of 'reactive power', measured in Megavolt-Amperes Reactive (Mvar), the resultant is measured in Megavolt-Amperes (MVA). ### **Autumn Peak** This is the maximum Northern Ireland demand in the period September to October inclusive. ### **Bulk Supply Point** A point at which the transmission system is connected to the distribution system. ### **Busbar** The common connection point of two or more circuits. ### Capacitor An item of plant normally utilised on the electrical network to supply reactive power to loads (generally locally) and thereby supporting the local area voltage. ### Circuit An element of the transmission system that carries electrical power. ### **Combined Cycle Gas Turbine** A collection of gas turbines and steam units; waste heat from the gas turbine(s) is passed through a heat recovery boiler to generate steam for the steam turbine(s). ### **Combined Heat and Power** A plant designed to produce both heat and electrical power from a single heat source. ### Constraint A transfer limit imposed by finite network capacity. ### Contingency The unexpected failure or outage of a system component, such as a generation unit, transmission line, transformer or other electrical element. A contingency may also include multiple components, which are related by situations leading to simultaneous component outages. ### **Commission for Regulation of Utilities** The Commission for Regulation of Utilities (CRU) is the regulator for the electricity, natural gas and public water sectors in Ireland. ### **Data Freeze Date** The dates on which the Transmission Forecast Statement data was effectively "frozen" for both EirGrid and SONI. Changes to transmission system characteristics made after these dates do not feature in the analyses carried out for this Transmission Forecast Statement. ### **Deep Reinforcement** Refers to transmission system reinforcement additional to the shallow connection that is required to allow a new generator or demand to operate at maximum capacity. ### **Demand** The peak demand figures in Table 3-1 in the introduction refer to the power that must be transported from transmission system-connected generation stations to meet all customers' electricity requirements. These figures include transmission losses. ### **EirGrid** EirGrid plc is the state-owned company established to take on the role and responsibilities of Transmission System Operator in Ireland as well as market operator of the wholesale trading system. ### **Embedded Generation** Refers to generation that is connected to the distribution system or at a customer's site. ### **Generation Dispatch** The configuration of outputs from the connected generation units. ### Grid Code (EirGrid) The EirGrid Grid Code is designed to cover all material technical aspects to the operation and use of the transmission system of Ireland. The code was prepared by the TSO (pursuant to Section 33 of the Electricity Regulation Act, 1999) and approved by the CER. The Grid Code is available on www.eirgrid.com. ### **Grid Code (SONI)** The SONI Grid Code is designed to permit the development, maintenance and operation of an efficient, co-ordinated and economical transmission system in Northern Ireland. It is prepared by the TSO (SONI) pursuant to condition 16 of SONI's Licence. The SONI Grid Code is available at www.soni.ltd.uk ### Interconnector Administrator An Interconnector Administrator (IA) facilitates the allocation of capacity and energy trading. Trading is carried out using an Interconnector Management Platform (ICMP) for the Moyle and East West Interconnectors. ### **Incremental Transfer Capability** A measure of the transfer capability remaining in the physical transmission system for further commercial activity over and above anticipated uses. ### Interconnector The tie line, facilities and equipment that connect the transmission system of one independently supplied transmission system to that of another. ### **Load flow** Study carried out to simulate the flow of power on the transmission system given a generation dispatch and system load. ### **Maximum Export Capacity** The maximum export value (MW) provided in accordance with the generator's connection agreement. The MECs are contract values which the generator chooses to cater for peaking under certain conditions that are not normally achievable or sustainable e.g., a CCGT plant can produce
greater output at lower temperatures. ### **Net Zero Emissions** Net zero emissions are achieved when anthropogenic emissions of greenhouse gases to the atmosphere are balanced by anthropogenic removals over a specified period. ### Node Connecting point at which several circuits meet. Node and station are used interchangeably in this Transmission Forecast Statement. ### Per Unit (pu.) Ratio of the actual electrical quantity to the selected base quantity. The base quantity used here for calculation of per unit impedances is 100 MVA. ### **Phase Shifting Transformer** An item of plant employed on the electrical network to control the flow of active power. ### **Power Factor** The power factor of a load is a ratio of the active power requirement to the reactive power requirement of the load. ### **Reactive Compensation** The process of supplying reactive power to the network. ### Reactor An item of plant employed on the electrical network to either limit short circuit levels or prevent voltage rise depending on its installation and configuration. ### **RES-E** Renewable Electricity. ### **Shallow Connection** Shallow Connection means the local connection assets required to connect a customer to the Transmission System and which are for the specific benefit of that particular customer. ### Single Electricity Market The Single Electricity Market (SEM) is the wholesale electricity market operating in Ireland and Northern Ireland. Further information is available at at www.sem-o.com/ and www.semcommittee.com/ ### SONI System Operator for Northern Ireland (SONI) Ltd is owned by EirGrid plc. SONI ensures the safe, secure and economic operation of the high-voltage electricity system in Northern Ireland and in cooperation with EirGrid is also responsible for running the all-island wholesale market for electricity. ### **Split Busbar** Refers to the busbar(s) at a given substation which is operated electrically separated. Busbars are normally split to limit short circuit levels or to maintain security of supply. ### **Static Var Compensator** Device which provides fast and continuous capacitive and inductive reactive power supply to the power system. ### **Summer Valley** This is the minimum system demand. It occurs in the period March to September, inclusive in Ireland and May to August, inclusive in Northern Ireland ### **Summer Peak** This is the maximum system demand in the period March to September, inclusive in Ireland and May to August, inclusive in Northern Ireland. ### **Total Transfer Capability** The total capacity available on cross-border circuits between Ireland and Northern Ireland for all flows, including emergency flows that occur after a contingency in either system. ### Transformer An item of equipment connecting busbars at different nominal voltages. (see also Phase Shifting Transformer) ### **Transmission Interface Station** A station that is a point of connection between the transmission system and the distribution system or directly-connected customers. ### **Transmission Losses** A small proportion of energy is lost mainly as heat whilst transporting electricity on the transmission system. These are known as transmission losses. As the amount of energy transmitted increases, losses also increase. ### **Transmission Peak** The peak demand that is transported on the transmission system. The transmission peak includes an estimate of transmission losses. ### **Transmission Planning Criteria** The set of standards that the transmission sytem of Ireland is designed to meet. ### **Transmission System** The transmission system is a meshed network of high-voltage lines and cables (400 kV, 275 kV, 220 kV and 110 kV) for the transmission of bulk electricity supply around Ireland and Northern Ireland. The transmission system and network are used interchangeably in this Transmission Forecast Statement. ### Uprating To increase the rating of a circuit. This is achieved by increasing ground clearances and/or replacing conductor, together with any changes to terminal equipment and support structures. ### **Utility Regulator (UR)** UR is an independent non-ministerial government department set up to ensure the effective regulation of the Electricity, Gas and Water and Sewerage industries in Northern Ireland. ### Winter Peak This is the maximum annual system demand. It occurs in the period October to February, inclusive in Ireland and in the Period November to February in Northern Ireland. # Contents | Docu | ment structure | 1 | |-------|--|----| | Abbre | eviations and terms | 2 | | Forw | ards | 12 | | Execu | utive Summary | 16 | | 1 In | troduction | 24 | | 1.1 | Introduction to the Transmission Forecast Statement | 25 | | 1.2 | Governance | 27 | | 1.3 | Data Management | 28 | | 1.4 | Other Information | 29 | | 1.5 | Publication | 29 | | 2 TI | ne Electricity Transmission System | 30 | | 2.1 | Overview of the All-Island Electricity Transmission System | 31 | | 2.2 | Existing Connections Between Ireland and Northern Ireland Transmission Systems | 34 | | 2.3 | Interconnection with Great Britain and Europe | 35 | | 2.4 | Transmission Development Plans | 40 | | 2.5 | Ireland Transmission System Developments | 40 | | 2.6 | Northern Ireland Transmission System Developments | 43 | | 2.7 | Joint Ireland and Northern Ireland Approved Transmission System Developments | 51 | | 2.8 | Connection of New Generation Stations | 52 | | 2.9 | Connection of New Interface Stations | 56 | | 2.10 | Detailed Transmission Network Information | 57 | | 3 D | emand | 58 | | 3.1 | Introduction to Demand Forecast Data | 59 | | 3.2 | Transmission Demand Forecast | 59 | | 3.3 | Demand Data | 62 | | 3.4 | Forecast of Electrical Demand at Transmission Interface
Stations in Ireland | 66 | | 3.5 | Forecast Demand at Northern Ireland Bulk Supply Point (BSP) | 67 | | 4 G | eneration | 68 | |------|---|-----| | 4.1 | Generation in Ireland | 70 | | 4.2 | Generation in Northern Ireland | 76 | | 5 Tr | ransmission System Performance | 82 | | 5.1 | Forecast Power Flows | 83 | | 5.2 | Compliance with Planning Standards | 84 | | 5.3 | Short Circuit Current Levels | 85 | | 6 O | verview of Transmission System Capability Analyses | 98 | | 6.1 | Introduction | 99 | | 6.2 | All-Island Demand Opportunity Analysis | 99 | | 6.3 | All-Island Generator Opportunity Analysis | 106 | | 6.4 | Factors Impacting on Results | 108 | | 7 Tı | ransmission System Capability for New Generation | 110 | | 7.1 | Summary of Analysis | 111 | | 7.2 | Background | 112 | | 7.3 | New Generation Capacity | 112 | | 7.4 | Generation Opportunity | 113 | | 7.5 | Generation Locational Signals and Their Impact | | | | on Transmission Network Capacity | 116 | | 7.6 | GTUoS | 118 | | 7.7 | Assumptions Behind the TLAF and GTUoS Modesl | 120 | | 7.8 | How to Use the Information for Generation | 121 | | 8 Ti | ransmission System Capability for New Demand | 122 | | 8.1 | Generation Adequacy | 123 | | 8.2 | Data Centres | 123 | | 8.3 | Electrification of Heat, Transport and Industry and New Housing | 125 | | 8.4 | Reinforcement Delivery | 126 | | 8.5 | Transmission System Demand Capability Obligations | 126 | | 8.6 | All-Island Transmission System Capability for New Demand | 127 | | 8.7 | Opportunities for New Demand in the Dublin Area | 129 | | 8.8 | Transmission System Capability for New Demand in Ireland | 130 | |-------|--|--------------| | 8.9 | Transmission System Capability for New Demand | 4 – - | | | in Northern Ireland | 131 | | 8.10 | How to Use the Information for Demand | 133 | | A Ma | ps and Schematic Diagrams | 134 | | A.1 | Network Maps | 135 | | A.2 | Short Bus Codes | 138 | | A.3 | Schematic Diagrams of the All Island Transmission System | 146 | | B Tra | ansmission System Characteristics | 152 | | B.1 | Characteristics of the Existing Transmission System (January 2021) | 155 | | B.2 | Transmission System Developments | 182 | | C De | mand Forecasts at Individual Transmission Interface Stations | 194 | | D Ge | neration Capacity and Dispatch Details | 216 | | D.1 | Generation Capacity Details | 217 | | E Sh | ort Circuit Currents | 238 | | E.1 | Background of Short Circuit Currents | 239 | | E.2 | Short Circuit Current Calculation Methodology | 242 | | E.3 | Short Circuit Currents in Ireland | 243 | | E.4 | Short Circuit Currents in Northern Ireland | 289 | | F Ap | proaches to Consultation for Developing the Grid | 308 | | F.1 | EirGrid Approach to Consultation | 309 | | F.2 | SONI Approach to Consultation | 309 | | G Re | ferences | 310 | | H Po | wer Flows | 314 | | | | | # Foreword, Eirgrid I'm pleased to present The All-Island Ten-Year Transmission Forecast Statement (TYTFS) 2024. Meeting the energy demands of tomorrow presents many complex challenges and moving towards a more sustainable future will require significant transformation. As part of our planning, we are examining how we can best facilitate the transition to renewable energy, while ensuring the secure and resilient operation of the electricity system which supports a sustainable and affordable social and economic growth into the future. The Ten-Year Transmission Forecast Statement forms an important step in our planning and examines how the transmission system on the island of Ireland is likely to evolve from 2024 to 2033. To do this, we look at the forecast generation capacity and demand growth, as well as the predicted changes in power flow. This information allows us to assist users and potential users in identifying opportunities to connect to, and make use of, the transmission system. Renewable energy is fundamental in unlocking greater energy independence and security, as well as economic growth and the
development of a stronger society. As the transmission system operator for Ireland, EirGrid has been tasked with making Ireland's grid renewable-ready in line with the Government's Climate Action targets. In order to meet these targets, we're currently progressing the most ambitious programme of work ever taken on the transmission system in Ireland. This includes reinforcements, upgrades and new infrastructure across the whole of the country. We are already in the process of connecting significant volumes of offshore and onshore wind, solar and conventional generation while also reinforcing the power system. By 2030, we anticipate the completion of over 350 projects, representing an investment of over €3bn. In addition, this work is being accelerated by the Government's 2025 Programme, 'Securing Ireland's Future' which outlines the Government's plans for economic growth and reform over the next five years. The programme identifies key priorities for investment including offshore wind development, the rollout of new electricity interconnectors and also ensuring the grid can support the transition to renewable energy while maintaining energy security. This means Ireland's contracted generation portfolio is significant with onshore renewables forecast to increase from 5.8 GW to more than 14 GW. In addition, offshore contracted windfarms are expected to connect an extra 4.3 GW following completion. This is a major step towards the Government targets of 17GW of onshore wind and solar and 5GW of offshore wind which will be studied once contracted. Our focus now is to work closely with key stakeholders including the Government, our Regulators and Industry, to understand how best to support this substantial growth in generation and demand with the continued development of a resilient onshore transmission system, powered by renewables. We hope you find this document insightful, and we look forward to gathering valuable insights and feedback from stakeholders, to inform the next stages of our planning. ## Foreword, SONI I'm pleased to present The All-Island Ten-Year Transmission Forecast Statement (TYTFS) 2024. Meeting the energy demands of tomorrow presents many complex challenges and moving towards a more sustainable future will require significant transformation. As part of our planning, we are examining how we can best facilitate the transition to renewable energy, while ensuring the secure and resilient operation of the electricity system which supports future economic and social growth. The Ten-Year Transmission Forecast Statement forms an important step in our planning and examines how the transmission system on the island of Ireland is likely to evolve from 2024 to 2033. To do this, we look at the forecast generation capacity and demand growth, as well as the predicted changes in power flow. This information allows us to assist users and potential users in identifying opportunities to connect to, and make use of, the transmission system. Renewable energy is fundamental in unlocking greater energy independence and security, as well as economic growth and the development of a stronger society. As the transmission system operator for Northern Ireland, SONI has been tasked with making the electricity grid renewable-ready in line with Government targets. In order to meet these targets, we're currently progressing the most ambitious programme of work ever taken on the transmission system across the island of Ireland, including reinforcements, upgrades and new infrastructure. We are already in the process of connecting significant volumes of wind, solar and conventional generation while also reinforcing the power system. As part of our Transmission Development Plan, we are investing £630 million into our energy system over 10 years to make essential upgrades that will improve reliability and strengthen the electricity network. In addition, this work is being accelerated by the Northern Ireland Energy Strategy which sets a pathway for energy to 2030 and takes us towards the ultimate goal of delivering a net zero power system by 2050. The strategy identifies key priorities for investment including offshore wind development, the rollout of new electricity interconnectors and also ensuring the grid can support the transition to renewable energy while maintaining energy security. This means Northern Ireland's planned generation portfolio is significant with onshore renewables forecast to increase from 1.48 GW to 2.1 GW. Offshore wind is also set to grow but is currently in the early planning and development stage. Our focus now is to work closely with key stakeholders including the Government, our Regulators and Industry, to understand how best to support this substantial growth in generation with the continued development of a resilient onshore transmission system, powered by renewables. We hope you find this document insightful, and we look forward to gathering valuable insights and feedback from stakeholders, to inform the next stages of our planning. The All-Island Ten-Year Transmission Forecast Statement (TYTFS) 2024 provides the following information: - Network models and data for the all-island transmission systems; - Forecast generation capacity and demand growth; - Maximum and minimum fault levels at transmission system stations; - Predicted transmission system power flows at different points in time; and - Demand and generation opportunities on the transmission system. ### Introduction TYTFS 2024 is prepared in accordance with the statutory and licence obligations outlined in Table S-1. # Table S-1: Statutory Regulations requiring the TSOs to produce a Transmission Forecast Statement | Ireland | Northern Ireland | |--|--| | Section 38 of the
Electricity Regulation
Act 1999 (as amended) | Condition 33 of the
Licence to participate
in the Transmission of
Electricity | TYTFS 2024 describes the transmission system on the island of Ireland, from 2024 to 2033. EirGrid and SONI have jointly prepared TYTFS 2024. This document supersedes the All-Island Ten-Year Transmission Forecast Statement 2022-2031. This document presents information available for the all-island transmission system at the data freeze date of January 2024. Where applicable we provide information on transmission system projects under development. Where multiple solutions are presented for a transmission system project, no preference is given to one solution.¹ ### Context In December 2023 the Irish Government published the next iteration of its Climate Action Plan (CAP) 20242. The 2024 plan reflects increased ambitions for the decarbonisation of Ireland's economy, including measures to meet the revised targets for Renewable Energy Sources (RES-E) introduced in the 2023 update. The CAP 2024 set out a renewable electricity target of 80% by 2030 and a target of 9 GW from onshore wind, at least 5 GW of offshore wind energy plus 2 GW of offshore wind energy for off-grid green hydrogen production, 8 GW from solar including 2.5 GW of new non-utility solar, and finally green hydrogen production from renewable electricity surplus generation. In order to meet these targets, and the requirements introduced under the CAP 2024, investment will be needed in new renewable generation capacity, system service infrastructure and electricity networks. ¹ In line with our strategy to consider all practical technology options for network development. ² Climate Action Plan 2024 | Table S-2: Extract from the Climate Action Plan – Electricity Sector 2024 Targets | | | | | |---|------------|---------------|--|--| | National Target | 2025 | 2024 | | | | Renewable Electricity Share | 50% | 80% | | | | Onshore Wind | 6 GW | 9 GW | | | | Solar | Up to 5 GW | 8 GW | | | | Offshore Wind | - | At least 5 GW | | | | New Flexible Gas Plant | - | At least 2 GW | | | | Demand Side Flexibility | 15–20% | 20–30% | | | In December 2021, the Northern Ireland³ Executive published its Energy Strategy for Northern Ireland, setting a target of 70% RES-E by 2030. This target was changed to 80% RES-E by 2030 following the introduction of the Climate Change Act (Northern Ireland) in June 2022. The Climate Change Act mandates the publication of a Climate Action Plan for Northern Ireland which will include the first carbon budgets for Northern Ireland. The Department for the Economy is currently consulting on the Draft Offshore Renewable Energy Action Plan, which contains the ambition to deliver 1GW of offshore wind from 2030⁴. The Department recently consulted on the design considerations for a Renewable Electricity Support Scheme for Northern Ireland⁵. In order to meet Ireland's and Northern Ireland's future commitments, investment will be needed in new renewable generation capacity, system service infrastructure and electricity networks. The transition to low-carbon and renewable energy will have widespread consequences; it will require a significant transformation of the electricity system. In 2019 EirGrid and SONI launched new corporate Strategies 2020-2025 which are shaped by two factors: climate change and the impending transformation of the electricity sector. In February 2025, SONI launched a new corporate Strategy 2025-2031 focused on meeting Northern Ireland's collective renewable energy ambitious through significant collaboration and partnership working with the Northern Ireland Executive and the Utility Regulator. ³ https://www.economy-ni.gov.uk/publications/energy-strategy-path-net-zero-energy ⁴ https://consultations.nidirect.gov.uk/dfe/consultation-on-the-draft-oreap/ ⁵ https://www.economy-ni.gov.uk/consultations/design-considerations-renewable-electricity-support-scheme-northern-ireland Together, EirGrid and SONI are committed to leading the
change towards a carbon-free electricity system and achieving the renewable energy ambitions of both jurisdictions. To realise these ambitions and to enable transformation of the electricity system, EirGrid and SONI launched Shaping Our Electricity Future (SOEF) Roadmap in November 2021. The roadmap was informed by a comprehensive consultation process with stakeholders across society, policy makers, industry, market participants and electricity consumers. The valued feedback contributed to our growing body of knowledge on how to decarbonise the electricity system and to support decarbonisation of the broader economy while maintaining a safe and secure supply of electricity for consumers. The roadmap provided an outline of the key developments from a networks, engagement, operations and market perspective needed to support a secure transition to at least 70% renewables on the electricity grid by 2030 – an important step on the journey to 80% and to net zero by 2050. Inherent in this is a secure transition to 2030 whereby we continue to operate, develop and maintain a safe, secure, reliable, economical and efficient electricity transmission system with a view to ensuring that all reasonable demands for electricity are met. An updated version of the <u>Shaping Our</u> <u>Electricity Future Roadmap: Version 1.1</u> was published in 2023 and is reflected in TYTFS 2024, ensuring due consideration for the impact of 80% RES-E in both Ireland and Northern Ireland for 2030. EirGrid and ESB Networks are working together to deliver the necessary transmission reinforcements that are needed to enhance and prepare the network. SONI and NIE Networks are also collaborating closely to reinforce the power system for the integration of renewable energy and the challenge in demand growth. For both jurisdictions, the successful delivery of transmission reinforcements in a timely manner depends on several factors including public acceptance, programme for Government, local and national support and the allocation and efficient use of transmission outages. It is important to note that relevant transmission reinforcements need local and national support to meet ambitions for housing growth, decarbonisation, economic growth and for supporting local industry. ### **High Level Results** ### **Short Circuit Analysis** TYTFS 2024 includes maximum and minimum short circuit current levels for each transmission system station. Short circuit levels at each transmission system station are provided for the following years: 2024, 2027, and 2030. Results show that for certain network conditions several stations on the island are approaching, or have the potential to exceed, their rated short circuit current level. We manage the transmission system and generation scheduling to mitigate possible risks while investment plans are in place to resolve these issues. Information on short circuit current levels is presented in Chapter 5. ### **Generation Growth** Significant installed generation growth is expected over the period of this TYTFS as described in Chapter 4. In Ireland, contracted renewables are forecast to increase from 5.8 GW in 2024 to more than 14 GW by 2033. Offshore Phase 1 windfarms are included in this year's TYTFS analysis with 4.3 GW of projects under development. Powering Up Offshore South Coast is a project to build the new transmission grid infrastructure necessary to bring power generated by offshore windfarms from Ireland's south coast into the national grid⁶; these ORESS phase 2 projects will be included in future TYTFS. In Northern Ireland onshore renewables are forecast to increase from 1.48 GW in 2024 to 2.1 GW by 2033. Offshore wind is at an early stage of planning and developments will be included in future TYTFS. These large increases in installed capacity in the TYTFS model, coupled with the study methodology, result in low opportunities for additional capacity. A significant amount of conventional generation in Ireland and Northern Ireland is expected to close over the period covered by this statement. For the purpose of the TYTFS 2024 analysis, it is assumed that sufficient generation capacity will be delivered in appropriate locations to ensure generation adequacy and security of supply are maintained. ### **Generation Opportunity** Generation opportunity is assessed at a number of nodes across the all-island transmission system. In general, opportunities for additional generation capacity are low in many areas. As there are several generation connections and reinforcements needed and planned over the next decade, this document evaluates the generation opportunity for the year 2033. The purpose is to have a scenario with a longer time frame to evaluate the integration of generation opportunities. The 2033 analysis in this forecast statement considers a power system with 4.3 GW of offshore (phase 1) generation, 2.2GW of interconnection and an onshore generation capacity of 25GW. In contrast the peak all island winter demand is forecast to be 8555 MW. The TYTFS methodology examines the additional generation that could be connected to the system described above while meeting the Transmission System Security and Planning Standards (TSSPS) for a number of high and low demand scenarios. The combination of significant forecast generation required to meet 2030 targets and the methodology selecting the lowest additional capacity that can be accommodated across the scenarios can result in a worst-case value i.e. a node may have a reported capacity opportunity of 0 MW, while there may still be periods of the year where it could export. The all-island generation opportunities assessment in Chapter 7 provides information for generators wishing to connect to the transmission system. Regional changes in locational tariff signals are also described in Chapter 7. This information is provided to help network users make informed decisions when exploring potential transmission network connection locations. Regions with generation capacity in excess of local demand in the South West, West and North West of Ireland have lower Transmission Loss Adjustment Factors and higher Generator Transmission Use of System charges than Eastern regions with higher demand levels and less surplus generation. ### **Demand Growth** The demand forecast used in our analysis is the median all-island transmission peak demand forecast which is taken from the All-Island Generation Capacity Statement 2023-2032 (GCS)⁷. The demand forecast represents an average annual increase in all-island winter peak demand of 2.6% over the period of GCS 2023-2032. The potential demand growth is primarily associated with population growth, electrification of heat, transport and industry and the connection of large energy users, such as data centres. Often requests to connect to the grid are in proximity of Dublin, which contributes to the increase in connections and connection requests in the area. Further information on the growth of demand can be found in Chapter 3. ### **Demand Opportunity** Demand connections can progress in short to medium timeline so it is considered appropriate to assess demand opportunities for scenarios in the year 2029. The all-island demand opportunity results, based on the 2029 transmission system, are presented in Chapter 8. The study identifies substations which have the capability to accommodate demand connections. Demand increases on the island of Ireland are largely driven by population growth, electrification of heat, transport and industry, as well as increasing connection requests from large customers. Chapter 8 includes an overview of the CRU's direction on the data centre connections. This has been included as a result of the large volume of connections and enquiries from data centres and other large energy users in the Dublin area. In the context of the CRU's direction on the connection of data centres, EirGrid clarified in December 2021 that the greater Dublin area is considered a constrained region for the purpose of processing of data centre connections. It is important to note that demand and generation opportunity studies in this TYTFS are based on contracted customer connections and approved transmission reinforcements at the data freeze date of January 2024. ### Limitation of analysis The results of demand and generation opportunity analyses are solely based on high level transmission network assessments. The results do provide some guidance; but the actual connection capacity and possible connection solutions will only be determined following detailed individual connection studies. We will continue to examine innovative solutions and technologies in response to future connection enquiries. Those who are considering connecting generation or demand to the transmission systems of Ireland or Northern Ireland should contact us. It is advisable to consult us early in the project process. In Ireland customers can contact us at info@eirgrid.com while in Northern Ireland customers can contact us at info@soni.ltd.uk. # 1. Introduction EirGrid is the Transmission System Operator (TSO) in Ireland, and SONI is the TSO in Northern Ireland. The TSOs jointly prepare and publish the All-Island Ten-Year Transmission Forecast Statement (TYTFS) each year. # 1.1 Introduction to the Transmission Forecast Statement The transmission system is a network of 400 kV, 275 kV, 220 kV and 110 kV high-voltage lines and cables. It is the backbone of the power system, efficiently delivering large amounts of power from where it is generated to where it is needed. EirGrid plans and develops the transmission system in Ireland to ensure it meets forecast transmission system operating conditions. SONI is responsible for planning and operating the transmission system in Northern Ireland within defined security standards. The TYTFS 2024 provides the following information: - Network models and data for the all-island transmission system; - Forecast generation capacity and
demand growth; - Maximum and minimum fault levels at transmission system stations; - Predicted transmission system power flows at different points in time; and - Demand and generation opportunities on the transmission system. The TYTFS is designed to assist users and potential users to identify opportunities to connect to, and make use of, the transmission system. The appendices provide further information and transmission system data to enable the reader to perform power flow analysis. When using data provided in the TYTFS 2024, readers should consider other documents such as: - All-Island Generation Capacity Statement (GCS)⁸; - Shaping Our Electricity Future Roadmap; - EirGrid's Transmission Development Plan for Ireland; - SONI's Transmission Development Plan for Northern Ireland; - EirGrid's Tomorrow's Energy Scenarios for Ireland; - SONI's Tomorrow's Energy Scenarios for Northern Ireland⁹; and - European Network of Transmission System Operators for Electricity's (ENTSO-E's) Ten Year Network Development Plan for Europe. Each year, EirGrid and SONI jointly prepare the All-Island Generation Capacity Statement. The GCS outlines demand forecasts and assesses the generation adequacy of the island of Ireland over a ten-year period. The TYTFS complements the demand information presented in the GCS. The next iteration of TYTFS will consider the All-Island Resource Adequacy Assessment report¹⁰. EirGrid and SONI also publish Transmission Development Plans (TDP) for Ireland and Northern Ireland respectively. The TDPs are available on the EirGrid and SONI websites. The TDPs for Ireland and Northern Ireland provide details of the transmission system developments expected to be progressed in Ireland and Northern Ireland in the coming 10 years. These transmission system developments are also included in the data, assumptions and analyses in the TYTFS. To cater for the increased level of uncertainty over the future usage of the grid, EirGrid and SONI carry out scenario planning for Ireland and Northern Ireland respectively. We call this plan Tomorrow's Energy Scenarios (TES), acknowledging that there is no single pathway to a low carbon future. The European Network of Transmission System Operators for Electricity (ENTSO-E), of which EirGrid and SONI are members, publishes a Ten-Year Network Development Plan (TYNDP) every two years. The TYNDP outlines projects of European significance. ⁹ https://www.soni.ltd.uk/media/documents/TES-2023-Final-Full-Report.pdf ### 1.2 Governance ### 1.2.1 Roles and Responsibilities ### Northern Ireland Under the licence in Northern Ireland—held by SONI—we are required to plan and operate the Northern Ireland transmission system. In doing so we must comply with both the SONI Transmission System Security and Planning Standards (TSSPS) and the SONI Grid Code. ### Ireland Under the licence in Ireland—held by EirGrid—we are required to operate, develop and ensure the maintenance of the Irish transmission system. In doing so we must comply with both the EirGrid TSSPS and the EirGrid Grid Code. ### 1.2.2 Duty to Prepare a Statement EirGrid and SONI are each required to publish a Transmission Forecast Statement in line with the Statutory Regulations in Table 1-1. Since 2012 we have jointly prepared and produced an all-island document, following an agreement with the Commission for Regulation of Utilities (CRU) in Ireland and the approval of the Utility Regulator (UR) in Northern Ireland. TYTFS 2024 has been prepared in accordance with and in fulfilment of these obligations. # Table 1-1: Statutory Regulations requiring the TSOs to produce a Transmission Forecast Statement | Ireland | Northern Ireland | |--|--| | Section 38 of the
Electricity Regulation
Act 1999 (as amended) | Condition 33 of the
License to participate
in the Transmission
of Electricity | ### 1.2.3 Single Electricity Market The Single Electricity Market (SEM) has been operating on the island of Ireland since 2007. The all-island wholesale electricity market allows consumers in both Ireland and Northern Ireland to benefit from increased competition. This in turn allows consumers to benefit from reduced energy costs and improved reliability of supply. The model of the SEM changed considerably on 1 October 2018 to take account of the requirements of the <u>European Network Codes</u> and the <u>Target Model</u>. The project to develop and realise the new market was called the Integrated - Single Electricity Market (I-SEM). The market remains the Single Electricity Market (SEM). The transmission systems of Ireland and Northern Ireland are electrically connected by means of a 275 kV tie-line. This tie-line connects Louth station in Co. Louth (Ireland) to Tandragee station, in Co. Armagh (Northern Ireland). There are also two 110 kV connections between Ireland and Northern Ireland: - Letterkenny station in Co. Donegal (Ireland) and Strabane station in Co. Tyrone (Northern Ireland); - Corraclassy station in Co. Cavan (Ireland) and Enniskillen station in Co. Fermanagh (Northern Ireland). Generation on the transmission systems of Ireland and Northern Ireland is dispatched on an all-island basis. The TYTFS transmission network models are also dispatched in this manner, to reflect how the all-island transmission system is operated. ### 1.3 Data Management Transmission system development is continuously evolving. A data freeze date of 31st January 2024 applies to the TYTFS 2024. All data for system model files, and sequence data for use with short circuit current level analysis, was collected on this date. A data freeze date enables us to update system models in order to perform analyses and also allows us to update the appendices of the TYTFS. ### 1.4 Other Information Potential users of the transmission system should also be aware of the following key documents: - <u>EirGrid Grid Code</u> and <u>SONI Grid Code</u> - SONI Transmission System Security and Planning Standards - The Electricity Safety, Quality and Continuity Regulations (Northern Ireland) 2012 - EirGrid Transmission System Security and Planning Standards - EirGrid Operating Security Standards - SONI Transmission Connection Charging Methodology Statement - <u>EirGrid Transmission Connection Charging</u> Methodology Statement 2008 - Joint TSO/DSO Group Processing Approach Charging and Rebating Principles 2010 for Ireland - EirGrid Statement of Charges 2023/2024 - Statement of Charges For Use of Northern Ireland Electricity Ltd Transmission System - EirGrid Transmission Loss Adjustment Factors 2023-2024 - SONI Transmission Loss Adjustment Factors 2023-2024¹¹; - All-Island Generation Capacity Statement 2023-2032 - <u>EirGrid Transmission Development Plan</u> for Ireland 2023-2032 - SONI Transmission Development Plan for Northern Ireland 2023-2032¹² ### 1.5 Publication The TYTFS 2024 is available in pdf format on our websites: www.eirgridgroup.com and www.soni.ltd.uk For a hard-copy version, please send a request to info@eirgrid.com or info@soni.ltd.uk. Transmission system model files are also available on both websites. ^{11 &}lt;u>Transmission loss adjustment factors (TLAFs) | SONI</u> ^{12 &}lt;u>Transmission Development Plan Northern Ireland 2023-2032.</u> # 2. The Electricity Transmission System The transmission system in Ireland and Northern Ireland plays a vital role in the supply of electricity. It transports energy from generators to demand centres across the island. ### 2.1 Overview of the All-Island Elecstricity Transmission System In Northern Ireland, the transmission system is operated at 275 kV and 110 kV, while the transmission system in Ireland is operated at 400 kV, 220 kV and 110 kV. The two transmission systems are connected by means of a 275 kV double circuit from Louth station in Co. Louth in Ireland to Tandragee station in Co. Armagh in Northern Ireland. There are also two 110 kV connections between Letterkenny (IE) and Strabane (NI) stations, and between Corraclassy (IE) and Enniskillen (NI) stations. See Section 2.2 below for further information on the existing transmission connections between Ireland and Northern Ireland. EirGrid and SONI together operate the transmission systems - North and South - on an all-island basis¹³. The 400 kV, 275 kV and 220 kV networks form the backbone of the transmission system. They have higher power carrying capacity and lower losses than the 110 kV network. In Ireland, the 400 kV network provides a high-capacity link between the Moneypoint generation station on the west coast and Dublin on the east. In Northern Ireland the 275 kV network comprises: - A double circuit ring. - A double circuit spur to Coolkeeragh Power Station; and - A double-circuit spur southwards up to the border at Co. Louth, in Ireland. In Ireland the transmission network typically comprises of single circuit lines which are interconnected to cover the wider geographical distances between stations. Typically, large generation stations (greater than 200 MW) are connected to the 220 kV or 400 kV networks. The 110 kV circuits provide parallel paths to the 220 kV, 275 kV and 400 kV networks and are the most extensive element of the all-island transmission system, reaching into every county on the island of Ireland. The all-island transmission system generally consists of overhead lines. There are exceptions to this, such as in the city centres of Belfast, Cork and Dublin, where underground cables are used. Table 2-1 presents the total lengths of overhead lines and cables at the different voltage levels (as of the data freeze date). Revision of individual line lengths may change following completion of network development projects. Transformers are located at substations that link the different voltage networks together, providing paths for power to flow between voltage levels. The total transformer
capacity between the different voltage levels on the allisland system is presented in Table 2-2. | Table 2-1: Total length of installed | |--------------------------------------| | transmission circuits | | Voltage
Level
(kV) | Total
length
(km) | Length
in Ireland
(km) | Length in
Northern
Ireland
(km) | |--------------------------|-------------------------|------------------------------|--| | 400 | 439 | 439 | | | 275 | 713 | | 713 | | 220 | 1970 | 1970 | | | 110 | 6703 | 5273 | 1430 | | Table | 2-2: Total installed | | |-------|----------------------|--| | trans | former capacity | | | Voltage
Level
(kV) | Capacity
(MVA) | Number | Number
in
Ireland | Number
in
Northern
Ireland | |--------------------------|-------------------|--------|-------------------------|-------------------------------------| | 400/220 | 4050 | 8 | 8 | | | 275/220 | 1200 | 3 | 3 | | | 275/110 | 4280 | 19 | | 19 | | 220/110 | 14066 | 67 | 67 | | | 220/33 | 110 | 1 | 1 | | | 110/38 | 8642 | 179 | 179 | | | 110/33 | 8679 | 113 | | 113 | Reactive compensation devices, such as shunt capacitors, static var compensators (SVCs) and shunt reactors, are used to improve transmission system voltages in local areas. Capacitors and SVCs help to support local voltages in areas where low voltages may otherwise occur. Shunt reactors suppress voltages in areas where they would otherwise be too high, most likely during periods of low demand and/or high wind. Table 2-3 displays the reactive compensation on the all-island transmission system. | Voltage Level
(kV) | Туре | MVArs | No. Devices | Ireland | Northern
Ireland | |-----------------------|------------------------------------|---------|-------------|---------|---------------------| | 400 | Line Shunt Reactor | 160 | 2 | 2 | | | | Voltage Source
Converter (EWIC) | +/- 175 | 1 | 1 | | | 275 | Shunt Capacitor | 236 | 4 | | 4 | | 220 | Shunt Reactor | 250 | 4 | 4 | | | 110 | Static Var
Compensator | 90 | 2 | 2 | | | | Static Compensator
(STATCOMs) | 230 | 3 | 3 | | | | Shunt Capacitor | 996 | 44 | 44 | | | 38 | Shunt Reactor | 100 | 5 | 5 | | | 33 | Shunt Capacitor | 29 | 5 | 5 | | | 22 | Shunt Reactor | 210 | 7 | | 7 | | | Shunt Capacitor | 125 | 5 | | 5 | | 20 | Shunt Capacitor | 92 | 14 | 14 | | | | Shunt Reactor | 9 | 1 | 1 | | # 2.2 Existing Connections between Ireland and Northern Ireland Transmission Systems The existing cross-border circuits are shown in Figure 2-1, where the transmission systems of Ireland and Northern Ireland are connected via a double circuit 275 kV line. This line connects the Northern Ireland transmission system at Tandragee to the Irish transmission system in Louth. There are three 275/220 kV transformers in Louth station, one 600 MVA transformer and two ganged 300 MVA transformers (sharing a connection). The design capacity of each of the 275 kV cross-border circuits is 600 MVA. However, the actual capacity of the circuits to accommodate transfers between the two systems at any time depends on the prevailing system conditions on either side of the border. This includes the ability to deal with system separation. In addition to the main 275kV double circuit, there are two 110 kV connections: - A phase-shifting transformer (PST) between Letterkenny, Co. Donegal and Strabane, Co. Tyrone; and - A phase-shifting transformer (PST) between Corraclassy, Co. Cavan and Enniskillen, Co. Fermanagh. The purpose of these 110 kV PSTs is to provide support to either system under certain system conditions. Phase shifting transformers (PSTs) allow the flow of power to be controlled. Usually the flow is zero but flows of up to about 30MW can be scheduled in either direction during outages if required. They also provide voltage support by tying the two systems together electrically. Figure 2-1: Existing Cross-Border Circuits # 2.3 Interconnection with Great Britain and Europe Transmission grids are often interconnected so that energy can flow from one country to another. By linking to other transmission systems, we can: - Increase the diversity and security of energy supplies; - Facilitate competition in the European and GB markets; and - Aid the transition to a low carbon energy sector by integrating renewable sources. The East West Interconnector and Greenlink Interconnector link the electricity grids of Ireland and Wales, while the Moyle Interconnector links the electricity grids of Northern Ireland and Scotland. For further information on the interconnectors planned, see Section 2.3.3 Future European and GB Interconnection. Power can be either imported or exported on the interconnectors. Interconnector power flows have system impacts that need to be managed operationally. For example, during times of import, conventional generation may be displaced by non-synchronous power sources, reducing the all-island system inertia. Interconnector flows can also have implications for the system frequency, stability, and operation. Frequency changes are faster in transmission systems with low rotational inertia, making frequency control and system operation more challenging. The Moyle Interconnector also increases the dynamic reactive support required by the transmission system as the link does not have dynamic reactive power export capability¹⁴. SONI acts as Interconnector Administrator (IA) for the Moyle interconnector. Interconnector capacity is implicitly allocated through the ex-ante auctions operated by SEMOpx. The capacity is available for implicit allocation to facilitate coupling between the wholesale electricity markets on the islands of Ireland and Great Britain. Figure 2-2 shows the location of the Moyle, East-West and Greenlink interconnectors. Figure 2-2: Existing Interconnectors The amount of power that is permitted to be traded between Ireland and Wales across the East-West Interconnector is detailed in Table 2-4. The available capacity is measured at the BETTA market reference point in Deeside 400 kV station in Wales. The amount of power that can be traded between Northern Ireland and Scotland across the Moyle Interconnector is detailed in Table 2-5. | Table 2-4: Contracted Capacity on EWIC Interconnector | | | | | | |---|-------------|-------------|--|--|--| | Direction | Summer (MW) | Winter (MW) | | | | | Wales to
Ireland | 500 | 500 | | | | | Ireland to
Wales | 500 | 500 | | | | | Table 2-5: Contracted Capacity on Moyle Interconnector ¹⁵ | | | | | | | |--|------------------|---------------------------------|--|--|--|--| | Flow | Dates | Firm capacity available
(MW) | Transmission
Constrained Capacity
(MW) | | | | | NI to GB | All Year | 500 | 400 | | | | | GB to NI | 1 Apr – 31 Oct | 45016 | N/A | | | | | GD to IVI | 1 Nov – 31 March | 450 | N/A | | | | #### 2.3.1 Moyle Interconnector The Northern Ireland transmission system is currently connected to Scotland via a 500 MW High Voltage Direct Current (HVDC) link called the Moyle Interconnector. It is a Line Commutated Converter (LCC) HVDC link, which commenced full commercial operation in 2002. It is constructed as a dual monopole HVDC link with two coaxial sub-sea cables from Ballycronan More in Islandmagee, Northern Ireland to Auchencrosh in Ayrshire, Scotland. The link has a physical installed capacity of 500 MW. The converter station at Ballycronan More is looped into one of the 275 kV Ballylumford to Hannahstown circuits. The Moyle link is self-compensating for reactive power losses. There are four 59 Mvar capacitor banks at the Ballycronan More converter station with three of these capacitor banks acting as filters. Since there is potential for network overloads and voltage steps if the 275 kV double circuit between the Moyle converter station at Ballycronan More and the nearby Ballylumford substation were to trip, the Moyle Interconnectors full export capacity of 500 MW is not currently in use. There is a project in place to resolve this issue which involves reconfiguration of the connection to Moyle. #### 2.3.2 East-West Interconnector The East-West Interconnector is a 500 MW HVDC link which runs between Woodland County Meath in Ireland and Deeside in North Wales. The link comprises approximately 186 km of sub-sea cable and 76 km of land underground cable. The East-West Interconnector uses Voltage Source Converter (VSC) technology. VSC technology offers independent and rapid control of active and reactive power. It does not suffer from commutation failure and is capable of offering emergency power control in the event of low or high frequency events. In addition, due to the VSC technology, the East-West Interconnector provides black start capability. The link can operate in either voltage control or reactive power control mode independently in both converter stations. It can supply or absorb up to 175 Mvar at Portan 400 kV station which is connected directly to Woodland 400 kV station. The East-West Interconnector commenced commercial operation in December 2012. #### 2.3.3 Greenlink Interconnector The Greenlink Interconnector is a 500 MW HVDC link which runs between Great Island in County Wexford Ireland and Pembroke in south Wales. The link comprises approximately 160 km of sub-sea cable. The Greenlink Interconnector uses Voltage Source Converter (VSC) technology. The interconnector can operate in either voltage control or reactive power control mode independently in either converter station, and it can supply or absorb up to 163 MVAr at Great Island¹⁷. | Table 2-6: Contracted Capacity on
Greenlink Interconnector | | | | | | |---|-------------|-------------|--|--|--| | Direction | Summer (MW) | Winter (MW) | | | | | Wales to
Ireland | 530 | 530 | | | | | Ireland to
Wales
| 504 | 504 | | | | ### 2.3.4 Future Interconnection with GB and Europe Currently, Celtic interconnector is the proposed interconnector that is deemed to be a Project of Common Interest (PCI) by the European Commission. PCIs are intended to help the EU achieve its energy policy and climate objectives: affordable, secure and sustainable energy for all citizens. The connection offer for the proposed Celtic Interconnector between Ireland and France was originally executed in November 2021. At the TYTFS data freeze date, this project is expected to be in place from 2026 onwards. As such, this interconnector has been included within the analyses for this forecast statement. In Northern Ireland, SONI has received a connection application from Transmission Investment (TI) for a new interconnector (LirlC) to Scotland, Transmission Investment (TI) is the sole developer of LirlC. The project is at an initial assessment stage. It has recently been evaluated through the Initial Project Assessment (IPA). The IPA is the first stage of the cap and floor regime process, and its purpose is to determine whether the interconnector is in the interest of GB consumers and should in principle obtain a cap and floor regime. It has been concluded that LirIC is likely to be in the interests of GB consumers, and therefore it has been decided to grant cap and floor regime in principle, subject to the conditions indicated by the Office of Gas and Electricity Market. 18 In Ireland, there is a further interconnector project in development (MARES Connect) from Ireland to GB. Due to the early development status of these projects, they are not included within any studies or tables in this report. # 2.4 Transmission Development Plans EirGrid's Transmission Development Plan (TDP) and SONI's Transmission Development Plan Northern Ireland (TDPNI) detail the transmission system development projects that have been initiated by EirGrid and SONI respectively. They also discuss further developments that may arise in the period of the plans. The TDP IE and TDPNI describe projects that are required to: - Facilitate demand growth; - Provide new generation and demand connections: - Ensure the transmission system complies with the EirGrid Transmission System Security and Planning Standards (TSSPS) and SONI TSSPS; - Provide interconnection capacity; and - Refurbish or replace existing assets. The planned transmission system developments presented in this statement are based on those projects that have received internal approval by the data freeze date. Appendix B outlines these developments. These projects are currently scheduled to be completed at various stages between now and 2033. It should be noted that the information presented in later chapters on transmission system transfer capabilities and opportunities is dependent on the completion of these development projects in the assumed timeframe. Information presented in the TDP IE, TDPNI and TYTFS documents represent a snapshot of an evolving transmission system development plan. While we are considering other reinforcements, these are not at the stage of maturity required for inclusion in this statement. Each planned development is illustrated in the maps and schematics in Appendix A. New generation connections and new transmission interface stations are described in Sections 2.8 and 2.9 respectively. # 2.5 Ireland Transmission System Developments This section details the transmission system projects that are planned to take place in Ireland over the period covered by this forecast statement. Project completion dates in the TYTFS are forecasts based on the best project information available at the time of the data freeze date (January 2024). #### 2.5.1 Grid Development Strategy EirGrid published the updated Grid Development Strategy (GDS) "Your Grid, Your Tomorrow" in 2017. The GDS documents our strategy for the long-term development of the network and includes three strategy statements: - Inclusive consultation with local communities and stakeholders will be central to our approach; - We will consider all practical technology options; and - We will optimise the existing grid to minimise the need for new infrastructure. The GDS aims to achieve a balance between the costs and impact of new infrastructure, while maximising the capability of the existing network. #### 2.5.2 Our Public Consultation Process As part of our approach, we use a consistent, six-step process to explore options and make decisions. This means we follow the same steps for every project. The decisionmaking tools we use, and the amount of engagement we carry out at each step, depends on the scale and complexity of each project. Engagement with the public, local communities and landowners typically takes place during steps 3 and 4, and again at steps 5 and 6 on our Community Benefit funds. Engagement with our customers, the wider energy industry and statutory and other stakeholders can take place at every step. Similarly, engagement with relevant consenting authorities, and other Statutory and non-Statutory stakeholders takes place at every step, either specific to a project, or at a more strategic level. Figure 2-3 General structure of the six-step process for our grid projects For each key project or initiative, we also use a bespoke engagement plan which identifies the channels we will use to provide information to our stakeholders. A general structure of the process is set out in Figure 2-3. #### 2.5.3 Tomorrow's Energy Scenarios In 2017, to cater for the increased level of uncertainty over the future usage of the grid, we introduced scenario planning into our grid development process. We call this study Tomorrow's Energy Scenarios (TES). Our scenarios detail credible futures for the electricity sector in Ireland, with specific focus on what this means for the electricity transmission system over the next twenty years and beyond. The underlying assumptions in the scenarios are validated using feedback received from policy makers, industry and the general public as part of an open consultation. When the scenarios are finalised, we use them to test the performance of the electricity transmission grid and publish the results in the TES System Needs Assessment (SNA). The TES process occurs every two years. The needs identified in the TES SNA process are brought through our six-step process for developing the grid. As needs and projects progress through the six-step process, they are included in the TDP IE and TYTFS. In May 2024 EirGrid and SONI published the latest iteration of the Tomorrow's Energy Scenarios¹⁹, which reflected the feedback received during the consultation held towards the end of 2023. ### 2.5.4 Descriptions of Ireland Transmission Development Projects The TDP IE reports the planned transmission infrastructure projects that need to be built or upgraded over the ten years from 2024 to 2033. The timeline of the TDP IE aligns with the strategic planning horizons adopted by EirGrid. These are the medium-term planning, long-term scenario planning and strategic visions for the future. The medium-term planning looks at demand and generation forecasts and opportunities as well as accompanying network reinforcements to meet these forecasts within the next ten years. This medium-term planning includes the Generation Capacity Statement (GCS) which contains ten-year demand forecasts and generation portfolio for generation adequacy and the Six Step Grid Delivery process. Furthermore, in the mediumterm, this TYTFS 2024 sets out the state of the transmission system and a ten-year assessment of the opportunities for new demand and generation connections. Further detailed information is published in the Transmission Development Plan 2024. | Table 2-7: Summary of projects under development a | ıs per data freeze date | |--|-------------------------| | January 2024 | | | Project
category | Border,
Midlands, West | Southeast,
Mideast,
Dublin | Southwest,
Midwest | Projects
at multiple
locations | Total | |-----------------------|---------------------------|----------------------------------|-----------------------|--------------------------------------|-------| | New Build | 31 | 49 | 15 | | 95 | | Uprate/ Modify | 28 | 20 | 9 | 3 | 60 | | Refurbish/
Replace | 9 | 27 | 16 | 8 | 60 | | Other | | 4 | | 4 | 8 | | Total | 68 | 100 | 40 | 15 | 223 | # 2.6 Northern Ireland Transmission System Developments This section details the transmission system projects that are planned to take place in Northern Ireland over the period covered by this forecast statement. Projects have been included using completion dates assessed to be appropriate at the time of the data freeze (January 2024). #### 2.6.1 Grid Development Process In Northern Ireland SONI follows the Grid Development Process. This is a three-part process which includes stakeholder and public participation (as appropriate) in the development of projects, see Figure 2-4. The approach taken to developing the grid is described by the following: The projects listed here have all progressed through either the SONI approval and governance process or have been identified to SONI by NIE Networks (asset replacement projects are identified by NIE Networks). In cases where the project is at an early stage, i.e. Part 1, this approval may be limited to the investigation of feasibility of several options prior to shortlisting and selection of preferred option and identification of study areas. Therefore, the outline design that progresses to the consents stage may vary from that assumed in the forecast statement study files. - Developments are based on assumptions relating to the forecast change in demand and generation. - Studies have concluded that the following projects are required to address forecast non-compliance with standards, subject to the forecast change in demand and generation. However, further cost benefit analysis may
result, in some cases, in the identification of alternative solutions or operational interventions. # Part 1 Identifying the optimum solution and what area may be affected Part 2 Identifying where the project will be built Part 3 Planning Application to Project Handover to NIE Networks Figure 2-4 SONI's Grid Development Process Further projects for which a need has been identified but approval has not yet been granted have not been included in the TYTFS analysis. These are discussed in more detail in Transmission Development Plan for Northern Ireland TDPNI 2023-2032. SONI published its first 'Tomorrow's Energy Scenarios Northern Ireland' (TESNI) which outlines three possible energy futures. These acknowledge that there is no single pathway to a low carbon future. We also analysed how the existing and planned transmission grid performs under each of the scenarios over a range of timeframes. EirGrid and SONI published the TES 2023 consultation²⁰ last autumn (Nov – Dec 2023). Following the consultation, EirGrid and SONI have reflected on the feedback received and published the latest iteration of the Tomorrow's Energy Scenarios in May 2024. In this respect, SONI also has a crucial role to play in the implementation of Northern Ireland's Energy Strategy and Climate change legislation which sets a target of an average of at least 80% of our electricity coming from renewable sources by 2030²¹ ### 2.6.2 Descriptions of Northern Ireland Development Projects #### **Additional Shunt Reactors** With an increase in small scale generation and increasing energy efficiency, the minimum load seen on the NI transmission system has dropped, leading to an increased need to reduce system voltages during these periods. Shunt reactors suppress system voltages. This project involves installation of two new shunt reactors at Tamnamore, and one at each of Castlereagh and Tandragee, connected to tertiary windings of interbus transformers. At the TYTFS data freeze date this project is expected to be completed in phases by summer 2028.Banbridge Transformer Replacement The 30 MVA 110/33 kV transformers T1-T4 at Banbridge are to be replaced by two new 90 MVA units. At the TYTFS data freeze date this project is expected to be completed by winter 2026. #### **Enniskillen Transformer Replacement** The 45 MVA 110/33 kV transformers T1 and T2 at Enniskillen are to be replaced by new 90 MVA units. At the TYTFS data freeze date this project is expected to be completed by winter 2024. ²⁰ Tomorrow's Energy Scenarios 2023 Consultation Report (eirgrid.ie) ²¹ https://www.legislation.gov.uk/nia/2022/31/contents/enacted ### Donegall Main (North) Transformer Replacement The 60 MVA 110/33 kV transformer TX B at Donegall North is to be replaced by a new 90 MVA unit. At the TYTFS data freeze date this project is expected to be completed by summer 2027. #### Airport Road Main It is planned to construct a new 110/33 kV substation including 2 x 60 MVA transformers and a 33 kV switchboard in the Belfast Harbour Estate, close to Airport Road. The substation will be connected as a teed transformer feeder arrangement from Rosebank Main 110 kV. The substation will supply both Airport Road and Queens Road 33 kV substations which are to be transferred from Cregagh Main. At the TYTFS data freeze date this project is expected to be completed by winter 2026. #### Ballylumford Switchgear The existing 110 kV switchgear at Ballylumford is to be replaced with a new 110 kV GIS double busbar and the 110 kV circuits diverted accordingly. At the TYTFS data freeze date this project is expected to be completed by winter 2029. Currently one 275/110 kV interbus transformer at Ballylumford is operated out of service to ensure the fault level is kept within existing switchgear fault rating. After this work is completed, this restriction can be removed. #### Castlereagh IBTx 3 The interbus transformer IBTX 3 at Castlereagh is to be replaced. The replacement transformer will have a 240 MVA primary winding and a 60 MVA tertiary winding. At the TYTFS data freeze date this project is expected to be completed by 2025. #### Mid Antrim Upgrade (formerly Kells-Rasharkin New 110 kV Circuit) As a result of increasing growth in renewable generation there will be a need to construct a second 110 kV circuit between Kells and Rasharkin 110/33 kV cluster substations. This circuit will be required to have a minimum rating of approximately 250 MVA. At the TYTFS data freeze date this project is expected to be completed by 2029. #### Larne Transformer Replacement As a result of an increase in connections at 33 kV, the 45 MVA 110/33 kV at transformers at Larne are to be replaced with 90 MVA units. This is expected to be completed in 2026. #### Cregagh Refurbishment Cregagh substation is being refurbished. As part of this the existing 75 MVA 110/33/6.6 kV transformers are being replaced with new 90 MVA 110/33 kV units. This is expected to be completed in 2026. #### Drumnakelly - Tamnamore Uprate These circuits may be subject to overload under high wind generation conditions and are consequently switched out during high wind periods. This project is to upgrade the capacity on these circuits, allowing these circuits to fully return to service. The conductors on the existing tower line and single circuit sections will be replaced and uprated. A section of underground cable will be installed on the 'A' circuit. At the TYTFS data freeze date this project is expected to be completed in 2029. #### Moyle Reinforcement The drivers for this project are market integration, security of supply and RES integration. At present, full utilisation of the 500 MW export capability of the Moyle Interconnector is prevented by the potential for network overloads and voltage steps in the event of the loss of the 275 kV double circuit between the Moyle converter station at Ballycronan More and the nearby Ballylumford substation. This project involves works to allow reconfiguration of the connection to Moyle to address this contingency. The estimated completion date of this project is 2028. #### Windfarm Clusters Development #### (i) Kells 110/33 kV Cluster It is planned to establish a 110/33 kV cluster substation near Kells, connected to the existing Kells station via an overhead line. At the TYTFS data freeze date this project is expected to be completed by 2025. #### (ii) Gort Main Second Transformer It is planned to install a 2nd 110/33 kV transformer at Gort Main cluster substation, allowing the transfer of a nearby wind farm from the Omagh distribution system to a more direct connection to the transmission system. At the TYTFS data freeze date this project is expected to be completed by winter 2024. #### (iii) Cam Cluster It is planned to establish a 110/33 kV cluster substation between Limavady and Coleraine in the Cam area, connected to the existing 110 kV circuit between Coolkeeragh and Limavady. To enable future transmission development in this area SONI is progressing a Cam Substation Extension which will additionally turn in the nearby 110 kV circuit between Coleraine and Limavady. At the TYTFS freeze date this project is expected to be completed by 2029. ### Energising Belfast – Belfast city centre reinforcement The first phase of this project comprises the installation of a fourth transformer at Castlereagh and diverting the Carnmoney to Castlereagh circuit into the Finaghy substation. For the purposes of TYTFS 2024 analysis, this phase of the project is expected to be completed in 2025. The second phase of this project includes the establishment of new 110 kV double busbar stations near Belfast North Main and Belfast Central Main and installation of new double circuit cables. For the purposes of TYTFS 2024 analysis, this phase of the project is expected to be completed in 2028. The redundant section between Finaghy and Carnmoney will subsequently be removed. #### **Energising Belfast: Asset Removal** Once the necessary assets have been installed and the network reconfigured, the Carnmoney to Castlereagh circuit will be removed. The section between Finaghy and Carnmoney will be removed after Phase 1 and the Finaghy to Castlereagh section after Phase 2. #### Carnmoney – Eden Reinforcement The 110 kV double circuit between Eden and Carnmoney substation is being replaced with underground cable in Carnmoney and Carrickfergus and overhead line refurbished in the rural area in between. This will increase the Winter/Autumn/Summer rating of the circuits to 147/136/117 MVA. This is expected to be completed in 2029. As part of this project, a 2nd 110/33 kV 90 MVA transformer is also being installed at Glengormley substation. This is expected to be completed in 2025. #### Coolkeeragh 110 kV Extension This project will facilitate the future connection of a third interbus transformer, the restoration of the second busbar coupler and section switches and other improvements at Coolkeeragh 110 kV. Following an assessment of options based on a range of criteria the preliminary preferred option selected is the extension of the existing outdoor Coolkeeragh 110 kV substation into the old bund area through treating and redistributing bund material onsite. The estimated completion date is 2029. ### 2.6.3 Projects Not Included in the 2024 TYTFS Analysis Several projects are planned but have not been included in the TYTFS analysis due to uncertainty at this time over scope, and/or timescales. #### NI projects advancing in Part 1 The following projects are advancing through Part 1 with significant analysis undertaken and options identified for each. Once determined, these projects will be submitted to the Utility Regulator NI for approval and advance into Part 2. #### Connect West (formerly Mid Tyrone Upgrade) The Connect West Project will increase the capacity of the transmission network in the Mid Tyrone area through the construction of a new 275 kV circuit between Dromore and either Turleenan or Tamnamore 275 kV substations. ### Armagh
upgrade (formerly Armagh and Drumnakelly Reinforcement) NIE Networks and SONI are jointly assessing the level of security of supply on the distribution system supplying Armagh and the 110/33 kV substation at Drumnakelly. This project will involve: - Reinforcement of the distribution system in the area between Drumnakelly, Tullygoonigan and Armagh; and - Reinforcement of the transmission system in the area between Tandragee and Armagh. #### East Tyrone Reinforcement NIE Networks and SONI are jointly assessing the level of security of supply on the distribution system supplied from the 110/33 kV substation at Dungannon. This project will involve the construction of a second 110/33 kV substation at Dungannon. #### North West of NI 110 kV reinforcement Following the completion of the 'Mid Antrim Upgrade' project, there will be a need to reinforce the 110 kV transmission system near Rasharkin, Coleraine, Limavady and Garvagh cluster (and at the proposed Cam cluster). As well as likely uprating the circuits between these substations, other options to be investigated as part of this project will include: - A new 110 kV circuit from Cam cluster – Rasharkin; and - A second 110 kV circuit from Coleraine – Rasharkin. ### Tamnamore land purchase for substation extension Tamnamore is a strategic 275/110 kV substation in Co. Tyrone. Several connection projects are in development nearby, and the substation will need to be extended in future to include a 3rd interbus transformer, 2nd bus coupling circuit breaker and enable further connections. To prevent the substation becoming landlocked by nearby developments, this project will procure the land to the north of the substation, enabling its future extension. #### Coolkeeragh - Strabane As a result of increasing growth in renewable generation there will be a need to provide additional transmission capacity between Coolkeeragh and Strabane 110 kV substations. Options being investigated as part of this project include: - Uprating all circuits between Coolkeeragh, Killymallaght and Strabane; and - Providing an additional circuit along the corridor by establishing two 110 kV circuits along the existing Coolkeeragh to Strabane double circuit towerline. #### 275 kV Substation Rebuilds Castlereagh, Coolkeeragh, Kells, Magherafelt and Tandragee 275 kV substations require redevelopment due to the age and condition of the concrete A-frames used to support the flexible conductor. At this time, the preferred option for each is not yet known as optioneering is underway. Key considerations in these projects include ensuring long-term security of supply, allowing potential extension of the substations in future and managing a complex programme of outages for each rebuild, potentially through the use of the installation of additional interbus transformers. #### **Newry BSP** As a result of increasing demand growth in the Newry area, there will be a need to provide additional transmission capacity into Newry. Options being investigated as part of this project include: - Uprating the existing 110 kV circuits between Newry and Tandragee; and - Establishing a second Bulk Supply Point at Newry, supplied from Tandragee 110 kV substation. #### Coleraine transformer replacement The 60 MVA 110/33 kV transformers at Coleraine are to be replaced with new 90 MVA units to increase capacity for distribution connections. The transformers will be installed on a new alignment to enable a 110 kV mesh extension in future. As part of this work, Gruig wind farm will be transferred to Rasharkin Main to reduce distribution system loading at Coleraine. #### Limavady transformer replacement The 45 MVA 110/33 kV transformers at Limavady are to be replaced with new 90 MVA units to increase the capacity for distribution connections. #### North Sperrin – renewable generation capacity There is a significant amount of planned new renewable generation in the North Sperrin area. This project will develop a new substation in this area to enable these connections. This is a Transmission Cluster project, meaning that the connecting generators will pay for the cost of developing the substation in proportion to the amount of its capacity they use. SONI are currently developing the Transmission Cluster policy and once this is formally adopted SONI will be in a position to bring this project forward. #### Offshore To deliver the Department's Energy Strategy and associated Action Plan's initial target of at least 1GW of offshore wind from 2030. In February 2025, the Department published its updated Offshore Renewables Action Plan for Northern Ireland. ²²In one of the actions listed in that plan (D2), the Department committed to publishing a Statement of Intent with The Crown Estate. In that statement, the link between the connection of offshore windfarms to the grid and realising the offshore potential was identified as a "common priority". The NI Executive's Energy Strategy Action Plan for 202523 commits the DfE to confirming arrangements for connection of Offshore Renewable Energy to the electricity grid (Action 2). To address part of this question, the UR has asked SONI to consider the network project(s) that would be necessary to facilitate the objectives set out in the DfE's "Enabling Frameworks" and "Electricity Networks" overarching strategic priorities that underpin that plan. [page 4 of the OREAP 2025]. Subsequent to the data freeze for this TYTFS, SONI has undertaken a high level feasibility assessment of the options available for the potential connections that would facilitate delivery of "the Energy Strategy Action Plan's initial target of at least 1GW of offshore wind from 2030". SONI further refined the conclusions of this work in the light of the draft SEA that the DfE published in February 2025. To deliver the Northern Ireland Executive's Energy Strategy, offshore connections would need to be made to either existing substation bays or those that are already within the planning phase of the grid development process. We have therefore identified the following projects for inclusion in this TYTFS. #### **Ballylumford Offshore Connection Bays** Two of the existing bays at the Ballylumford 275kV substation are required to be available to connect the parties that are successful in The Crown Estate's leasing auction for the North Channel (and potentially the Irish Sea) areas. This project relates to the use of existing assets to facilitate the delivery of the NI Executive's strategy. #### Coolkeeragh 275 kV Redevelopment A number of concrete structures at Coolkeeragh are not compliant with modern standards and are need of replacement. Additionally, there is a need to install a 2nd bus coupling circuit breaker. This project will address this issue through redevelopment of the existing substation or replacement. As part of this project, two bays will be included to facilitate connection of the parties that are successful in The Crown Estate's leasing auction for the Atlantic area. The scope of this project includes assets required to facilitate the delivery of the NI executive's strategy. # 2.7 Joint Ireland and Northern Ireland Approved Transmission System Developments This section includes transmission system developments which both EirGrid and SONI have identified the need for. We are proposing a new 400 kV circuit which will connect Woodland 400/220 kV station in County Meath (Ireland) and Turleenan 400/275 kV station in County Tyrone (Northern Ireland). A new 400 kV station at Turleenan is required. At present, the transmission transfer capacity between Ireland and Northern Ireland is not sufficient. Due to the risk of a forced outage, we must limit power flows across the border to prevent stress on the grid and risk to security of supply. The North South Interconnector will deliver a more secure and reliable electricity supply throughout the island of Ireland. It will bring about major cost savings and address significant issues around the security of electricity supply. A key benefit is that it will remove bottlenecks between the two systems. This will enable the two systems to work together as a single network. This will benefit residents and businesses on both sides of the border. Other benefits will include cost savings for consumers, as larger electricity systems operate more efficiently than smaller ones. The North South Interconnector will also allow for greater connection of renewable generation. This will help Ireland and Northern Ireland achieve future renewable energy targets. At the TYTFS data freeze date this project is expected to be completed by the end of 2027. Once this connection is established, the constraints on the existing Tandragee-Louth 275 kV double circuit will be significantly reduced. #### 2.8 Connection of New Generation Stations New generators will connect over the period covered by this statement. Table 2-6 lists the transmission system developments associated with future generation. New generators are included in the appropriate network models according to their expected connection date. Details of these generators and their expected connected dates are given in Appendix D. | Table 2-8: Transmission System Station Development to Facilitate the Connection of Future Generation | | | | | | |--|---|------------------|--|--|--| | Generator | Planned Connection Method | Location | | | | | Derrymeen
Battery Storage | New Derrymeen battery energy storage station, connecting into Tamnamore 110 kV station | Northern Ireland | | | | | Colinglen
Battery Storage | New Colinglen battery energy storage station,
connected into Hannahstown 110 kV station | Northern Ireland | | | | | Tureagh
Battery Storage | New Tureagh battery energy storage station,
connected into Hannahstown 110 kV station | Northern Ireland | | | | | Statkraft Coleraine
Synchronous
Condenser | New Coleraine HISC station, connected into Coleraine
110 kV station | Northern Ireland | | | | | Statkraft Coolkeeragh
Synchronous
Condenser | New Coolkeeragh HISC station, connected into
Coleraine 275 kV station | Northern Ireland | | | | | Kilroot GT6 | 275 kV connection into Kilroot substation | Northern Ireland | | | | | Kilroot GT7 | 275 kV connection into Kilroot substation | Northern Ireland | | | | | Pigeon Top Wind Farm | New Pigeon Top 110 kV station, connected into
Drumquin 110 kV station | Northern Ireland | | | | | Dooish Wind Farm | New Dooish 110 kV station, connected into Drumquin 110 kV station | Northern Ireland | | | | | Cam Cluster | Future Cam 110/33 kV substation is planned to be connected into the existing Coolkeeragh – Coleraine and Coleraine – Limavady 110 kV circuits | Northern Ireland | | | | | Aghada BESS 02 | New Aghada Battery energy storage station, connected into Aghada 220kV station | Ireland | | | | | Ballinknockane
Solar Park | New Ballinknockane 110 kV station, connected into the existing Aughinish-Kilpaddoge 110 kV circuit | Ireland | | | | | Ballinrea Solar Park | New Castletreasure 110 kV station, connected into existing Raffeen 110 kV station | Ireland | | | | | Ballymoneen Solar Park | New Gortaleva 110 kV station, connected into existing
Cashla 110 kV station | Ireland | | | | | ienerator | Planned Connection Method | Location | |---|--|----------| | allyroe Solar | New Ballynadrideen 110 kV station, connected into existing Charleville 110 kV station | Ireland | | allyvatta Solar Farm | New Ballynabrannagh 110 kV station, connected into existing Knockraha 110 kV station | Ireland | | anemore Solar Farm | New Banemore solar farm, connected into the existing
Clahane 110kV station | Ireland | | lackwater Bog Solar 1 | New Blackwater Bog Solar farm, connected into
Shannonbridge 220/110kV station | Ireland | | astlelost FlexGen | New 4 bay 220 kV station, connected into existing
Maynooth – Shannonbridge 220 kV circuit | Ireland | | Croaghonagh
Vind Farm | New Croaghonagh 110 kV station, connected into
Clogher 110 kV station | Ireland | | Carrigdangan Wind
arm (formerly
arnadivane) | New Carrigdangan 110 kV station, connected into
Dunmanway 110 kV station | Ireland | | Cloghan Wind Farm | New Cloghan windfarm, connected into the existing
Derrycarne 110kV substation east of Cloghan | Ireland | | Clondardis Solar Farm | New Shanonagh 110 kV station, connected into existing
Mullingar – Lanesboro 110 kV circuit | Ireland | | Clonfad Solar Farm | New Clonfad 110 kV station, connected into existing
Kinnegad – Mullingar 110 kV circuit | Ireland | | Clonin North Solar Farm | New Laurencetown 110 kV station, connected into existing Derryiron 110 kV station | Ireland | | Coole Wind Farm | New Lickny 110 kV station, connected into the existing
Mullingar 110 kV station | Ireland | | uilleen Power | New Cuilleen 110 kV station, connected into existing Athlone 110 kV station | Ireland | | ushaling Wind Farm | New Philipstown 110 kV station, connected into existing
Cushaling – Portlaoise 110 kV circuit | Ireland | | arr Solar and Storage | New Corbetstown 110 kV station, connected into existing Derryiron 110 kV station | Ireland | | askinstown
olar Farm | New Deenes 110 kV station, connected into existing
Baltrasna – Drybridge 110 kV circuit | Ireland | | Perrinlough Wind Farm | New Stonestown 110 kV station, connected into existing Derrycarney – Dallow T / Shannonbridge 110 kV circuit | Ireland | | Table 2-8: Transmission System Station Development to Facilitate the Connection of Future Generation | | | | | | | |--|---|----------|--|--|--|--| | Generator | Planned Connection Method | Location | | | | | | Drombeg Solar Park | New Drombeg 110 kV station, connected into the existing Kilpaddoge-Tralee 110 kV circuit | Ireland | | | | | | Erkina Solar Farm | New Timoney 110 kV station, connected into
Shannonbridge – Ikerrin Tee – Thurles 110 kV circuit | Ireland | | | | | | Fieldstown Solar Farm | New Newbarn 110 kV station, connected into existing
Finglas 110 kV station | Ireland | | | | | | Firlough Wind Farm | New Firlough 110 kV station, connected into the existing Glenree – Moy 110 kV circuit | Ireland | | | | | | Gallanstown Solar Park | New Gallanstown 110 kV station, connected into the existing Corduff-Platin 110 kV circuit | Ireland | | | | | | Garreenleen Solar Farm | New Bendinstown 110 kV station, connected into existing Kellis 110 kV station | Ireland | | | | | | Glen Solar Farm | New Aghaleague 110 kV station, connected into existing
Garvagh 110 kV station | Ireland | | | | | | Greener Ideas
Profile Park | New Baldonnell 110 kV station, connected into existing
Barnakyle 110 kV station | Ireland | | | | | | Harristown Solar Park | New Harristown 110 kV station, connected into the existing Kinnegad-Dunfirth/Rinawade 110 kV circuit | Ireland | | | | | | Huntstown
MIC increase | New Mooretown 220 kV station, connected into existing Finglas—Huntstown B 220 kV Circuit and Corduff—Huntstown A 220 kV Circuit, while also forming two new 220 kV circuits Huntstown A – Mooretown and Huntstown B – Mooretown | Ireland | | | | | | Kilmannock
Battery Storage | New Dunbrody 110 kV station, connected into existing
Great Island 110 kV station | Ireland | | | | | | Kilshane Power Station | New Cruiserath 220 kV station, connected into new
Cruiserath 220 kV station | Ireland | | | | | | Knocknamork Wind and
Solar Park | New Coomnaclohy 110 kV station, connected into existing Ballyvouskill 110 kV station | Ireland | | | | | | Knockranny Wind Farm | New Ferry View 110 kV station, connected into existing
Knockranny 110 kV station | Ireland | | | | | | Loughteague
Solar Farm | Direct connection into a designated bay of the proposed
Coolnabacky 440/110 kV | Ireland | | | | | | Generator | Planned Connection Method | Location | |--|---|----------| | Lumcloon
Energy Storage | New Derrycarney 110 kV station, connected into the existing Portlaoise-Dallow/Shannonbridge 110 kV circuit | Ireland | | Manusmore Solar Park | New Coolshamroge 110 kV station, connected into existing Drumline – Ennis 110 kV circuit | Ireland | | Monatooreen Solar Park | New Monatooreen 110 kV station, connected into
Knockraha 220/110 kV station | Ireland | | Monvallet Hybrid Solar
and Battery Farm | New Drumcamill 110 kV station, connected into existing
Louth 110 kV station | Ireland | | Rathnaskilloge
Solar Farm | New Rathnaskilloge 110 kV station, connected into the existing Cullenagh – Dungarvan 110 kV circuit | Ireland | | Oriel Wind Farm | New Oriel 220 kV station, connected into the existing
Louth-Woodland 220 kV circuit | Ireland | | Oweninny wind farm 3 | New Oweninny windfarm 3, connected into existing
Bellacorick 110kV substation | Ireland | | Pinewoods Wind Farm | New Garrintaggart 110 kV station, connected into future Ballyragget – Coolnabacky 110 kV circuit | Ireland | | Rosspile Solar Park | New Rosspile 110 kV station, connected into the existing Great Island-Wexford 110 kV circuit | Ireland | | Shantallow Solar Park | New Shantallow 110 kV station, connected into
the existing Cashla-Shannonbridge/Somerset
110 kV circuit | Ireland | | Timahoe North
Solar Park | New Timahoe North 110 kV station, connected into the existing Derryiron-Maynooth 110 kV circuit | Ireland | | Tomsallagh Solar Farm | New Effernoge 110 kV station, connected into existing
Crane – Lodgewood 110 kV circuit | Ireland | | Tracystown Solar Farm | New Dennistown 110 kV station, connected into existing Wexford 110 kV station | Ireland | | Yellow River Wind Farm | New Knockdrin 110 kV station, connected into existing
Derryiron 110 kV station | Ireland | #### 2.9 Connection of New Interface Stations Transmission interface stations are the points of connection between the transmission system and the distribution system or large energy users connecting directly to the transmission system. The planned new interface stations, for the period covered by this statement, are listed in Table 2-7. These stations are included in the network models according to their expected connection date. Details of the connections and dates are given in Section B.2, Appendix B. | Table 2-9: Planned Extension and New Transmission Interface Station | | | | | | |---|----------------------------------|----------|--|--|--| | Station | Nearest Main Town or Load Centre | County | | | | | Airport Road
110 kV station | Belfast | Down | | | | | Armagh 110 kV station | Armagh | Armagh | | | | | Ballyragget 110 kV
station | Ballyragget | Kilkenny | | | | | Baroda 110 kV station | Newbridge | Kildare | | | | | Bracklone 110 kV
station | Portarlington | Laois | | | | | Batter Lane 110 kV
station | Finglas | Dublin | | | | | New 110 kV station
near Kilbarry | Cork | Cork | | | | | Walterstown 110 kV station | Meath | Meath | | | | # **2.10 Detailed Transmission Network Information** Appendix A includes maps and schematic diagrams showing snapshots of the all-island transmission system as of January 2024 and the planned transmission system
expected by the end of 2033. The diagrams indicate stations, circuits, transformers, generation, reactive devices and phase shifting transformers. The electrical characteristics and capacity ratings of the existing and planned transmission system are included in Appendix B. Characteristics of existing and planned overhead lines, underground cables, transformers and reactive compensation devices are provided. # 3. Demand This chapter provides information on the all-island, lreland, and Northern Ireland demand forecasts. ## 3.1 Introduction to Demand Forecast Data The forecasts are taken from the All-Island Generation Capacity Statement 2023-2032 (GCS) which was published by EirGrid and SONI in January 2024. The GCS 2023 contains forecasts of future energy consumption and demand levels between 2023 and 2032. This chapter also describes the anticipated large demand increase in the Dublin area. This potential demand increase is associated primarily with the connection of new large energy users such as data centres. The impact of these data centres on the future all-island demand forecast is also discussed. #### 3.2 Transmission Demand Forecast Table 3-1 presents the median all-island, Ireland and Northern Ireland, Winter Peak demand forecast over the period 2023-2032, as published in the GCS. It is difficult to accurately predict a peak demand figure for a particular year in the future. This is due to several factors that can cause fluctuations in the forecast, such as weather conditions, economic activity, electricity usage patterns, and government policy. The annual peak demand figures listed in Table 3-1 are expected to occur during winter of each year. In Ireland and Northern Ireland, the Winter Peak demand usually occurs between 17:00 and 18:00 on a weekday evening in the months of January or December. The median demand forecast represents an average annual increase in all-island Winter Peak demand of 2.6% over the period of 2023-2032²³. This represents an increase in demand forecast relative to GCS 2022-2031, when the forecast average annual increase in all-island Winter Peak demand was 2.06%²⁴. | Table 3-1: All-island, Ireland and Northern Ireland Median Peak
Demand Forecast | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Connection | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | | Northern
Ireland (GW) | 1.62 | 1.56 | 1.60 | 1.64 | 1.68 | 1.75 | 1.78 | 1.80 | 1.83 | 1.85 | 1.90 | | Ireland (GW) | 5.47 | 5.74 | 5.90 | 6.07 | 6.25 | 6.38 | 6.49 | 6.59 | 6.72 | 6.88 | 7.04 | | All-island (GW) | 6.86 | 7.21 | 7.43 | 7.64 | 7.87 | 8.06 | 8.19 | 8.31 | 8.47 | 8.65 | 8.87 | ²³ The cumulative forecast in demand over the period of GCS 2023-2032 is 29.3% ²⁴ The cumulative forecast increase in demand over the period of GCS 2022-2031 was 22.7% As well as Winter Peak forecasts, we also develop Summer Peak and Summer Valley forecasts for Ireland and Northern Ireland, and Autumn Peak forecasts for Northern Ireland. The Summer Peak demand refers to the average peak demand levels that are forecast to occur during the summer period of each year. The Ireland and Northern Ireland Summer Peaks are combined to produce an all-island Summer Peak. The overall transmission system power flows are usually lower in summer than in winter. However, this may not be the case for flows on all circuits. The capacity of overhead lines is lower during the summer period because of higher ambient temperatures. Network maintenance is also usually carried out during the summer/autumn period. Both factors can restrict the network, reducing its capability to transport power. The annual minimum expected demand is referred to as the Summer Valley. It represents the lowest annual demand that is forecasted and is expected to occur during the summer of each year. The Ireland and Northern Ireland Summer Valley demands are combined to produce an all-island Summer Valley demand. The Summer Valley cases examine the impact of the combination of low demand and low levels of conventional generation on the transmission system. This minimum condition is of particular interest when assessing the capability of the transmission system to connect new generation. This is because with local demand at a minimum, the connecting generator will export more of its power across the transmission system. The Summer Peak and Summer Valley demands occur between March and August. The Autumn Peak demand refers to the peak demand value expected in September and October. Summer Peak, Summer Valley and Autumn Peak demand forecasts can be expressed in terms of percentage of Winter Peak demand. These are shown in Table 3-2. | Table 3-2: Ireland and Northern Ireland Seasonal Demand
Forecast as a Percentage of Winter Peak Demand | | | | | | |---|---|--|--|--|--| | Season | Ireland Seasonal Demand Forecast as a Percentage of Winter Peak (%) | Northern Ireland Seasonal
Demand Forecast as a
Percentage of Winter Peak (%) | | | | | Winter Peak | 100 | 100 | | | | | Autumn Peak | N/A | 87 | | | | | Summer Peak | 80 | 79 | | | | | Summer Valley | 35 | 29 | | | | These figures are consistent with historical demand data. #### 3.2.1 Dublin Area Demand #### Background Over the past few years, the number of connections and requests to connect to the transmission network in the Dublin area has increased. This document includes information on both current demand connections and future demand opportunities at the freeze date of January 2024. Our assessment of demand opportunities is presented in Chapter 8 and includes sections focused on the Dublin area and data centres. The level of enquiries in the Dublin area is principally driven by the need for Information, Communications and Technology (ICT) industries, electrification of heat and transport and high-tech manufacturing companies to connect to a high-quality power supply in the Dublin area. New interface points that connect the Transmission System and Distribution System, also called Bulk Supply Points (BSP) are being planned. The justification for the new BSPs in Dublin is to supply the projected electricity demand growth in this area, including increasing demand related to residential, commercial and electrification of the heat and transport sectors. A summary of the Bulk Supply Points that are being planned is as follows: - New Fingal East Meath Bulk Supply Point Station and associated new grid connection²⁵; - New Dublin Central Bulk Supply Point Station and associated new grid connection; and - New South Dublin Reinforcement Bulk Supply Point Station and associated new grid connection. #### **Data Centres** As of 1st January 2024, there are thirteen large scale data centres connected to the Transmission System and five connected to the 110 kV Dublin distribution system. The total annual energy consumption at these sites for 2023 was 5.82 TWh. The maximum combined power demand of these data centres was 706 MVA. Contracts are in place for a total of 1912.6 MVA of large-scale data centre connections to the transmission system or the 110 kV Dublin distribution system²⁶. #### What is a data centre? A data centre is a facility used to house computer systems and associated components, such as telecommunications and storage systems. They underpin the operations of companies in the broad ICT sector, particularly those in social media and cloud computing. The size of the individual electricity demand connections depends on the scale of the business operation. These have varied from 20 MW with some possibly extending to 250 MW in the final stages of development. Their use of electricity tends to be constant throughout the year. The modern world increasingly requires the retention and use of vast volumes of data, so this trend is likely to continue for the foreseeable future. #### Impact on the System Demand Forecast The potential connection of data centre demand on the scale discussed represents significant demand growth. This is having an impact on the all-island system demand forecast and generation capacity adequacy. Generation adequacy is assessed and discussed in the GCS. SONI has issued a connection offer for a data centre in the North West which is expected to connect at Coolkeeragh 110kV. If this offer is accepted, this might have an impact on the generation and demand opportunities in the North West. #### 3.3 Demand Data Electricity usage follows some generally accepted patterns. For example, annual peak demand occurs between 17:00 - 19:00 hrs on winter weekday evenings. Minimum usage usually occurs during summer weekend night-time hours. #### 3.3.1 Generated Peak Demand Profiles Figure 3-1 shows the generated peak demand profiles of Ireland and Northern Ireland in 2023, on the day of the all-island winter peak on 05 December. The individual peaks in 2023 for Ireland and Northern Ireland did not occur on the same day. Peak demand for Ireland occurred on 04 December 2023, while peak demand occurred in Northern Ireland on 16 January 2023²⁷. Figure 3-1: Generated Peak Demand Profiles for 2023 #### 3.3.2 All-Island Demand Profiles Figure 3-2 shows the profiles of the 2023 all-island Winter Peak, Summer Peak and Summer Valley. The percentage demand attributable to each jurisdiction during the peak and valley scenarios is also shown. The day of minimum demand, occurring within each calendar year, is usually observed during summertime. The levels of minimum demand that are scrutinised by this report pertain to measurements taken at Bulk Supply Points (BSPs) on the transmission network. The contributions of small-scale
generation, such as rooftop solar, are not disaggregated from the coincident gross demand requirement, and thus potentially serve to mask underlying trends in end-user demand patterns. Figure 3-2: 2023 All-island Winter Peak, Summer Peak, and Summer Valley demand profiles | Table 3-3: Ireland and Northern Ireland Peak and Minimum Demand, 2023 | | | | | | |---|------------------|----------------|------------------|----------------|--| | 2023 | Ireland | | Northern Ireland | | | | | Date and Time | Demand
(MW) | Date and Time | Demand
(MW) | | | Winter Peak | 04/12/2023 17:30 | 5442 | 16/01/2023 17:15 | 1470 | | | Summer Peak | 04/05/2023 17:15 | 4336 | 24/05/2023 17:15 | 1059 | | | Minimum
Demand | 02/08/2023 05:30 | 2495 | 16/07/2023 05:15 | 393 | | #### 3.3.3 All-Island Weekly Demand Peaks Figure 3-3 shows the profile for the Ireland, Northern Ireland and All-Island weekly peaks during 2023. #### 3.3.4 Load Duration Curves Figure 3-4 show the Ireland and Northern Ireland 2023 load duration curves, respectively. The curves show the percentage of time in the year that a particular demand value was exceeded. For example, demand exceeded 3750 MW in Ireland for 50% of the time. Demand in Northern Ireland exceeded 850 MW for 50% of the year. Figure 3-3: Load duration curves for Ireland and Northern Ireland # 3.4 Forecast of Electrical Demand at Transmission Interface Stations in Ireland Transmission interface stations are the points of connection to the transmission system. These interfaces include: - Connections between the transmission and the distribution systems; and - Customers connected directly to the transmission system at 220 kV or 110 kV. The interfaces are mostly 110 kV stations. In Dublin city, where the Distribution System Operator (DSO) operates the 110 kV network, the interface is usually at 220 kV stations. The Transmission System Operator (TSO) and the DSO work collaboratively to ensure that the needs of transmission and distribution connected customers are met through planning the development of these transmission interface stations. Appendix C lists forecast demands at each transmission interface station. The forecast demands are given for Winter Peak, Summer Peak and Summer Valley for all years from 2024-2033. Demand projections at individual transmission stations are developed from the system demand forecasts on a top-down basis. This approach takes the overall demand forecast and breaks it down using transmission system information, including historical data, to gain better knowledge of the sub-components of the demand forecast. The forecasting process includes regular monitoring and review of consumption trends in all parts of the country. The allocation of the system demand forecast to each station is pro-rata. This is based on an up-to-date measurement of actual peak demand at each station. Account is taken of planned transfers of demand between stations, as agreed with the DSO (ESB Networks). In this way, changes in the location of electricity consumption are captured. This process provides a station demand forecast and by extension a regional demand forecast for the short to medium term. The system-wide demand forecasts, presented in Table 3-1, include transmission losses whereas the individual station demand forecasts do not. Transmission losses therefore account for the difference between system-wide demand and the sum of the demand at each interface station. The demand at each interface is given in Appendix C. Demand forecasts in Appendix C include the small number of directly connected customers. The values in Appendix C were the best estimates of requirements at the data freeze date and do not reflect contractual status or the level of firm capacity that may be available in the network. In some cases, the estimates may be less than contracted maximum import capacity (MIC) values. These values are chosen to give a better projection of expected demand on a system-wide basis. When analysing the capacity for new demand in a particular area, the MIC values of local directly connected and contracted customers are used. It is important to note that some contracted MIC is non-firm and subject to flexible demand arrangements. A demand-side unit (DSU) consists of one or more demand sites that can be instructed by EirGrid and SONI to reduce electricity demand. DSUs are usually medium to large industrial premises. A DSU uses a combination of onsite generation or plant shutdown to deliver a demand reduction. Providing this dispatch availability means that the DSU is eligible for capacity payments in the Single Electricity Market (SEM). It is noted that DSUs may reduce some customers' demands from time-to-time over Winter Peak hours. However, normal demand levels are included in the Winter Peak demand forecasts shown in Table C-1 in Appendix C. Normal demand levels are also used in the power flow tables in Appendix H. These normal demand levels are used since they are more indicative of general power flows. It is identified that there are emerging needs for additional transformer capacity at transmission interface stations in the Dublin area to accommodate forecasted growth of electricity demand due to large energy users, electrification of heat and transport and growth in commercial connections in the distribution network. # 3.5 Forecast Demand at Northern Ireland Bulk Supply Points (BSP) The 110/33 kV BSP demand forecasts are provided by NIE Networks, the DSO in Northern Ireland. These forecasts are based on demand trends at an individual nodal level and adjusted to align with system average cold spell (ACS) forecasts. ACS analysis produces a peak demand which would have occurred had conditions been averagely cold for the time of year. This ACS adjustment to each Winter Peak seeks to remove any sudden changes caused by extremely cold or unusually mild weather conditions. Consideration is also given to future block load transfers from one BSP to another. Tables and information relating to demand forecasts are contained in Appendix C. # 4. Generation This chapter provides information about existing generation capacity and defines future projections for the next ten years from 2024 to 2033. All generation capacity and dispatch figures given in this statement are expressed in exported or net terms. This is the generation unit output less the unit's own auxiliary load. In December 2023 the Irish Government published the next iteration of its Climate Action Plan (CAP) 2024. The 2024 plan reflects increased ambitions for the decarbonisation of Ireland's economy, including measures to meet the revised targets of renewable sources (RES-E) introduced in the 2023 update. The 2023 CAP increased the proportion of renewable electricity required to 80% by 2030 and a target of 9 GW from onshore wind, at least 5 GW of offshore wind energy plus 2 GW for green hydrogen production, 8 GW from solar including 2.5 GW of new non-utility solar, and finally green hydrogen production from renewable electricity surplus generation. In order to meet this target, and the requirements introduced under the 2024 CAP, investment will be needed in new renewable generation capacity, system service infrastructure and electricity networks. In Northern Ireland, the United Kingdom's Committee on Climate Change advised that it is necessary, feasible and cost-effective for the UK to set a target of net zero Green House Gas (GHG) emissions by 2050. The new Climate Change Act (Northern Ireland) 2022 (legislation.gov.uk) came into effect on 08 June 2022. The revised legally binding target towards net zero emissions covers all sectors of the economy. This update to the Order demonstrates the UK's commitment to targeting a challenging ambition in line with the requirements of the Paris Agreement on climate change. Energy Policy is a devolved matter for Northern Ireland, and the DfE has worked with stakeholders, including SONI, and developed the Energy Strategy for Northern Ireland. It sets out a pathway for energy to 2030 that will mobilise the skills, technologies and behaviours needed to take us towards our vision of net zero carbon and affordable energy by 2050. Subsequent Energy Strategy Action Plans were published in 2022, 2023 and 2024. The Climate Change Act (Northern Ireland) 2022 sets a new target of 80% of electricity consumption to come from renewable energy sources by 2030. The Department for Agriculture, Environment and Rural Affairs (DAERA) on behalf of the Northern Ireland Executive has published a draft Green Growth Strategy²⁸. The Green Growth Strategy is the Northern Ireland Executive's multi-decade strategy, balancing climate, environment and the economy in Northern Ireland. The Department for the Economy has consulted on a Draft Offshore Renewable Energy Action Plan, which contains the ambition to deliver 1GW of offshore wind from 2030²⁹. The Department has also consulted on the design considerations for a Renewable Electricity Support Scheme for Northern Ireland³⁰. A freeze date of January 2024 was applied when compiling this TYTFS. #### 4.1 Generation in Ireland At the data freeze date 13,291 MW of generation capacity was installed in Ireland, as detailed in Table 4-1. ### 4.1.1 Existing and Planned Transmission Connected Generation Table 4-2 lists planned generators that have signed transmission connection agreements in place not yet connected, along with their expected energisation dates if available, at the data freeze date. It should be noted that this position might have changed somewhat since the data freeze date. | Table 4-1: Installed Generation Capacity in Ireland | | | | | |---|------------------------------------|--------------------------------|--|--| | Transmission System Connected (MW) | Distribution System Connected (MW) | Total Generation Capacity (MW) | | | | 10,590 | 2,701 |
13,291 | | | | Generator | Generation Type | Generation
Capacity (MW) | Expected Energisation Date | | |-------------------------|-----------------|-----------------------------|----------------------------|--| | Aghada BESS 02 | Battery | 159 | 2024 | | | Arklow Banks 2 | Offshore | 800 | 2027 | | | Ballinknockane | Solar | 50 | 2025 | | | Banemore Solar farm | Solar | 34 | 2024 | | | Bellewstown | OCGT | 3 x 5731 | 2026 & beyond | | | Blackwater Bog Solar 1 | Solar | 65 | 2025 | | | Carrownagowan Wind Farm | Wind | 91.2 | 2026 & beyond | | | Castlebanny | Wind | 138.8 | 2026 & beyond | | | Clonfad Solar | Solar | 100 | 2025 | | | Codling 1 | Offshore | 483 | 2027 | | | Codling 2 | Offshore | 483 | 2027 | | | Codling 3 | Offshore | 483 | 2027 | | | Cushaling Windfarm | Wind | 50 | Data unavailable | | | Derrygreenagh | CCGT | 100 | 2026 & beyond | | | Drehid | Wind | 60 | 2026 & beyond | | | Drombeg | Solar | 50 | 2025 | | | Dublin Array | Offshore | 824 | 2027 | | | Erkina | Solar | 66.6 | 2025 | | | Firlough | Wind | | 2027 | | | Gallanstown | Solar | 119 | 2024 | | | Gaskinstown | Solar 85 | | 2024 | | | Glen Solar | Solar | 40 | 2024 | | | Golagh | Wind | 60 | 2026 & beyond | | | Harristown | Solar 42.3 | | 2025 | | | Table 4-2: Contracted | d Transmission Ge | eneration at data | ı freeze date | |--------------------------------------|-------------------|-------------------|---------------| | Huntstown BES | Battery | 10 | 2026 & beyond | | Kish Battery (Crag) | Battery | 114 | 2026 & beyond | | Laghtanvack Bellacorick | OCGT | 2 x 5732 | 2026 & beyond | | Loughteague Solar Park | Solar | 55 | 2026 | | Milltown Solar | Solar | 115 | 2026 & beyond | | Moanvane Windfarm | Wind | 60 | 2024 | | Monatoreen | Solar | 25.7 | 2025 | | Mully Graffy Windfarm
(Kilgorman) | Wind | 29.9 | 2026 | | NISA Belcamp | Offshore | 500 | 2027 | | Oriel (1) | Offshore | 210 | 2027 | | Oriel (2) | Offshore | 160 | 2027 | | Oweninny 3 | Wind | 50 | 2027 | | Pinewoods Windfarm | Wind | 49.5 | 2025 | | Poolbeg Energy Storage | Battery | 75 | 2027 | | Porterstown Battery storage facility | Battery | 30 | 2025 | | Rathnaskilloge | Solar | 95 | 2024 | | Shannonbridge B | Battery | 63.2 | 2025 | | Skerd Rocks | Offshore | 450 | 2027 | | Southbank | OCGT | 315 | 2026 & beyond | | Tarbert G5 | OCGT | 315 | 2026 & beyond | | Timahoe North | Solar | 70 | 2024 | | Tullabeg Phase 2 | Solar | 105 | 2026 & beyond | | Yellow River Windfarm | Wind | 110.2 | 2025 | ### 4.1.2 Planned Closure of Generation Plant The closure of a generation plant could have a significant impact on the ability of the transmission system to comply with standards. The EirGrid Grid Code specifies the minimum length of notice a generator must give the TSO before retirement or divestiture. The closure of a generator with capacity less than or equal to 50 MW requires at least 24 months' notice. Generators with larger capacity than this must give at least 36 months' notice. Some older generators will come to the end of their lifetimes over the next ten years. Some generators are also assumed to close as they don't comply with the carbon limits imposed by the Clean Energy Package. These generators are noted in the All-Island Generation Capacity Statement 2023-2032 (GCS) and are listed in Table 4-3. In line with this, On 29 September 2021, the CRU published a **Programme of Actions** to increase generation capacity to provide additional stability and resilience to the Irish energy system for the next four or five years. Under the published Programme of Work, the CRU, in conjunction with EirGrid and the DECC, developed several **Key Actions** to be delivered by this group. Potential capacity shortfalls will continue to be assessed, and action plans will be further developed and updated as necessary to maintain the security of the electricity supply. | Table 4-3: Closure of Conventional Generation ³³ | | | | | | | |---|--------------------------|----------------------------------|--|--|--|--| | Generator | Generation Capacity (MW) | Expected to close by end of year | | | | | | Moneypoint 1,2,3 | 750 | 2025 ³⁴ | | | | | | Edenderry 1 | 118 | 2030 | | | | | #### 4.1.3 Wind and Solar Generation Over the past two decades, wind power generation in Ireland has increased significantly. The level of wind generation in Ireland is expected to continue to grow over the period of this TYTFS. Although grid scale solar generation connected to the network is currently not significant, solar connections are expected to increase significantly over the course of this TYTFS. The information presented in Figure 4-1 is a combination of connected and contracted wind and solar generation as of data freeze date³⁵. Figure 4-1: Connected and Contracted Wind and Solar Capacity, 2024 to 2033 Table 4-4 shows the existing and committed wind and solar generation capacity totals expected to be connected by the end of each year³⁶. These generators have signed connection agreements and are committed to connecting to either the transmission or distribution system over the next few years. Generators with no estimated connection dates were assumed to connect at a steady rate from 2024 onwards. | Table 4-4: Existing and Committed Wind and Solar Capacity Totals (MW) | | | | | | | | | | | |---|------|------|-------|-------|-------|-------|-------|-------|-------|-------| | Connection | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | Wind
(Transmission) | 2683 | 2791 | 3583 | 7891 | 7891 | 8051 | 8051 | 8051 | 8051 | 8051 | | Wind
(Distribution) | 2369 | 2624 | 2844 | 2844 | 2844 | 2844 | 2844 | 2844 | 2844 | 2844 | | Solar
(Transmission) | 790 | 1486 | 2866 | 2866 | 2866 | 2866 | 2866 | 2866 | 2866 | 2866 | | Solar
(Distribution) | 141 | 517 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | | Total | 5893 | 7418 | 10292 | 14600 | 14760 | 14760 | 14760 | 14760 | 14760 | 14760 | #### 4.1.4 Offshore Generation In December 2023, the Irish Government launched the Climate Action Plan 2024 which includes an action to develop Designated Maritime Area Plans (DMAPs) for Offshore Renewable Energy (ORE) following the Offshore Renewable Energy Development Plan II (OREDP II) The Climate Action Plan 2024 re-iterates the targets for renewable electricity of 80% by 2030 and a target of 9 GW from onshore wind, 8 GW from solar, and at least 5 GW of offshore wind energy by 2030. In order to meet the Climate Action Plan targets, investment will be needed in new renewable generation capacity. Offshore wind will be a significant part of the renewable generation mix in the future. Currently there is one 25 MW offshore wind farm in Ireland. The Climate Action Plan outlines that at least 5 GW of offshore wind will be connected to the grid by 2030. Regarding Offshore Phase 1, in May 2023, EirGrid completed the first offshore renewable energy auction (ORESS-1) on behalf of Department of the Environment, Climate and Communications (DECC). EirGrid is currently supporting over 4 GW of Phase 1 offshore projects through the design process. #### 4.1.5 Demand Side Units In 2024, demand side units (DSUs) in Ireland had a combined dispatchable capacity of 589 MW. ### **4.1.6 Distribution-Connected Generation** Table 4-5 details the existing distribution-connected generation capacity by generation type. This generation plant comprises of small conventional and renewable units. Conventional units include CHP schemes and small industrial thermal units. Renewable generation consists of: - Wind; - Small Hydro; - Land-fill gas (LFG); - Biogas; and - Biomass. | Table 4-5: Existing Distribution-Connected Generation in Ireland at Data Freeze date | | | | | | | | |--|--------------------|----------------|-----------------|-------|--------|-------|-------| | | Wind ³⁷ | Small
Hydro | Biomass/
LFG | СНР | Diesel | Solar | Total | | Net
Capacity
(MW) | 2369 | 8.3 | 106 | 95 | 0 | 141 | 2719 | | Total | 5893 | 7418 | 10292 | 14600 | 14760 | 14760 | 14760 | Distribution-connected generators reduce the demand supplied through Transmission Interface Stations. Forecasts of demand levels at individual Transmission Interface Stations are presented in Appendix C. These forecasts take account of the contribution of the existing non-wind distribution-connected generators³⁸. #### 4.2 Generation in Northern Ireland At the data freeze date 4,063MW of generation capacity was installed in Northern Ireland, as detailed in Table 4-6. | Table 4-6: Northern Ireland Installed Generation Capacity | | | | | | |--|------|------|--|--|--| | Transmission System Connected (MW) Distribution System Connected (MW) Total Generation Capacity (MW) | | | | | | | 2,261 ³⁹ | 1802 | 4063 | | | | The 2,261MW connected to the transmission system consists of: - Conventional generation, - Battery Storage; and - Transmission connected windfarms. #### 4.2.1 Existing and Planned Transmission Connected Generation #### Planned Conventional Generation New capacities at Kilroot KGT6 and KGT7 that were successful in the 2023/24 & 2024/25 T-4 capacity auctions and became available in the first half of 2024. $^{37\ \} Table\ D-3\ in\ Appendix\ D\ provides\ details\ of\ the\ existing\ distribution-connected\ wind\ farms\ and\ their\ capacities.$ ³⁸ Because of the variability of wind, a fixed contribution from distribution-connected wind farms is not considered in the calculation of the peak transmission flow forecasts. Rather a number of wind scenarios are considered in the TYTFS analyses. ³⁹ Please note this figure does not include the Moyle Interconnector capacity. #### 4.2.2 Closure of Generation Plant Kilroot ST1 and ST2 did not qualify for inclusion
in the T-4 2023/24 auction in April 2020 and the owner subsequently issued a Closure Notice for ST1 and ST2. Both units closed on 30th September 2023. ### 4.2.3 Northern Ireland Renewable Generation #### Existing/Approved Renewable Generation Existing and approved renewable generation in NI is shown geographically in Figure 4-2. The totals are derived from locational and capacity information⁴⁰ on: - Large scale renewable generation schemes that are connected to the Northern Ireland network: - Small scale renewable generation schemes with installed capacity at each Bulk Supply Point (BSP) greater than 0.5 MW; - Large scale schemes that are currently in construction; and - Schemes approved by the planning service. Figure 4-2: Existing and Approved Northern Ireland Renewable Generation The map indicates points at which renewable generation is connected to or is assumed to connect to. These points include 110/33 kV Bulk Supply Points and 110/33 kV Cluster substations⁴¹. Figure 4-3 shows the expected change in wind and solar generation in Northern Ireland. Only committed generators are included. Figure 4-3: Connected and Contracted Wind and Solar Capacity in Northern Ireland, 2024 to 2033 Table 4-7 shows the existing and committed wind and solar generation capacity totals expected to be connected by the end of each year⁴². These wind and solar farms have signed connection agreements and are committed to connecting to either the transmission or distribution system over the coming years. ⁴¹ A Cluster substation is a 110/33 kV substation in the vicinity of a number of wind farms. It acts as a local hub to group or "cluster" the wind farms. The wind farms are connected by short individual 33 kV lines to the Cluster substation. Cluster substations already exist at Magherakeel, Tremoge, Gort, Rasharkin and Curraghmulkin, with a further two planned at Agivey and Kells (see Chapter 2). SONI is responsible for the delivery of the transmission elements of the Cluster substation, in line with the criteria set out in 'Statement of Charges for Connection to the Northern Ireland Electricity Networks' Distribution System': https://www.nienetworks.co.uk/statementofcharges ⁴² The individual wind farm details are included in Tables D-2 and D-3 of Appendix D. | Table 4-7: E | Table 4-7: Existing and Committed Wind and Solar Capacity Totals (MW) | | | | | | | | | | |-------------------------|---|------|------|------|------|------|------|------|------|--------| | Connection | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | Wind
(Transmission) | 163 | 252 | 252 | 252 | 252 | 252 | 252 | 252 | 252 | 252 | | Wind
(Distribution) | 1195 | 1360 | 1407 | 1524 | 1609 | 1609 | 1609 | 1690 | 1690 | 1690.3 | | Solar
(Distribution) | 126 | 126 | 159 | 154 | 161 | 161 | 161 | 161 | 161 | 161 | | Total | 1484 | 1738 | 1818 | 1930 | 2022 | 2022 | 2022 | 2103 | 2103 | 2103 | #### Offshore Renewable Generation Our assumptions regarding the level and location of offshore renewable generation connected to the NI transmission system are based on best information available at the data freeze date. For the purpose of this TYTFS analyses we assumed that there will not be any offshore renewable generation connected as at present there are no connection agreements in place. We will continue to monitor the progress with a view to incorporating offshore renewable generation if available in future TYTFS analyses. #### 4.2.4 Demand Side Units In 2024, demand side units (DSUs) in Northern Ireland had a combined dispatchable capacity of 165 MW. ### 4.2.5 Distribution-Connected Generation #### **Existing Distribution-Connected Generation** Table 4-8 shows a breakdown of the existing Northern Ireland distribution-connected generation. In Northern Ireland there is more small-scale Generation compared to Ireland. | Table 4-8: Northern Ireland | | |-----------------------------------|---| | Distribution-Connected Generation | ١ | | Generation | Net Capacity (MW) | |---|-------------------| | Large Scale Wind | 1195 | | Small Scale Wind | 163 | | Large Scale Biomass | 17 | | Small Scale Biomass,
CHP, and Landfill Gas | 81 | | Large Scale Solar | 134 | | Small Scale Solar | 126 | | Small Scale Hydro | 6 | | AGU | 80 | | Total | 1802 | There is a total of 80 MW of Aggregated Generating Units (AGUs) in Northern Ireland registered in the SEM by three parties. Two of these AGUs, iPower and EmPower, consist of mostly distribution connected diesel generator sets located around Northern Ireland. The third, ContourGlobal, consists of CHP gas generation. These units currently participate in the SEM. There is currently 6 MW of small-scale hydro generation installed on the waterways of Northern Ireland. This is a mature technology. Due to the lack of suitable new locations, limited increase in the small-scale hydro is expected in the foreseeable future. ## 5. Transmission System Performance This chapter describes the future performance of the transmission system in terms of compliance with planning standards in the respective jurisdictions. System performance levels are assessed using forecast power flows and short circuit levels. The power flow and short circuit analyses results presented in this document are based on updated information such as changes to transmission infrastructure, new demand projections and new generation connections, with a data freeze date of January 2024. #### **5.1 Forecast Power Flows** The power flows on the all-island transmission system, at any given time, depend on a number of factors, such as: - The transmission system configuration; - The level of demand: - Interconnector flows; and - The power output from each generator. There are many possible combinations of generator dispatches that can meet the demand requirements. There are also many demand scenarios that may occur on the transmission system. When examining transmission system performance a range of economic generation dispatches are considered. The generation dispatches used in our power flow analysis are prepared on an all-island basis. Power flows across the existing 275 kV and planned 400 kV internal⁴³ interconnectors are modelled to operate within transfer limits. The dispatch scenarios also consider imports and exports of power across the existing and planned interconnectors which are considered for this year's TYTFS analyses. Transmission system power flows are described in Appendix H. The power flow tables show the flow of real power on the transmission system under normal conditions. The level of renewable generation increases over the ten-year period under study. As renewable generation increases, power flows from the West of the island to the East can be seen to increase. This is because renewable power generated in the Western regions is supplying the larger demand levels in the East (Belfast and Dublin). These increased power flows are more significant at times of minimum demand and high renewable generation output. Another effect that can be seen in Appendix H is the effect of increased renewable generation levels on reactive power requirements on the transmission system. At high levels of renewable generation, reactive power support is needed to keep voltages within planning standard limits. ### **5.2 Compliance with Planning Standards** The transmission system is planned and operated to technical requirements and standards in Ireland and Northern Ireland. These requirements are laid out in the Transmission System Security and Planning Standards (TSSPS) documents. These standards are in line with best international practice. The standards are deterministic, meaning they set out an objective standard which delivers an acceptable compromise between the cost of development and service delivered. Rather than conducting subjective benefit analysis in each case, it is preferable to plan to meet an objective standard and carry out analysis of the options available to meet the standard. The need for transmission system development is identified when the simulation of future conditions indicates that the TSSPS would be breached. #### 5.2.1 Ireland EirGrid's view of future transmission needs and our plan to develop the Irish network through specific projects to meet these needs over the next ten years is presented in our Transmission Development Plan (TDP IE). The TDP IE presents the projects which are currently being advanced to solve the needs of the transmission network. In addition, future needs that drive potential projects are also discussed in the TDP IE. It is possible that changes will occur in the need for, scope, and timing of the developments in the TDP IE. Similarly, it is likely, given the continuously changing nature of electricity requirements, that new developments will emerge that could impact the plan as presented. The long-term development of the network is under review on an on-going basis. TYTFS 2024 includes transmission system development projects that have progressed through step 4 of the six-step Framework for Grid Development and are under development. #### 5.2.2 Northern Ireland The Northern Ireland transmission projects included in TYTFS 2024 are based on the Transmission Development Plan Northern Ireland (TDPNI). Capital projects are mainly driven by increases in Northern Ireland demand levels and renewable generation connections. Planned developments also include load related and asset replacement projects. These projects mainly impact on the rating of switchgear and circuits. It is possible that changes will occur to the developments outlined in the TDPNI. Similarly, it is likely, given the continuously changing nature of electricity requirements, that new developments will emerge that could impact the plan as presented. The long-term development of
the network is under review on an on-going basis. TYTFS 2024 includes transmission system development projects that have received approval to be built as per data freeze date. ### 5.3 Short Circuit Current Levels Short circuit currents occur during a fault condition on the transmission system. Depending on the type of fault, these short circuit currents can be very high. All transmission system equipment must be capable of carrying these very high currents. Protection devices, in particular circuit breakers, must be capable of closing onto high currents created by a fault on the transmission system. They must also be capable of interrupting high currents to isolate a fault. Correct operation is essential for minimising risk to personnel and preventing damage to transmission equipment. Correct operation of protection devices is also necessary for maintaining system stability, security and quality of supply. Short circuit current levels must be considered as the transmission system is developed and as new generation or demand is connected. In Ireland the EirGrid Grid Code specifies the allowable short circuit current levels at the different voltages; these values are shown in Table 5-1. Users connecting to the transmission system are required to design their plant and apparatus to these specified levels. Equipment at lower voltage levels must also be designed to withstand short circuit current levels. | Tαble 5-1: Short Circuit Current Levels | | | | | | |---|----------------------------|-----------------------------------|------------------|--|--| | Voltage Level (kV) | Short Circuit Current Leve | Short Circuit Current Levels (kA) | | | | | | | Ireland | Northern Ireland | | | | 400 | | 50 | 50 | | | | 275 | | n/a | 40 | | | | 220 | | 40 | n/a | | | | 110 | Countrywide 25 | | 40 | | | | 110 | Designated sites | 31.5 | 40 | | | Table 5-1 also includes short circuit requirements for new users connecting to the Northern Ireland transmission system. Northern Ireland system users are recommended to design their plant and apparatus to withstand short circuit current levels set out in Table 5-1, as a minimum. The design of a user's plant is also subject to detailed short circuit current level assessment. Changes to the transmission system or the addition of generation can increase the short circuit current levels at nearby⁴⁴ stations. Forecast increases in short circuit current levels can indicate transmission system equipment at risk of having its rating exceeded. Should this be the case, it may be necessary to replace this equipment with higher rated plant. Risk mitigation measures may also be implemented to reduce short circuit current levels. Short circuit current levels are calculated for all transmission system nodes in accordance with engineering recommendation G74. Engineering recommendation G74 is based on international standards. The analysis was carried out for single and three phase faults in both winter peak and summer valley studies. Short circuit current levels were assessed for the years 2024, 2027 and 2030, and the results are presented in Section 5.3.1. A description of the calculation methods used is given in Appendix E. Appendix E also provides the results of the short circuit analysis alongside an explanation of the terms used in short circuit discussions in this document. Winter peak analysis is carried out to represent the most onerous transmission system conditions, where maximum short circuit currents on the transmission system are most likely to occur. During winter peak analysis, generators that are not providing real or reactive power are switched on in the study and dispatched at zero MW. This measure allows short circuit current contributions from all generator sources to be considered in the studies and ensures the most onerous, but credible conditions are used for the calculation of short circuit current levels at each bus. Analysis of summer valley is carried out to indicate minimum short circuit currents on the transmission system based on intact network conditions. The minimum short circuit current at each bus is dependent on generation dispatch and transmission system conditions. During summer valley analysis, generators that were not dispatched were not connected to the system, except all the storage capacity units switched on in the study and dispatched at zero MW. Both the maximum and minimum short circuit current level studies assume that the transmission system is in the normal intact condition. The generation dispatches for the winter peak and summer valley studies are presented in Appendix D. The results presented in Section 5.3.1 are the total busbar short circuit current levels. Short circuit current that could flow through each individual circuit breaker may be less than the total busbar short circuit current. This is dependent on network configuration and conditions. Customers requiring the expected minimum short circuit current level at a particular bus are advised to contact the TSO directly, as planned and forced outages may reduce the short circuit level further. ### 5.3.1 Assessment of Short Circuit Current Levels in Ireland The transmission system in Ireland is designed and operated to maintain short circuit current levels below the levels in Table 5-1. The TSSPS includes standards for, amongst others, voltage range and deviations, maximum thermal loading of grid equipment, system security, dynamic stability, and short circuit current levels (also known as fault current levels). The TSSPS is used in the planning timeframe (i.e. five to ten years ahead) and the short circuit standard is set out in such a way that potential breaches are detected in a timeframe so a mitigation can be implemented. EirGrid plans the system so that the short circuit levels (both make and break shortcircuit currents) shall not be greater than 90% of equipment ratings. In most cases, this corresponds to saying that, for three-phase or single-phase-to-earth faults, planned maximum break short-circuit fault levels shall not be greater than: 400 kV: 45 kA, 220 kV: 36 kA, 110 kV: 23.4 kA (or 28.35 kA at designated 110 kV locations). By this we mean that breaches of the 90% equipment rating should trigger EirGrid to develop solutions, new circuits, or uprate equipment to either reduce. As Table 5-1 indicates, while most 110 kV stations in Ireland are designated as 25 kA, the EirGrid Grid Code stipulates that certain 110 kV stations may be designated as 31.5 kA. A new station could be designated as 31.5 kA from the start, or an existing 25 kA station may be changed to 31.5 kA. When a station changes from 25 kA to 31.5 kA, the equipment at that station may need to be modified. Station equipment at lower voltages may also need to be replaced in order to comply with this design rating. Short circuit current results are presented in Appendix E. The results for Ireland include X/R ratios, transient AC (Ik') and subtransient AC (Ik'') currents. These results provide an indication of the strength of the transmission system. ### 5.3.2 Assessment of Short Circuit Current Levels in Northern Ireland The Northern Ireland transmission system is designed and operated to maintain short circuit current levels below equipment ratings. These ratings are listed in the tables in Appendix E, Section E.6.3. The individual substation ratings are based on the lowest rated equipment at each substation. The Northern Ireland results in Appendix E include transmission substation ratings for: - AC & DC X/R Ratios: - Initial Short Circuit Current (I"); - Peak Make Current (ip); and - RMS Break Current (IB). The I" and ip values are used to assess the necessary rating of electrical equipment required to close onto short circuit currents. The IB values are used to assess the capability of electrical equipment required to open and break short circuit current. ### 5.3.3 Maximum Short Circuit Current Results Short circuit current results show that a number of Ireland and Northern Ireland transmission nodes have short circuit current levels with the potential to be close to or exceed acceptable levels. Careful management of these issues is needed to ensure short circuit currents remain within acceptable levels. The system is always operated to keep short-circuit currents within the standards. Our study methodology assumes all units are online in order to give the most conservative results. In real operation, this would be very unusual and short circuit currents can be monitored in the real-time Energy Management System. In addition, there are options such as sectionalizing the network that can be used to reduce short-circuit values. Figure 5-1 indicates the locations where short circuit current levels are high in 2028. In Ireland the short circuit current level results are represented as a percentage of the levels specified in the Grid Code which are outlined in Table 5-1. In Northern Ireland the short circuit level results are represented as a percentage of actual equipment ratings. Three short circuit level ranges are represented in Figure 5-1: - Yellow dots represent substations where short circuit current results are between 80% and 90% of the ratings; - Orange dots represent substations where short circuit current results are between 90% and 100% of the ratings; and - Red dots indicate substations where the short circuit current results exceed ratings. There are a number of stations where short circuit current levels are anticipated to be above 80% of standard levels and these are indicated in Figure 5-1. We continue to monitor short circuit current levels at all stations and if required we will put mitigation plans and measures in place to ensure that they remain within safety standards. Mitigations include operational measures such as sectionalising parts of the network and investing in new equipment. The short circuit ratings of Castlereagh, Kells, Magherafelt, Tandragee and
Coolkeeragh 275 kV substations in Northern Ireland have been reduced to 10 kA. NIE Networks has undertaken a review of the design of concrete structures at these substations and compared the design with standards that have been issued since these structures were built. Strictly applying these modern standards, the mechanical force exerted on the structures during fault conditions would limit these to a rating of 10 kA. SONI is bringing forward projects to modernise all of these substations. These projects are currently in the optioneering phase, and SONI are not currently in a position to offer any further connections into these substations until a better understanding of the preferred redevelopment option is reached, which is expected to be before 2026. SONI and NIE Networks are also bringing forward redevelopment projects at all five substations to address this issue. Figure 5-1: Short Circuit Current Levels for Winter Peak 2028 Table 5-2 below provides information on the transmission nodes for 2024; 2027; and 2030 where the short circuit current level is above 90% of the relevant level 45 . | Table 5-2: Nodes Exceeding Short Circuit Current Levels (Rating ≥ 100) | | | | | | |--|------|--------------|--|--|--| | Substation | [kV] | Jurisdiction | | | | | | 2024 | | | | | | Barnakyle | 110 | Ireland | | | | | Cloghran | 110 | Ireland | | | | | College Park | 110 | Ireland | | | | | Corduff | 110 | Ireland | | | | | Corkagh | 110 | Ireland | | | | | Kilmahud | 110 | Ireland | | | | | Kilpaddoge | 110 | Ireland | | | | | | 2027 | | | | | | Aungierstown | 110 | Ireland | | | | | Baldonnell | 110 | Ireland | | | | | Barnakyle | 110 | Ireland | | | | | Barnageeragh | 110 | Ireland | | | | | Cashla | 110 | Ireland | | | | | Castlebagot | 110 | Ireland | | | | | Cloghran | 110 | Ireland | | | | | Clutterland | 110 | Ireland | | | | | College Park | 110 | Ireland | | | | | Coolnanoonagh | 110 | Ireland | | | | | Corkagh | 110 | Ireland | | | | | Kilcarbery | 110 | Ireland | | | | | Killonan | 110 | Ireland | | | | ⁴⁵ In Ireland these results are presented as a percentage of the short circuit current levels specified in the Grid Code which are outlined in Table 5-1, with the exception of KLN/Killonan 110 kV which is presented as a percentage of actual equipment ratings. In Northern Ireland they are a percentage of actual equipment ratings. | Table 5-2: Nodes Exceedin | ng Short Circuit Current Le | vels (Rating ≥ 100) | | | | | |---------------------------|-----------------------------|---------------------|--|--|--|--| | Kilmahud | 110 | Ireland | | | | | | Kilpaddoge | 110 | Ireland | | | | | | Kishoge | 110 | Ireland | | | | | | Knockraha | 110 | Ireland | | | | | | Shannonbridge | 110 | Ireland | | | | | | Snughborough | 110 | Ireland | | | | | | Cruiserath | 220 | Ireland | | | | | | Finglas | 220 | Ireland | | | | | | Inchicore | 220 | Ireland | | | | | | Mooretown | 220 | Ireland | | | | | | 2030 | | | | | | | | Cregagh | 110 | Northern Ireland | | | | | | Hannastown | 220 | Northern Ireland | | | | | | Aungierstown | 110 | Ireland | | | | | | Baldonnell | 110 | Ireland | | | | | | Ballymoneen | 110 | Ireland | | | | | | Barnageeragh | 110 | Ireland | | | | | | Barnakyle | 110 | Ireland | | | | | | Belcamp | 220 | Ireland | | | | | | Cashla | 110 | Ireland | | | | | | Castlebagot | 110 | Ireland | | | | | | Cloghran | 110 | Ireland | | | | | | Clutterland | 110 | Ireland | | | | | | College Park | 110 | Ireland | | | | | | Coolnanoonagh | 110 | Ireland | | | | | | Table 5-2: Nodes Exceeding Short Circuit Current Levels (Rating ≥ 100) | | | | |--|-----|---------|--| | Corduff | 110 | Ireland | | | Corduff | 220 | Ireland | | | Corkagh | 110 | Ireland | | | Cruiserath | 220 | Ireland | | | Finglas | 220 | Ireland | | | Great Island | 110 | Ireland | | | Inchicore | 220 | Ireland | | | Kilcarbery | 110 | Ireland | | | Killonan | 110 | Ireland | | | Kilmahud | 110 | Ireland | | | Kilpaddoge | 110 | Ireland | | | Kishoge | 110 | Ireland | | | Knockraha | 110 | Ireland | | | Mooretown | 220 | Ireland | | | North Wall | 220 | Ireland | | | Poolbeg | 220 | Ireland | | | Shannonbridge | 110 | Ireland | | | Snughborough | 110 | Ireland | | | Table 5-3: Nodes approaching Short Circuit Current Levels (90≤ Rating <100) | | | | | |---|------|--------------|--|--| | Substation | [kV] | Jurisdiction | | | | 2024 | | | | | | Ballylumford | 110 | Ireland | | | | BAFD | 110 | Ireland | | | | STRA | 110 | Ireland | | | | Coolnabacky | 110 | Ireland | | | | Cashla | 110 | Ireland | | | | Clashavoon | 110 | Ireland | | | | Inchicore | 110 | Ireland | | | | Kilbarry | 110 | Ireland | | | | Knockraha | 110 | Ireland | | | | Shannonbridge | 110 | Ireland | | | | Snughborough | 110 | Ireland | | | | Corduff | 220 | Ireland | | | | Cruiserath | 220 | Ireland | | | | Finglas | 220 | Ireland | | | | Inchicore | 220 | Ireland | | | | 2027 | | | | | | Culmore | 110 | Ireland | | | | Ballylumford | 110 | Ireland | | | | Clashavoon | 110 | Ireland | | | | Inchicore | 110 | Ireland | | | | Marina | 110 | Ireland | | | | Monatooreen | 110 | Ireland | | | | Table 5-3: Nodes approac | hing Short Circuit Current | Levels (90≤ Rating <100) | | | |--------------------------|----------------------------|--------------------------|--|--| | Trabeg | 110 | Ireland | | | | Belcamp | 220 | Ireland | | | | Castlebagot | 220 | Ireland | | | | Huntstown | 220 | Ireland | | | | Poolbeg | 220 | Ireland | | | | 2030 | | | | | | Donegall | 110 | Northern Ireland | | | | Castlereagh | 110 | Ireland | | | | Clashavoon | 110 | Ireland | | | | Coolnabacky | 110 | Ireland | | | | Inchicore | 110 | Ireland | | | | Marina | 110 | Ireland | | | | Monatooreen | 110 | Ireland | | | | Trabeg | 110 | Ireland | | | | Castlebagot | 220 | Ireland | | | | Huntstown | 220 | Ireland | | | | Irishtown | 220 | Ireland | | | | Kilpaddoge | 220 | Ireland | | | | Moneypoint | 220 | Ireland | | | | Shannonbridge | 220 | Ireland | | | | Southbank | 220 | Ireland | | | | Woodland | 220 | Ireland | | | ### 5.3.4 Rating Breaches ### Transmission Stations in Ireland Where the Rating Has Been breached The short circuits shown in the tables were identified in the worst-case winter peak scenario. Studies indicate that the short circuit current levels at a number of substations in the Dublin area have the potential to exceed 100% of the existing substation ratings. The increase in short-circuit current levels at Dublin stations is due to high levels of generation in the area combined with the network topology. Outside Dublin area, Cashla, Shannonbridge, Killonan, Kilpaddoge and Knockraha substations have also the potential to exceed 100% of the existing substation ratings. EirGrid, as TSO, manages these levels in real-time through operational switching and generator dispatch. We will be putting mitigation plans and measures in place to ensure that the short circuit current levels at these stations remain within safety standards. ### Northern Ireland Stations Where the Rating Has Been Exceeded - (i) Castlereagh, Coolkeeragh, Kells, Magherafelt and Tandragee 275 kV The short circuit rating of these stations has been reduced to 10 kA following a review by NIE Networks of the design of concrete structures at these substations when applying design standards that have been issued since these structures were built. Under these modern standards, the mechanical force exerted on the structures during fault conditions limits these to a rating of 10 kA. Investigation works have found the structures to be in an acceptable state. - (i) SONI and NIE Networks are bringing forward redevelopment projects at all five substations to address this issue. It is not currently possible to offer connections into these substations until a better understanding of the preferred development option has been reached, which SONI expects will be before 2026. - (i) Cregagh and Hannahstown 110 kV The completion of the energising Belfast project will increase fault levels in Belfast. Energising Belfast is a project to build 2 new switching substations in Belfast, Corporation Street and York Street, and establish 110 kV linkup between Hannahstown, Donegal, York St, Crop St, Central, Cregagh and Castlereagh. NIE Networks are planning to refurbish Cregagh substation during the RP7 price control period, which will include higher rated switchgear. The switchgear at Hannahstown will also be replaced with higher capacity equipment to enable the Energising Belfast project. ### 5.3.5 Minimum Short Circuit Current Results The minimum short circuit current results are presented in Appendix E. These results indicate minimum short circuit currents on the transmission system based on intact network conditions. These results are representative of the assumed generation dispatch and transmission system conditions. The Moyle interconnector requires a minimum system strength of 1500 MVA to prevent commutation failure while for EWIC a system strength of greater than 1000 MVA is specified for normal operation. As shown in Appendix E, these levels are met in the period covered by this TYTFS. The ENTSO-E HVDC code (applicable to Greenlink and Celtic interconnectors) requires that HVDC units shall be capable of operating within the range of short circuit power and network characteristics specified by the Transmission System Operator. Any parties requiring the expected minimum short circuit current level at a particular bus are advised to contact us directly. # 6. Transmission System Capability This chapter describes the analysis conducted to determine the capability of the transmission system to accommodate additional demand and generation. #### 6.1 Introduction The results of these studies provide the basis for the statements of opportunity
discussed in Chapter 7 and Chapter 8. The ability of the system to accommodate new generation and new demand varies throughout the year. As system planners, Eirgrid and SONI must ensure that the Transmission System Planning Standards are not breached under reasonable contingencies when the system is most stressed ### **6.2 All-Island Demand Opportunity Analysis** The all-island demand opportunity analysis is conducted for a single year, 2029. This year gives developers a useful indication as to the demand opportunities that exist in the medium-term on the transmission system. Studies are conducted for the summer period and the winter period of 2029/2030. In Northern Ireland the demand opportunity analysis provides an indication of capability of the backbone⁴⁶ transmission network to accommodate additional demand. In Ireland, the locations analysed for new demand have been carefully chosen based on feedback from industry sources to align with areas that are of interest to customers seeking connection to the transmission system. The results of these studies are dependent on generation and demand assumptions, and completion dates of transmission system development projects. Factors that may influence the results are discussed in Section 6.4. ### 6.2.1 Approach to Calculation of Demand Opportunities The transmission system is planned to meet forecast demand levels at all stations in Ireland and Northern Ireland. The demand forecast for each 110 kV station is a proportion of the overall system demand forecast. This forecast is based on historical demand distributions. Future demand customers that have signed connection agreements are also included in station demand forecasts as presented in Chapter 3. Additional demand connections above the forecast levels are not explicitly catered to in transmission system development plans. However, capacity for additional demand on the transmission system may exist in certain locations. For example, the addition of transmission system infrastructure generally provides a step increase in transmission system capacity. This addition may permit demand connections higher than forecast levels, as illustrated in Figure 6-1. Figure 6-1: Illustration of Typical Step Change in System Capacity Due to the Addition of Transmission System Infrastructure In Figure 6-1 the blue line represents the required MW capacity at a particular location on the transmission system. The red line represents the installed transmission system capacity. As Figure 6-1 shows, changes in installed capacity generally appear as a step increase following completion of a network reinforcement project. In general, demand for electricity increases over time. Figure 6-2 below displays the typical demand growth profile of a typical station. The blue line represents the demand forecast at the station. The green arrows represent potential new step increases in demand that could potentially be accommodated at this typical station. Figure 6-2: Forecast Demand Profile of a Typical Station and Station Potential to Accommodate Additional Step Increase in Demand The analysis examines the transmission system's capability to accept such increased demand above forecast levels. Capability to accept additional demand is examined at particular 110 kV, 220 kV and 275 kV stations. The stations analysed are distributed throughout Ireland and Northern Ireland, as shown in section 8. The results of this analysis are useful in identifying opportunities for the connection of new or increased demand. The opportunity value calculated is a measure of the transfer capability remaining in the physical transmission system. It provides an indication of the flexibility of the transmission system to accommodate future demand increases before additional reinforcements are required. The transfer analysis is intended as a pre-feasibility indication of opportunity for increased demands. The method for determining capacity closely aligns with pre-feasibility study techniques. In Ireland, the Ireland Transmission System Security and Planning Standards (TSSPS) are applied in the analyses of demand opportunities. The transmission system is assessed for the loss of any single item of plant (N-1). Unlike generators, demand stations are typically not dispatchable. It is therefore necessary to assess the transmission system performance against standards for maintenance-trip contingencies (N-1-1) in the analysis of increased demand in Ireland. In Northern Ireland, the Northern Ireland Transmission System Security and Planning Standards (TSSPS) have been applied for analyses of demand opportunities. The transmission system is assessed for loss of any single item of transmission plant (N-1) and loss of a double circuit (N-DCT) all year round. During the summer season the Northern Ireland transmission system is also assessed for maintenance-trip (N-1-1) contingencies for specific cases. Voltage analysis is performed as part of the demand capacity studies in both Ireland and Northern Ireland. This is because the addition of demand can act to depress system voltages. ### **6.2.2** Method for Calculating Limits for Increased Demand Connections Specialised power system software is used to screen critical contingencies for thermal overloads or voltage limitations. #### What is a load flow? A load flow is a numerical analysis of the flow of electricity in a power system based on fundamental physics and electrical characteristics of the system. Load flow analysis is used to calculate values such as voltage, current, and power flowing around the transmission system, given a defined generation dispatch and system demand level. Power transfers are considered using dispatch scenarios typically experienced on the transmission system. While these dispatches are typical, we choose them for our analysis to stress the network in terms of power transfers. By analysing different scenarios that stress the transmission system, we can reasonably try to ensure that the demand opportunities reported in our analysis will not breach our Transmission System Security and Planning Standards. The conventional units selected for each dispatch scenario align with market projections for the study year 2027. ### Modelling Details: Single N-1 and Double Circuit (N-DC) Contingency Studies - Generators are modelled with their maximum output equivalent to their Maximum Export Capacity (MEC); and - Local wind generation is switched out in the vicinity of the test station. ### Modelling Details: Maintenance Trip Studies (N-1-1) - Generators are modelled with their maximum output equivalent to their Maximum Export Capacity (MEC); and - Some centrally-dispatchable generation local to the test station is maximised to its MEC value. Figure 6-3: Illustration of incremental transfer capability study method for assessing demand opportunities To calculate the opportunity, demand at 0.95 power factor is added to a test station in increasing amounts. This is balanced by an increase in generation⁴⁷ outside the local test area. This is illustrated in Figure 6-3 above. The limit for increased transfers to the test station is then established. This is achieved by checking the post-contingency performance of the transmission system against thermal and voltage standards. This process is carried out for each dispatch scenario studied. Issues on the transmission system are not considered limiting unless they are sensitive to the incremental transfers under examination. #### Calculation of Results As noted above we undertake a range of contingency studies (N-1, N-1-1, N-DCT) to calculate the capability for increased demand at each station studied. For the maintenance-trip studies (N-1-1) in Ireland, less onerous generation dispatches can be scheduled to accommodate maintenance outages. The results of this analysis are reported in Chapter 8. The demand opportunity reported is the lowest demand increase achieved from the range of studies undertaken. It is important to note that results of the demand opportunity analysis are indicative only. Demand opportunity is tested at each station on an individual basis. As such, the opportunities presented are not cumulative. If new demand connects in an area that is currently shown to have capacity, this will then use up some or all of the available capacity in that area. Potential demand customers should not be discouraged by choosing a site in which there appears to be a lack of transmission system capacity. The actual transmission capacity can only be determined during the connection offer process. Early consultation is encouraged so that options can be explored relating to any potential proposals and enable timely decision making. Customers considering connecting demand to the transmission system are advised to contact us as early in the project as possible. ### 6.2.3 Calculation of Dublin Demand Capability The Dublin region is the largest demand centre on the all-island transmission system. Dublin has been and remains the focus of continued interest for the connection of new large demand. There has been a significant increase in the number of enquiries and applications for new demand connections in the Dublin region and its environs in recent years. Many of these requests are for data centres. Data centres present relatively flat load profiles that impact on both the minimum and maximum demand requirements in the region. The Dublin 220 kV transmission network is operated by EirGrid, the transmission system operator (TSO). The meshed Dublin 110 kV network is operated by ESB Networks, the distribution system operator (DSO). System development and operation in the area requires both system operators to work closely together. This is to ensure power flows are optimised and to facilitate new connections. Due to the volume of demand enquiries and applications received for the Dublin area, and their potential impact, Section 8.3 of this document focuses on the demand opportunities in
the Dublin region. The methodology used to assess demand opportunities in the Dublin region is based on the existing transmission system. It also includes criteria, such as how each zone is expected to develop, and the associated lead times for project delivery. ## 6.2.4 Calculation of Demand Capability in Northern Ireland and Ireland outside Dublin This section provides a general example of the analysis of the capability of any station studied in Chapter 8 to accept additional new demand. The assessment is carried out by simulating the transmission system for summer peak and winter peak 2029. The station is tested to accommodate increased demand. The relevant demand forecasts and generator dispatches are used. Due to its intermittency, wind or solar generation cannot be relied on to be available to meet demand. Therefore, all wind and solar generation in the vicinity of the test station is turned off. Studies are carried out according to the dispatch scenario assumed. The extra demand in each study is met by increasing generation according to the merit order. For each study in turn, a test demand (for example 100 MW) is added to the station under study. The power system is then simulated with the extra demand in place. The analysis tests an exhaustive range of contingencies to identify any resultant TSSPS violations, thus identifying a capacity limit. Some contingencies cause violations of thermal overload or voltage standards when the full test demand is added. In these cases, the test demand is reduced to zero MW and the simulation is re-run with the demand increasing in 10 MW steps. The simulation runs until a violation of thermal overload or voltage standards occurs. The preceding step value is then the calculated capacity value. In assessing opportunities for new demand, the TYTFS considers the capability of the transmission system only. The capability of the distribution system is not addressed in Ireland or Northern Ireland. The implications for generation adequacy of demand growth above the median forecast levels are dealt with separately in the All-Island Generation Capacity Statement 2022-2031 (GCS) which is available on the EirGrid and SONI websites. ### **6.3 All-Island Generation Opportunity Analysis** This section describes the generation opportunity analysis performed on the Ireland and Northern Ireland power systems. This analysis is used to determine the capability of the transmission system to accommodate additional generation connections at the defined areas. The statements of opportunity presented in Chapter 7 are a result of this generation opportunity analysis. The final year of this forecast statement, 2030, is used in the analysis. The analysis is performed using specialised load flow software, the same approach used in the demand opportunity analysis. In Chapter 7 we also include information on the harmonised all-island Generation Transmission Use of System (TUoS) tariffs and Transmission Loss Adjustment Factor (TLAF) arrangements in the SEM. The all-island TUoS and TLAF arrangements have an objective to provide locational signals to generators that reflect the costs they impose on the transmission system. This information is provided to help generators make informed decisions when exploring potential transmission network connection locations. All information relating to generation opportunity presented in Chapter 7 is indicative only. The actual transmission system capacity can only be determined during the connection offer process. ### **6.3.1 Calculation of Generation Opportunities** Generation opportunity at a node is assessed based on the premise that new generation at a particular point on the network will displace generation at a different point on the network. All existing generation, and all generation planned to connect in Ireland and Northern Ireland during the period covered by the TYTFS, is considered for dispatch before assessing any further generation opportunity on the all-island transmission network. We compiled a list of 110 kV, 220 kV, 275 kV and 400 kV nodes for generation opportunity analysis. These nodes are distributed across the all-island network so that potential users can understand how opportunities vary across the network. When testing a node, existing generation in the area around the node is maximised. This group of generators is referred to as the source region. The remaining generation required to meet the demand is dispatched based on a merit order. Finally, the test generator is then dispatched. As the output of the test generator increases, the output from other generation in a separate area of the network - the sink area - is reduced. This forces power flows along specific corridors of the transmission network. For each incremental increase in new generation capacity at the test node, an AC load flow linear algorithm is used to test the network for compliance with the TSSPS. The generation opportunity is determined once overloads are detected on the network. For the generation opportunity analysis, single (N-1) and double circuit (N-DC) contingency studies only are considered. For each node assessed, three different analyses are performed. Figure 6-4 demonstrates an example of this approach. For each scenario in the illustration, the purple area represents the source region where generation is maximised. The test generator is then increased, and generation in the orange area - the sink region - is reduced. The blue arrows represent the resulting power flows. These three scenarios are then repeated for the following network demand scenarios: - Winter peak; - Autumn peak (Northern Ireland only); - · Summer peak; and - Summer valley. The lowest result from all of the scenarios analysed is used to determine the capacity of the node under test. By analysing several scenarios across different demand scenarios that stress the transmission system, we can reasonably ensure that the generation opportunities reported in our analysis will not breach our Transmission System Security and Planning Standards. It is important to note that results of the generation opportunity analysis are indicative only. The results of the analysis are not cumulative, as the capability of a node to accept new generation capacity is tested individually. The transmission system is planned to meet forecast generation levels at all stations in Ireland and Northern Ireland. Additional generation connections above the forecast levels are not explicitly catered for in transmission system development plans. However, capacity for additional generation on the transmission system may exist at certain locations. Because of the relative size of individual generators, changes in generation installations, whether new additions or closures, can have a more significant impact on power flows than demand. New generation capacity will inevitably alter the power flows across the network, which has the potential to create overload problems deep into the network. Problems deep into the network are resolved by network reinforcements known as deep reinforcements. Figure 6-4: Illustration of Incremental Transfer Capability Study Method for Generation The generation opportunity analysis presents the level of generation that can be accommodated on the planned transmission system without the need for deep reinforcements to allow full network access. #### **6.4 Interpreting the Results** The results of the analyses⁴⁸ described in this chapter are based on a set of assumptions. These assumptions are associated with: - Future demand growth; - Generation connections; and - Transmission system developments. The key forecast factors on which the results depend are dynamic. Therefore, the reality that emerges will not exactly match the forecasts. Consequently, the results, while reasonably indicative, should not be interpreted as definitive projections. The factors likely to have an impact on the outcomes include: - The signing of a connection agreement by a new generator; - Delays in connection of committed new generation stations; - Closure of existing generation stations; - Changes in the economy which give rise to changes in the overall demand for electricity; - Changes in demand in a particular region or area, arising from new industry developments or closures; - Delays in the provision of transmission system reinforcements; and - Selection and construction of new transmission system reinforcement developments which may significantly increase transmission system capacity. # 7. Transmission System Capability for New Generation In order to meet the Climate Action Plan 2030 renewables targets significant increases in generation sources will be required as examined in the Shaping Our Electricity Future studies. Since the targets stated by the Climate Action Plan were put in place, there has been a large increase in renewable developments that have taken advantage of generation opportunities. #### 7.1 Summary of analysis The analysis in this forecast statement considers a power system with 4.3 GW of offshore (phase 1) generation, 2.2GW of interconnection and an onshore generation capacity of 25GW. In contrast the peak all island winter demand is forecast to be 8555 MW. This level of forecasted generation capacity vs peak demand, coupled with the TYTFS methodology where winter peak, summer peak, summer valley and autumn peak (SONI) are examined and the lowest resulting capacity is reported, can result in a worst-case value i.e. a node may have a reported capacity of 0 MW but there may be periods of there year where it could export. In addition to the Ten-Year Transmission Forecast Statement EirGrid and SONI publish additional reports which will be of interest to parties looking to connect to the system. Documents such as the Enduring Connection Policy Constraint Forecast reports⁴⁹ and SONIs Northern Ireland Constraints reports⁵⁰, report on dispatch down, constraint, curtailment, and surplus energy for a wide range
of transmission nodes, for renewable technology types. This approach can indicate nodes where connecting generators may see higher or lower constraint levels as an indicator of transmission system capacity. The results of the generation opportunity analysis show that there are limited opportunities for new generation in many parts of the system. Further generation opportunities would require network reinforcement beyond that identified in in 'Shaping Our Electricity Future 1.1' analysis. Power system studies for Dublin region shows that, due to high short circuit levels, further capacity cannot be accommodated on the 110 kV or 220 kV networks but connections at 400 kV may be investigated through the Connection Offer Process. While an area may have capacity for new generation connections, it should be noted that development of substantial levels of generation in a concentrated area of the network could create a range of complex issues, in particular breaches of short circuit levels. #### 7.2 Background In this chapter we provide the results of the detailed generation capacity opportunity analysis, of which the calculation methodology is described in Chapter 6. The analysis considers the year 2033 and details the opportunity for connecting further generation beyond the assumed installed generation portfolio. The results provide potential network users with an indication of the capacity of the all-island transmission system to accept new generation. It must be emphasised that this analysis is purely indicative. The actual transmission network capacity can only be determined during the connection offer process. This process requires detailed network assessments in order to determine the optimal connection arrangement that complies with the Transmission System Security and Planning Standards (TSSPS) in Ireland and Northern Ireland. Changes to generation dispatch patterns and the geographical location of generation can have an impact on all-island transmission network power flows. As a result, Generator Transmission Use of System (GTUoS) tariffs and Transmission Loss Adjustment Factors (TLAFs) can change, resulting in an impact on the economics of power generation. Resulting regional changes in GTUoS and TLAFs are described to help participants make informed decisions when exploring potential transmission network connection locations. It is important to note that generation opportunity studies in this TYTFS are based on contracted customer connections and approved transmission reinforcements at the data freeze date. #### 7.3 New Generation Capacity The level of generation expected to connect to the all-island transmission system is described in detail in Chapter 4 of this statement. This TYTFS includes the Offshore Phase 1 windfarms connecting in the West, South-East and East coasts in 2027 as per the information available at the data freeze, any updates to these connection dates as projects progress will be reflected in future TYTFS. There is an increase in renewable generation, mainly connected in remote locations in the South-West, West and North-West of the island of Ireland. At times of high wind generation, this can result in very high power flows on transmission circuits supplying power to the large demand centres on the East coast of Ireland and Northern Ireland. There are several large conventional power stations due to retire, or to have restricted output, due to the EU Industrial Emissions Directive. These are detailed in All-Island Generation Capacity Statement 2023-2032 and are noted in Chapter 4 of this document. For the purpose of the TYTFS 2024 analysis, it is assumed that sufficient generation capacity will be delivered in appropriate locations to ensure that generation adequacy and security of supply are maintained. #### 7.4 Generation Opportunity ## 7.4.1 Assessment of Selected 220 kV, 275 kV and 400 kV Stations This section provides the opportunities for additional generation on the 220 kV, 275 kV and 400 kV networks in 2033. For these high voltage stations, new generation of up to 600 MW in size was considered for assessment. Figure 7-1 illustrates the stations selected across the all-island network, as well as their associated generation opportunity. It is important to note that the results are not cumulative, as the opportunity at each station is assessed individually. The capacities shown are relevant to the station tested but also provide an indication of the opportunities available at neighbouring stations. Figure 7-1: Generation opportunity at 220 kV, 275 kV and 400 kV stations in 2033 In general, there is very little opportunity for new generation in the North, West and South of Ireland, as well as the Dublin region. The transmission network in these areas has significant levels of connected and planned renewable generation. Moreover, the southern region contains conventional gas generators and interconnection. In the East, and to a lesser extent South-Eastern and South-Western regions, there are opportunities for new generation connections near the large demand centres on the East Coast, and near the 400 kV corridors on the West Coast. Large Offshore Phase 1 windfarms are expected to connect at Moneypoint, Arklow, North and South Dublin and Louth. Short circuit studies in the greater Dublin area have indicated that, due to high fault levels, further capacity cannot be accommodated on the 110kV or 220kV networks. Connections at 400 kV networks could be investigated through the Connection Offer Process⁵¹. In Northern Ireland, there is currently very little opportunity for new generation in the North-West region, although this may change in future. This area has significant levels of renewable generation, both connected and planned, and the transmission network consists almost entirely of 110 kV circuits. There is no capacity for new generation to be directly connected at some 275 kV stations. A number of 275 kV substations are identified as having 0 MW of opportunity for new generation capacity. These 275 kV stations are restricted by the ability of the structures and busbars to withstand mechanical forces arising from potential faults. SONI and NIE Networks are bringing forward projects to address this issue, however, these are at an early stage and no additional capacity can as yet be identified with sufficient certainty. The fault contribution from non-synchronous connections such as wind farms and data centres tend to be significantly smaller, particularly those likely to connect at 110 kV. Any potential connection at these nodes would therefore be assessed based on its fault current contribution. ## 7.4.2 Assessment of Selected 110 kV Stations Numerous 110 kV stations were analysed to complement the higher voltage stations analysed in Section 7.4.1. For these stations, new generation of up to 200 MW in size was considered in the assessment for all 110 kV nodes. Selected stations are displayed in Figure 7-2, and the associated generation opportunity for each of the stations is displayed in Figure 7-3. As in the previous section, the results are not cumulative, as the opportunity at each station is assessed individually. The capacities shown are relevant to the station tested but also provide an indication of the opportunities available at neighbouring stations. The results show that there is little opportunity for generation connections at 110 kV. By 2033, there is a high level of renewable generation to be connected to both the transmission and distribution systems in Ireland. The renewable connections are concentrated in the North-West, West and South-West. The installed capacities will exceed the demand in these areas, resulting in limited opportunities for new connections without additional reinforcements. Figure 7-2: Selected 110 kV stations for the generation opportunity studies Figure 7-3: Generation opportunity at the selected 110 kV stations in 2033 Some capacity for additional generation is available within the 110 kV network at some nodes in the South-East and South-West of Ireland. This is due to the presence of large demand centres, lower penetration of renewable generation, as well as the strength of the transmission network in these regions. Detailed connection studies are required to determine more accurate quantities of available capacity and connection arrangements. High levels of additional renewable generation are expected to connect to the distribution and transmission systems in Northern Ireland by 2033. Much of this renewable generation is in the North and West regions of Northern Ireland, and the total capacity of it is significantly greater than local demand, causing congestion on the transmission network. Consequently, these regions have less potential for additional connections than the East of Northern Ireland. Greater opportunities for generation connections are possible in the East of Northern Ireland. This is due to lower congestion within the transmission network, and higher demand density. Similarly, with the assessment of the generator opportunities for the high voltage network, these results are only indicative of the potential for connection in the network. These figures are, furthermore, not cumulative as the nodes are assessed in isolation. #### 7.5 Generation Locational Tariff Signals and Their Impact on Transmission Network Capacity Harmonised transmission arrangements provide locational signals to users reflecting the costs they impose on the transmission system. TLAFs and GTUoS tariffs, as part of harmonised transmission arrangements, can provide generators with locational signals informing their decision on where to connect to the grid and incentivise efficient generation dispatch. Electrical losses, which occur as electricity is transported along transmission circuits, are accounted for in the settlement process with the application of TLAFs. Some units are responsible for proportionally more transmission losses than others, depending on
their point of connection to the grid and use of transmission network capacity. The methodology used by the transmission system operators (TSOs) to calculate the TLAFs has been approved by the regulatory authorities⁵². The most efficient way to transfer power in terms of losses is to minimise the distance between generation and demand, and not to heavily load lines. Due to the location and amount of demand and generation, power can be transmitted over sizeable distances. If the power generated in a region is in excess of the demand in that region, the excess generation will be utilised some distance away from the source. The transmission network consists of high voltage overhead lines and cables ranging from 110 kV to 400 kV. When current flows across these circuits, some energy is lost as heat. The higher the power transmitted on a line, the higher the current. Current has a squared relationship to power losses, therefore if the power on a line is doubled, the losses will increase by a factor of four. In general, transmitting power on a higher voltage level will lower the associated current. The associated losses will be dependent on how congested the line is; increasing power on an already congested line will result in greater losses than increasing power on a similar less congested line. The Transmission Use of System (TUoS) tariff is the main tariff for transporting power in bulk, across the power system. Generator Transmission Use of System (GTUoS) tariffs contain a locational component, which provides a signal of the costs associated with a generator's use of the transmission network. Such signals provide a commercial incentive for generators to make informed decisions (both siting/entry and exit decisions) concerning their use of the transmission system. This is intended to improve efficiency in respect of both the use of, and investment in, the transmission system. #### 7.5.1 TLAFs Generator TLAFs are reflective of their contribution to transmission losses. The principle is that market participants that contribute more to transmission losses, due to their location, should have a lower TLAF, than those generators who contribute less to transmission losses. The regional average 2024/25 TLAF values are shown in Figure 7-4 and are based on the published approved 2024/25 TLAF values⁵³. Figure 7-4: All-island 2024/25 regional average TLAF values Figure 7-5: % TLAF Change between 2023/24 & 2024/25 Figure 7-5 shows the change in TLAFs between 2023/24 and 2024/25. These changes are influenced by yearly dispatch, demand and topology changes. The information presented in Figures 7-4 and 7-5 should be used as regional indicators. For the 2024/25 tariff year, the average all-island TLAF has increased by 0.31%. TLAFs for the Dublin region are relatively high as there tends to be local use of generation, with an increasing demand. Local use of generation also typically supports the relatively high Northern Ireland TLAFs. Further information on the 2024/25 TLAFs can be found on the EirGrid and SONI websites⁵⁴. #### 7.6 GTUoS The regional average 2024/25 GTUoS tariffs are shown in Figure 7-6 and are based on the approved 2024/25 GTUoS tariffs. Higher GTUoS tariffs are reflective of transmission investment costs linked to a generator's use of the system. This promotes efficient use of the transmission system by generators, which should, in turn, facilitate efficient investment in the transmission system. Figure 7-7 shows the change in GTUoS tariffs between 2023/24 and 2024/25. 54 https://www.eirgridgroup.com/site-files/library/EirGrid/2022-23-Approved-Transmission-Loss-Adjustment-Factors-(TLAFs)-Accompanying-Note-v1.0.pdf https://www.soni.ltd.uk/media/documents/2022-23-Approved-Transmission-Loss-Adjustment-Factors-(TLAFs)-Accompanying-Note-v1.0.pdf Figure 7-6: All-Island 2024/25 regional average GTUoS values Figure 7-7: % GTUoS change between 2023/24 & 2024/25 For 2024/25, there is an overall decrease in tariffs due to an 8.4% increase in the overall Maximum Export capacity, couple with only a small increase in all-island revenue (0.7%). Regional changes are attributed to changes in network flows and local reinforcements. The annual revenue is the amount allowed to build, operate and maintain the transmission network, and this has increased in Ireland and decreased in Northern Ireland for 2024/25. GTUoS tariffs for 2024/25 have decreased, on average, by 5.9% from those for 2023/24, which is lower than the revenue change. This is driven by the 8.4% increase in MWs (MEC) in the model and offset by the 0.7% increase in revenue to be recovered by GTUoS. The difference in the exchange rate has also had an effect. Significant changes were observed in some areas due to reinforcements joining or leaving the 12 year cost window. Most significantly average tariffs in the Borders area are almost 20% lower than in 2023/24, due several reinforcements in Donegal leaving the cost window. As shown in Figure 7-6, median GTUoS tariffs for Northern Ireland in 2022/23 are 5.8% lower than those of 2023/24 and are also around 6% lower than the average Ireland GTUoS tariff for 2023/24. The base flows in 2024/25 are otherwise relatively similar to those of 2023/24 and as a result there are similar trends to those of 2023/24. Further information on the 2024/25 GTUoS can be found on the EirGrid and SONI websites⁵⁵. ## 7.7 Assumptions behind the TLAF and GTUoS models #### 7.7.1 TLAFs The assumptions used to determine TLAFs come from the Imperfections Forecast model, and essentially are a snapshot of a particular study year, comprised of complex and detailed data. This data is collected up to a data freeze point just before the calculation process. This ensures they are as reflective as reasonably practicable for the study year. For the level of detail involved specifically for calculating TLAFs, the assumptions are only valid for the study year. Due to the complexity and variability of these assumptions, their collective impact on TLAFs is neither predictable nor forecastable. Looking beyond the study year, assumption data becomes increasingly speculative and could not be considered as reasonable data for the TLAF model. #### 7.7.2 GTUoS The GTUoS model includes an element of 'looking to the future' by adopting the principle of incorporating the future network. Looking at the future network involves including the next five years of network files in the model. The network files are consistent with the information published in the latest version of this document available at the time of calculation. Indicative asset costs for a 12 year window are also included in the GTUoS model (looking five years forward and seven years back). Under normal circumstances this starts when the asset first appears in the 'Year+5' network file, until seven years postcommissioning. GTUoS tariffs are calculated on an all-island basis, but assumptions or network changes from one jurisdiction can have an impact on the other. For example, if the revenue to be recovered in Ireland significantly increased, but the revenue to be recovered in Northern Ireland remained the same as the previous year, the average allisland tariff would increase as there is a greater all-island pot to recover. Local variations would then be related to changes in network flows. Another example could be when looking at interconnector flows, where an assumption for Moyle impacts flows in Ireland, and an assumption for EWIC impacts flows in Northern Ireland. Although there is an element of forecasting in the GTUoS model by looking at the future network and associated costs, alongside this are many assumptions and variables that only apply for the study year. ## 7.8 How to Use the Information for Generation Generation developers wishing to use the information contained within this section when considering where to connect should follow these steps: - Consult the maps in Appendix A to find the nearest transmission station to the proposed development. Also, consider the regions and nodes identified in Section 7.4 which are indicating opportunity for generation connections. - Consult the forecast increase and retirement of generation within a region. Consider the impact of changes to the transmission system since the analysis was carried out. Consider short circuit current levels at the nearest transmission station. - Discuss your project with EirGrid or SONI as early as possible. - If seeking to apply for a connection, refer to the EirGrid connection application process⁵⁶ or the SONI connection application process⁵⁷. ⁵⁶ http://www.eirgridgroup.com/customer-and-industry/becoming-a-customer/ ⁵⁷ https://www.soni.ltd.uk/Customers/howconnected/ ## 8. Transmission System Capability for New Demand This chapter presents the demand opportunity analysis which assesses the capability of the existing and planned transmission system to accommodate increased demand, based on information available at the data freeze date of January 2024. Opportunities for further demand connections in Ireland and Northern Ireland are also discussed. #### 8.1 Generation Adequacy A significant amount of conventional generation in Ireland and Northern Ireland is expected to close down over the period covered by this statement. However, for the purpose of the TYTFS 2024 analysis, it is assumed that sufficient generation capacity will be delivered in appropriate locations to ensure generation adequacy and security of supply are maintained. Note that in Ireland, significant security of supply concerns over the next ten years have been highlighted by EirGrid in the Generation Capacity Statement (GCS) 2023 - 2032. EirGrid is working with CRU and the Department of the Environment, Climate and Communications (DECC) to address the short to medium term generation adequacy concerns in Ireland. In September 2021, the CRU first published a Programme of Actions to increase generation capacity to provide additional stability and resilience to the
Irish energy system for the coming years. This includes retention of existing units that are scheduled to close and the availability of temporary emergency generation. Capacity shortfalls will continue to be regularly assessed, and action plans will be further developed and updated as necessary to maintain security of supply. The GCS 2023-2032 capacity adequacy analysis for Northern Ireland indicates a deficit in the median scenario from 2023 until the end of 2026, from 2027, all the core scenarios are in surplus for the remainder of the study horizon. It is expected that the generation that was successful in the T-4 2025/2026 capacity auction will become available from the start of 2027. The adequacy position for NI is being monitored on an on-going basis and SONI is working with the Department for the Economy and the Utility Regulator in addressing these issues. #### 8.2 Data Centres In 2023, data centres consumed 21% of the electricity used in Ireland and with the existing data centre contracts in place, this will increase to more than 30% in a few years based on existing contracts and the potential ramp up contained within them. This level of penetration is currently far higher than for most other countries. At the time of writing, the peak data centre demand utilisation has gone beyond 810 MW. Figure 8-1 shows the estimated share of total electricity being used by data centres in Ireland. This demonstrated that Ireland is an outlier in terms of the volume of data centre load that has already been accommodated within the power system. Figure 8-1: Projections from IEA of percentage Electricity Use by Data Centres by Country. In order to address the unprecedented issues created by the volume of data centre applications, in November 2021, the CRU published direction CRU2112458 to the System Operators relating to data centre grid connection processing. Since that direction there have been a number of further developments including the Government Policy Statement on Security of Electricity Supply (November 2021), the Government Strategy on the Role of Data Centres in Ireland's Enterprise Strategy (July 2022), Ireland's Sectoral Emissions Ceilings under the Climate Action and Low Carbon Development (Amendment) Act 2021 and the Climate Action Plan 2023 (December 2022), EirGrid is continuing to work with the CRU, and all other relevant parties, on these matters. In the operational context, data centres are large power electronic-interfaced loads with a relatively static load profile. Data centre demand can be very sensitive to dips in the system voltage experienced at the data centre point of connection to the transmission grid. These voltage dips can originate from relatively far away from the data centre demand itself. The protection functions implemented to safeguard power electronic components of data centres are set to trigger automatic shifting of load onto alternative, back-up electricity supply whenever they sense a disturbance. These protection functions are not defined in the Grid Code or under the control of the TSOs. In combination with large transmission contingencies (such as the loss of a HVDC interconnector), the consequential disconnection of large amounts of one specific load type (e.g., data centre loads) could result in difficult-to-contain system disturbances. At the time of publishing this TYTFS, new performance requirements for loads are under development by the TSOs. Implementation of Fault Ride-Through (FRT) capabilities for loads are key to the TSOs being able to deliver the operational policy roadmap⁵⁹. #### 8.3 Electrification of Heat, Transport and Industry and New Housing In line with European legislation and national ambitions, Ireland has major plans for electrification of heat, transport and industry. This means that network capacity must be managed to allow these developments to take place. Ireland also has serious ambitions to build tens of thousands of new houses every year as outlined in the recent Programme for Government (2024). These new houses will drive large demand increases across the network. There will be concentrations of demand increase where very large housing developments will be delivered. In recent years, all these developments have started to appear as requests for large demand increases both on the distribution network and on the transmission network. Provision needs to be made on the transmission network to allow for future growth of this type. The Northern Ireland Executive's new Energy Strategy – The Path to Net Zero Energy was published in December 2021. It outlines a roadmap to 2030 aiming to deliver a 56% reduction in energy-related emissions, on the pathway to deliver the 2050 vision of net zero carbon. The Climate Change Act (Northern Ireland) 2022 was enacted in June 2022. Key aspects of this legislation include a target of at least 100% reduction in net zero greenhouse gas (GHG) emissions by 2050, setting of carbon budgets, sectoral plans for emissions reduction targets and policies and procedures to drive targets and carbon budgets. With the transition from fossil fuel sources, an increasing proportion of energy demand will be met from electricity. The demand forecast reflects higher electrification in the heat and transport sectors. #### 8.4 Reinforcement Delivery EirGrid and ESB work together to deliver the necessary transmission reinforcements that are needed to reinforce the network to allow new demand to be supplied. The successful delivery of transmission reinforcements in a timely manner depends on lots of factors including public acceptance, local and national support and the allocation and efficient use of transmission outages. It is essential that the relevant transmission reinforcements receive the local and national support that they need so that Ireland's ambitions for housing, for decarbonization, for economic growth and for supporting local industry can be met. #### **General Disclaimer** It should be noted that results relating to demand opportunities in this forecast statement are indicative only and are based on information available at the data freeze date of January 2024. It is advised that any potential new demand consumers contact EirGrid in the first instance so that the available connection options can be considered. In particular, data centres need to consider the status of Dublin as a constrained area in the context of the CRU's direction to System Operators relating to data centre grid connection processing. ## 8.5 Transmission System Demand Capability Obligations This chapter of the TYTFS is published in order to meet the requirements on providing high-level indication of transmission network capacity under EirGrid's Section 38 of the 1999 Electricity Act and Condition 33 of SONI's TSO licence. Results from demand capability studies are based on a specific set of assumptions (see Chapter 6). Developers wishing to connect to the transmission system will require further detailed studies. The TYTFS is not intended to have any legal effect on the negotiation of contractual terms for transmission system connections. Before making any commercial decisions, developers should contact the appropriate TSO and engage in a formal application/offer process for their proposed developments. ## 8.6 All-Island Transmission System Capability for New Demand As detailed in Chapter 6, the transmission system's capacity to accommodate new demand is assessed using demand opportunity analysis. The study was performed for 2029 winter and summer peaks. Data used for the demand opportunity analysis is based on the best available information at the January 2024 data freeze date. The results of the demand opportunity analysis presented in this chapter are based on the following assumptions: - Year 2029 demand forecast was used (see Appendix C); - Only transmission reinforcements with capital approval which were planned to be completed by 2029 at the data freeze date were included in the analysis; - Planned generation up until 2029 at the data freeze date was included in the analysis; - Variable generation cannot continuously serve demand i.e. demand must be met at times where wind and solar resources are not available. As such, variable generation local to the test station was switched out; and - The 2029 transmission system was assessed for the following contingencies: the loss of a single transmission asset (N-1); a maintenance-trip (N-1-1); and loss of a double transmission circuit (N-DC, Northern Ireland). - The final results were considered in line with published EirGrid analysis such as Shaping Our Electricity Future. We analysed a number of transmission stations throughout Ireland (excluding Dublin) and Northern Ireland for Demand Opportunities. These consisted of 110 kV, 220 kV and 275 kV stations. These stations were analysed to help identify locations that are potentially suitable for major demand with large power requirements. The stations examined and their accompanying results are shown in Figure 8-2. The stations with the capacity to accommodate 75MW additional demand are reported for Ireland. There may be some limited opportunities for demand increase at other nodes, but these should be discussed with EirGrid on a case by case basis. Northern Ireland also presents limited opportunities for demand increase for specific nodes. The availability for connection should be discussed with SONI on a case by case basis. It should be noted that demand opportunity is tested at each reported station on an individual basis. As such, the opportunities presented are not cumulative. If new demand connects in an area that is currently shown to have capacity, it will consume some, or all of, the available capacity in that area. Figure 8-2: Capability for Additional Demand at 275 kV and 220 kV Stations in 2029 As a general rule, demand opportunity at a particular station would tend to reduce over time. This is due to normal demand growth using up
available capacity. Yet, in some cases, demand opportunities can improve as a result of planned transmission system or generation developments. The results of the analysis are presented on a regional basis below. The results provide a high-level indication that in 2029, there will be opportunities at the stations examined based on the data assumptions applied in the analysis. It should be noted that the analysis does not reflect changes that have occurred since the data freeze such as changes to contracted demand connections. These opportunities are all subject to adequacy requirements being met and other policy requirements as determined by the CRU. ## 8.7 Transmission System Capability for New Demand in the Dublin Area Dublin is the largest load centre on the island of Ireland. This section is included due to the considerable interest and number of enquiries for connection to the grid around Dublin (see Chapter 3 on Demand). The volume of enquiries and the uncertainty of their final power requirements require us to make a qualitative assessment of demand opportunities for the future. The scale of individual demand connection enquiries to the transmission system varies from 20 MW to over 250 MW. The enquiries mainly comprise data centres supporting the information, communications, and technology (ICT) infrastructure of large multi-national companies. Any potential new consumer looking to connect in the Dublin area should contact EirGrid as early as possible to review available connectivity options. In particular, data centres and large energy users need to consider the status of Dublin as a constrained area for demand per CRU21124. ## 8.7.1 CRU direction on data centre connections The greater Dublin area has experienced high levels of data centre growth in recent years. This demand growth is expected to continue over the coming years as existing data centres utilise their full contracted MIC. Connecting more data centres to the greater Dublin area will exacerbate the constraint issues that have developed in this area and present risks associated with security of the transmission system. In light of these issues and the CRU's direction on the connection of data centres (CRU21124), EirGrid has clarified that the greater Dublin area is considered a constrained region for the purpose of processing of data centre connections. #### 8.7.2 Looking Forward Scenario Planning is conducted by the TSOs to help ensure we can meet the future needs of society with regards to electricity, as well as outline Ireland's pathway to a clean energy transition. We call our all-island scenario planning Tomorrow's Energy Scenarios (TES) which looks out to 2035, 2040 and 2050. Our scenarios detail a range of potential futures for the electricity sector, with specific focus on what this means for the electricity transmission system over the next twenty years and beyond. The underlying assumptions in the scenarios are validated using feedback received from stakeholders such as policy makers, industry and the public as part of an open consultation. When the scenarios are finalised, we use them to test the performance of the electricity transmission grid and publish the results in the TES System Needs Assessment (SNA). From the TES SNA a strategic vision and roadmap for implementation is developed. The roadmap contains candidate network solutions which require further detailed analysis, these additional projects will be included in future TDPs. The need and requirement for transmission capacity is continuously evolving. In addition to the needs identified in TES SNA, further system needs may be identified in the period between iterations of the Tomorrow's Energy Scenarios. Examples of changes that may arise include plant closures, changes to the condition of network assets and new connections that emerge through the connection offer process. ## 8.8 Transmission System Capability for New Demand in Ireland Demand opportunities available on an Ireland regional basis are discussed below. These are all subject to adequacy requirements being met and other policy requirements as determined by the CRU. Results presented in this section are based on the assumptions detailed in Chapter 6. ## 8.8.1 Challenges in Providing for New Demand in Ireland The projection of the demand capacity in Ireland needs to take account of generation adequacy, the large impact of data centres, the need to supply the demand to new housing and the need to supply the electrification of heat, transport and industry. Finally, there is the need for local and national support to help deliver the relevant transmission reinforcements in a timely manner to allow the new demand to be met. ## 8.8.2 Opportunities for New Demand in the Midlands and West The indicative demand opportunities available in the Midlands and West are shown in Figure 8-3. It is shown that there is potential demand opportunities available for new customers in the region⁶⁰. Cashla 220 kV station would be suitable connection point for major industrial load centres. This station is capable of accommodating an additional 75 MW of demand without additional network reinforcements. Figure 8-3: Capability for Additional Demand in Midlands and West Regions 60 Please note that the demand opportunities results are not cumulative. Each station is assessed individually, taking account of forecast demand growth only at stations outside of the test node. These figures are indicative only, with further detailed assessment of each station required. Customers considering connecting demand to the Irish transmission system are advised to contact EirGrid as early in the project as possible. ### 8.8.3 Opportunities for New Demand in the South The demand opportunities available for the South region are shown in Figure 8-4. It can be seen that there are potential opportunities available for industrial customers in this region. In particular the Killonan and Knockraha 220 kV stations would be suitable connection points for major industrial load centres, with the capability of accommodating 75 MW at each station without additional network reinforcements. It is worth noting that since the data freeze date (January 2024), major new demand needs have been identified by the DSO in the Cork and Cork city area. This means that the available capacity at Knockraha will now likely be much lower than the 75 MW value. Figure 8-4: Capability for Additional Demand in South Region ## 8.9 Transmission System Capability for New Demand in Northern Ireland Section 8.5.1 discusses the demand opportunities available in the South-Eastern region of Northern Ireland. Section 8.5.2 discusses the demand opportunities available in the Northern and Western region. These results are based on the assumptions detailed in Chapter 6. ## 8.9.1 Opportunities for New Demand in South-East of Northern Ireland The demand opportunities available in the South-Eastern region are shown in Figure 8-5. Figure 8-5: Capability for Additional Demand (MW) in the South-East of Northern Ireland It can be seen that there are potential opportunities available for industrial customers at most stations examined in the region. Those stations with capacity are capable of accommodating approximately 350 MW⁶¹ of additional demand without additional network reinforcements. Those 275 kV stations with an identified capacity of 0 MW are restricted by the ability of the structures and busbars to withstand mechanical forces arising from potential faults. SONI and NIE Networks are bringing forward projects to address this issue, however, these are at an early stage and no additional capacity can as yet be identified with sufficient certainty. The fault contributions from non-synchronous connections such as data centres tend to be significantly smaller, particularly those likely to connect at 110 kV. Any such potential connection at these nodes would be assessed based on its fault current contribution. ## 8.9.2 Opportunities for New Demand in North and West of Northern Ireland The demand opportunities available for the North and West of Northern Ireland are shown in Figure 8-6. Figure 8-6: Capability for Additional Demand in the North and West of Northern Ireland It can be seen that there are potential opportunities available for industrial customers at all stations examined in the region except Coolkeeragh. It should be noted that the North-West of Northern Ireland requires specific assessment in line with the TSSPS (see Chapter 6). ⁶¹ Please note that the demand opportunities results are not cumulative. Each station is assessed individually, taking account of forecast demand growth only at stations outside of the test node. These figures are indicative only, with further detailed assessment of each station required. Customers considering connecting demand to the NI transmission system are advised to contact SONI as early in the project as possible. As the North-West is connected by a single double circuit 275 kV spur, an N-1-1 contingency is performed as a credible contingency: - The loss of the Coolkeeragh-Magherafelt 275 kV double circuit; and - Coolkeeragh steam and gas units are out on maintenance. However, the capacity at Coolkeeragh is limited by the ability of the 275 kV structures to withstand mechanical loading from potential faults. SONI and NIE Networks are bringing forward a project to address this issue, however, this is at an early stage. Enniskillen station represents the second lowest capability of the 110 kV nodes assessed. Enniskillen 110 kV is connected to Dromore 110 kV station via two 110 kV circuits. The loss of one of these circuits creates a thermal overload on the other. This limits demand connection capability. ## 8.10 How to Use the Information for Demand Although not every station was considered, the results presented can be regarded as a guide to opportunities at other stations in the same area. Customers wishing to use the demand opportunity results described in
this chapter when considering where to connect should follow these steps: - Consult the maps in Appendix A to find the nearest transmission station to the proposed development. Also, the nearest station for which opportunity has been assessed should be identified, where it differs from the nearest transmission station. - The anticipated demand growth at the relevant station can be obtained from the demand forecasts presented in Appendix C. The transmission system is being planned to meet this level of demand increase. - Consider the impact of changes to the transmission system since the analysis was carried out. - Consult with EirGrid or SONI on the proposed location as early as possible as well as consulting the EirGrid application process or the SONI application process. Early consultation with us is encouraged so that we can work jointly to explore options relating to any potential proposals and enable timely decision making. Note that all opportunities are all subject to adequacy requirements being met and any policy requirements as determined by either the CRU or the UR. ## Appendix A: Maps and Schematic Diagrams Appendix A contains geographical maps of the All-Island Transmission System and short bus codes for every transmission voltage node on the island. Geographical maps are presented illustrating the All-Island Transmission System in 2024 and as planned for in 2033 as at data freeze date of 31st January 2024. #### A.1 Network Maps This section includes two network maps: - Figure A-1 is a map of the All-Island Transmission System as at January 2024; and - Figure A-2 is a map of the planned All-Island Transmission System in 2033. Note: There are a number of network reinforcement projects that do not have a finalised reinforcement solution. They are shown on the Transmission System Map as a transparent bubble in Figure A-2. The solutions that will be used for these projects have not yet been finalised. Figure A-1: Map of the All-Island Transmission System as at January 2024 EirGrid/SONI | All-Island Ten-Year Transmission Forecast Statement 2024 Figure A-2: Map of the planned All-Island Transmission System in 2033. #### **A.2 Short Bus Codes** The following table associates full station names with the two or three letter codes used in the schematic diagrams in Section A.3, in the tables in Appendices B and C, and the power flow tables in Appendix H. Stations in Northern Ireland and Ireland with the same three letter bus code are distinguished with (N) for Northern Ireland and (I) for Ireland. | Table A-1: Short Bus Codes | | |----------------------------|----------------| | Short Bus Code | Full Name | | AA | Ardnacrusha | | AD | Aghada | | ADM | Adamstown | | AGH | Aghyoule | | AGL | Agannygal | | AGN | Aungierstown | | AGI | Agivey Cluster | | AGT | Aught | | AGY | Ardnagappary | | AHA | Ahane | | AIR | Airport Road | | ANR | Anner | | ANT | Antrim | | ARI | Arigna | | ARK | Arklow | | ARM | Armagh | | ART | Artane | | ARV | Arva | | ATE | Athea | | ATH | Athlone | | ATY | Athy | | Table A-1: Short Bus Codes | | |----------------------------|-----------------------| | Short Bus Code | Full Name | | AUG | Aughinish | | BAG | Barnageeragh | | BAL | Baltrasna | | BAN (I) | Bandon | | BAN (N) | Banbridge | | BAR | Barrymore | | ВСМ | Ballycummin | | ВСТ | Bancroft | | BDA | Baroda | | BDM | Ballydam | | BDN | Ballydine | | BDV | Barnadivane | | BEG | Ballybeg | | BFP | Belfast Power Station | | BGD | Belgard Road | | BGH | Boggeragh | | BGN | Bogtown | | BGT | Ballyragget | | BIN | Binbane | | ВК | Bellacorick | | ВКМ | Bunkimalta | | Table A-1: Short Bus Codes | | |----------------------------|-------------------------------| | Short Bus Code | Full Name | | BKY | Barnakyle | | BLA | Blackrock | | BLC | Belcamp | | BLE | Ballinknockane | | BLI | Ballylickey | | BLK | Blake | | BLU | Blundelstown | | ВМА | Ballymena | | BNH | Ballynahinch | | BNM | Belfast North | | BOG | Banoge | | BOL | Booltiagh | | BPS | Ballylumford Power
Station | | BRA | Bracklone | | BRI | Brinny | | BRO | Brockaghboy | | BRT | Bracetown | | BRY | Barnahely | | BUF | Buffy | | BUT | Butlerstown | | BVG | Ballyvallagh | | BVK | Ballyvouskill | | BWR | Ballywater | | BYC | Ballycronan More
(Moyle) | | вүн | Ballynahulla | | Table A-1: Short Bus Codes | | |----------------------------|------------------| | Short Bus Code | Full Name | | CAB | Cabra | | CAE | CAES | | CAG | Carrickalangan | | САН | Cahir | | CAM | Cam Cluster | | CAR | Carnmoney | | CAS | Castlereagh | | CBG | Carrowbeg | | CBL | Cloghboola | | CBR | Castlebar | | СВТ | Castlebagot | | CCN | Cloncreen | | CD | Carrigadrohid | | CDN | Carrigdangan | | CDF | Carrickaduff | | CDK | Castledockrill | | CDL | Cordal | | CDU | Corduff | | CDY | Corderry | | CEN | Belfast Central | | CF | Cathaleen's Fall | | CFD | Clonfad | | CFM | Castlefarm | | CGL | Coomagearlahy | | СН | Cahernagh | | СНА | Charleville | | Table A-1: Short Bus Codes | | |----------------------------|--------------------| | Short Bus Code | Full Name | | CHE | Cherrywood | | CHR | Cahernagh | | CKG | Corkagh | | СКМ | Carrickmines | | CKN | Clonkeen | | CL | Cliff | | CLA | Clashavoon | | CLD | Coolderrig | | CLE | Clonee | | CLG | Cloghran | | CLH | Clahane | | CLM | Culmore_RD | | CLN | Cloon | | CLO | Clogher | | CLS | Clonshaugh | | CLW | Carlow | | CNB | Coolnabacky | | CNG | Coolnanoonag | | CNF | Caraunduff | | CNN | Croaghnagawna | | COL (I) | College Park | | COL (N) | Coleraine | | coo | Cookstown | | COR | Corraclassy | | cos | Carrick-on-Shannon | | COW | Cow Cross | | Table A-1: Short Bus Codes | | |----------------------------|------------------------------| | Short Bus Code | Full Name | | СРК | Central Park | | CPS | Coolkeeragh Power
Station | | CRA | Crane | | CRD | Croaghonagh | | CRE | Cregagh | | CRG | Creagh | | CRH | Cruiserath | | CRM | Cromcastle | | CRN | Croaghaun | | CRO | Coolroe | | CRR | Curragha | | CRY | Crory | | CSH | Cashla | | CTG | Coomataggart | | CTN | Cauteen | | СТҮ | City West | | CUL | Cullenagh | | CUN | Cunghill | | CUR | Cureeny | | CUS | Cushaling | | CVW | Castleview | | DAL | Dallow | | DRN | Darndale | | DDK | Dundalk | | DEE | Deenes | | Table A-1: Short Bu | Table A-1: Short Bus Codes | | |---------------------|----------------------------|--| | Short Bus Code | Full Name | | | DER | Derryiron | | | DEY | Derrycarney | | | DFR | Dunfirth | | | DGN | Dungarvan | | | DHN | Derrylahan | | | DJG | Drombeg | | | DLN | Derrylyn | | | DLT | Dalton | | | DMY | Dunmanway | | | DON | Donegall | | | DOO | Doon | | | DRM | Drumkeen | | | DRN | Darndale | | | DRO | Dromada | | | DRO (N) | Dromore | | | DRQ | Drumquin Cluster | | | DRU (I) | Drumline | | | DRU (N) | Drumnakelly | | | DRY | Drybridge | | | DSN | Dunstown | | | DTN | Dardistown | | | DUN | Dungannon | | | DYN | Derrybrien | | | EDE | Eden | | | ENN (I) | Ennis | | | ENN (N) | Enniskillen | | | Table A-1: Short Bus Codes | | |----------------------------|----------------| | Short Bus Code | Full Name | | FAS | Fassaroe | | FAS E | Fassaroe East | | FGH | Firlough | | FIN (I) | Finglas | | FIN (N) | Finaghy | | FLA | Flagford | | FNT | Finnstown | | FRN | Francis Street | | GAE | Glanlee | | GAL | Galway | | GRV | Garvagh | | GCA | Grange Castle | | GGO | Glanagow | | GGT | Garrintaggart | | GI | Great Island | | GIL | Gilra | | GLA | Glasmore | | GLE (I) | Glenlara | | GLE (N) | Glengormley | | GLN | Glen | | GAN | Gallanstown | | GLH | Glencloosagh | | GLR | Glenree | | GOL | Golagh | | GOR (I) | Gorman | | GOR (N) | Gort Cluster | | Table A-1: Short Bus Codes | | |----------------------------|----------------| | Short Bus Code | Full Name | | GRA | Grange | | GRH | Garballagh | | GRI | Griffinrath | | GRO | Garrow | | GWE | Gortawee | | HAN | Hannastown | | HAR | Harolds Cross | | HEU | Heuston Square | | HN | Huntstown | | HRR | Harristown | | IA | Inniscarra | | IKE | lkerrin | | INC | Inchicore | | ISH | Irishtown | | KBY | Kilbarry | | KBY2 | Kilbarry No. 2 | | KCR | Knockacummer | | КСҮ | Kilcarbery | | KDN | Kildonan | | KEL | Kells | | KLC | Kells Cluster | | KER | Knockearagh | | KHL | Kill Hill | | KIN | Kinnegad | | KKY | Kilkenny | | KLH | Knockalough | | Table A-1: Short Bus Codes | | |----------------------------|-----------------------| | Short Bus Code | Full Name | | KLM | Kilmore | | KLN | Killonan | | KLS | Kellis | | KMA | Knocknamona | | KMT | Killymallaght | | KNO | Knock | | KNR | Knockanure | | KNV | Knockavanna | | KNY | Knockranny | | KPG | Kilpaddoge | | KPN | Killinaparson | | KPS | Kilroot Power Station | | KRA | Knockraha | | KSE | Kishoge | | KTL | Kilteel | | KTN | Killoteran | | KUD | Kilmahud | | KUR | Knockumber | | KYT | Kellystown | | LA | Lanesboro | | LAR | Larne | | LCK | Lickny | | LET | Letterkenny | | LGT | Lysaghtstown | | LIB | Liberty Street | | LIM (I) | Limerick | | Table A-1: Short Bus Codes | | | | | | | | | |----------------------------|---------------------|--|--|--|--|--|--|--| | Short Bus Code | Full Name | | | | | | | | | LIM (N) | Limavady | | | | | | | | | LIS (I) | Lisdrum | | | | | | | | | LIS (N) | Lisburn | | | | | | | | | LMR | Lisaghmore | | | | | | | | | LNA | Lenalea | | | | | | | | | LOG | Loguestown | | | | | | | | | LOU | Louth | | | | | | | | | LPT | Longpoint | | | | | | | | | LSN | Lisheen | | | | | | | | | LUM | Lumcloon | | | | | | | | | LWD | Lodgewood | | | | | | | | | MAC | Macroom | | | | | | | | | MAG | Magherafelt | | | | | | | | | MAL | Mallow | | | | | | | | | MAY | Maynooth | | | | | | | | | MCD | McDermott | | | | | | | | | MCE | Macetown | | | | | | | | | MEE | Meentycat | | | | | | | | | MEN | Monatooreen | | | | | | | | | MGT | Mulgeeth | | | | | | | | | MHL | Misery Hill | | | | | | | | | MID | Midleton | | | | | | | | | MIL | Milltown | | | | | | | | | MKL | Magherakeel Cluster | | | | | | | | | MLC | Mountlucas | | | | | | | | | MLG | Mully Graffy | | | | | | | | | Table A-1: Short Bus Codes | | | | | | |
| |----------------------------|---------------|--|--|--|--|--|--| | Short Bus Code | Full Name | | | | | | | | MLN | Mullagharlin | | | | | | | | MNH | Metro North | | | | | | | | MON | Monread | | | | | | | | MOY | Moy | | | | | | | | MP | Moneypoint | | | | | | | | MR | Marina | | | | | | | | MRN | Mooretown | | | | | | | | MRY | Mulreavy | | | | | | | | MTA | Metro Airport | | | | | | | | MTH | Meath Hill | | | | | | | | MTN | Moneteen | | | | | | | | MUC | Muckerstown | | | | | | | | MUL | Mullingar | | | | | | | | MUN | Mungret | | | | | | | | NAN (I) | Nangor | | | | | | | | NAR | Newtownards | | | | | | | | NAV | Navan | | | | | | | | NBY | Newbury | | | | | | | | NEN | Nenagh | | | | | | | | NEW (I) | Newbridge | | | | | | | | NEW (N) | Newry | | | | | | | | NQS | North Quays | | | | | | | | NW | North Wall | | | | | | | | OLD | Oldcourt | | | | | | | | OMA | Omagh | | | | | | | | ORL | Oriel | | | | | | | | Table A-1: Short Bu | s Codes | |---------------------|-------------------| | Short Bus Code | Full Name | | OST | Oldstreet | | OUG | Oughtragh | | PA | Pollaphuca | | РВ | Poolbeg | | PGN | Pigeon Top | | PLA | Platin | | PLS | Portlaoise | | PMT | Peamount | | POP | Poppintree | | POT | Pottery Road | | PPT | Philipstown | | PRO | Prospect | | PRT | Portan | | PTN | Pelletstown | | RAF | Raffeen | | RAT (I) | Rathkeale | | RAT (N) | Rathgael | | RE | Ringsend | | REM | Reamore | | RIC | Richmond | | RNW | Rinawade | | ROP | Rosspile | | ROS | Rosebank | | RRU | Ratrussan | | RSK | Rasharkin Cluster | | RSY | Ringaskiddy | | Table A-1: Short Bus Codes | | | | | | | | |----------------------------|---------------|--|--|--|--|--|--| | Short Bus Code | Full Name | | | | | | | | RTO | Rathnaskillo | | | | | | | | RYB | Ryebrook | | | | | | | | SAL | Salthill | | | | | | | | SBH | Snughborough | | | | | | | | SCR | Screeb | | | | | | | | SH | Shannonbridge | | | | | | | | SHE | Shelton Abbey | | | | | | | | SHL | Shellybanks | | | | | | | | SK | Sealrock | | | | | | | | SKL | Shankill | | | | | | | | SKY | Srahnakilly | | | | | | | | SLB | Sliabh Bawn | | | | | | | | SLC | Slievecallan | | | | | | | | SLI | Sligo | | | | | | | | SLK | Slieve Kirk | | | | | | | | SNG | Singland | | | | | | | | SOM | Somerset | | | | | | | | SOR | Sorne Hill | | | | | | | | SPR | Springtown | | | | | | | | SRA | Srananagh | | | | | | | | STR (I) | Stratford | | | | | | | | STR (N) | Strabane | | | | | | | | SVN | Stevenstown | | | | | | | | SXH | Shantallow | | | | | | | | TAN | Tandragee | | | | | | | | TAW | Tawnaghmore | | | | | | | | Table A-1: Short Bu | s Codes | |---------------------|-----------------| | Short Bus Code | Full Name | | ТВ | Tarbert | | TBG | Trabeg | | ТВК | Tullabrack | | TEN | Timahoe | | TGW | Terrygowan | | TH | Turlough Hill | | THU | Thurles | | TIP | Tipperary | | TIV | Tievebrack | | TLK | Trillick | | TLY | Tanley | | TMN | Tamnamore | | TON | Tonroe | | TRE | Tremoge Cluster | | TRI | Trien | | TRL | Tralee | | TRN | Trinity | | TSB | Thornsberry | | TTU | Tullabeg | | TUR | Turleenan | | TYN | Tynagh | | UGL | Uggool | | WAR | Waringstown | | WAT | Waterford | | WEX | Wexford | | WH | Woodhouse | | Table A-1: Short Bus Codes | | | | | | | | |----------------------------|--------------|--|--|--|--|--|--| | Short Bus Code | Full Name | | | | | | | | WHI | Whitegate | | | | | | | | WOL | Wolfe Tone | | | | | | | | YLW | Yellowmeadow | | | | | | | ## A.3 Schematic Diagrams of the All Island Transmission System Schematic diagrams of the All-Island Transmission System are included to assist users in understanding the transmission system and in the identification of the changes outlined in Appendix B. Lines, cables, transformers, station busbars and reactive compensation devices are illustrated in the diagrams. The type of generation (thermal, wind, hydro or solar) at a station is also displayed. Table A-2 indicates the diagram conventions. The schematic diagram for 2024 shows the transmission system as of January 2024. The schematic diagram for 2033 shows the planned transmission system due to be completed by the end of 2033. | Table A 2: S | chematic Legend | | | |--------------|-------------------------------------|-------------|---| | Symbol | Network element represented | Symbol | Network element represented | | | 110 kV Circuit | | Busbar with solar generation (> 5 MW) | | | 220 kV Circuit | | Busbar with wind and thermal generation | | | 275 kV Circuit | | Busbar with wind and hydro generation | | | 400 kV Circuit | | Busbar with wind and solar generation | | | System Link | <u>+</u> | Capacitor | | 0 | 110 kV Busbar | | Static Var compensator/STATCOM | | 0 | 220 kV Busbar | (6) | Reactor | | 0 | 275 kV Busbar | PST | Phase shifting transformer | | | 400 kV Busbar | —NO— | Transformer | | | Busbar with thermal generation | | Normally open point | | | Busbar with wind generation (>5 MW) | —sc— | Series compensation | | | Busbar with hydro generation | | | Figure A-4: Schematic Diagram of the planned All-Island Transmission System as at December 2024 Figure A-4: Schematic Diagram of the planned All-Island Transmission System as at December 2033 # Appendix B: Transmission System Characteristics This appendix presents details of the physical and electrical characteristics of the all-island transmission system in tabular form: - Section B.1 details the data for the existing¹ transmission system; and - Section B.2 details the data for planned transmission system developments². The following is a list of tables in Section B.1: - Table B-2 Characteristics of Existing Transmission Circuits; - Table B-3 Characteristics of Existing Transformers in Ireland; - Table B-4 Characteristics of Existing 3 Winding Transformers in Northern Ireland; - Table B-5 Characteristics of Existing 2 Winding Transformers in Northern Ireland; - Table B-6 Characteristics of Existing Power Flow Controllers; and - Table B-7 Characteristics of Existing Reactive Compensation. The following is a list of tables in Section B.2: - Table B-8 Expected Changes in Transmission Circuits; - Table B-9 Expected Changes in Transformers in Ireland; - Table B-10 Expected Changes in 3 Winding Transformers in Northern Ireland; - Table B-11 Expected Changes in 2 Winding Transformers in Northern Ireland; and - Table B-12 Expected Changes in Reactive Compensation. ¹ As at January 2024. ² Includes transmission system reinforcement projects and developments necessary to connect new generation and demand. Tables B-2 and B-8 include the ratings for lines and cables in MVA for winter and summer reference temperature conditions at 1 per unit (pu) voltage. The higher ambient temperature in summer dictates a reduced thermal rating for overhead lines. The rating is the maximum permissible power that the circuit can transport on a continuous basis. Reference ambient temperatures are: winter: 11°C³; and summer: 25°C. The electrical characteristics of the all-island transmission system at the four nominal voltage levels are documented. They are represented in per unit values, with a 100 MVA base, and the applicable reference voltage. Table B-1 below displays the four nominal and reference voltage levels on the all-island transmission system. Table B-1: Nominal and Reference Voltage Levels Nominal Voltage Level (kV) 400 400 275 220 220 110 110 In some cases equipment associated with a line or cable may be lower rated than the circuit or line. However, this equipment⁴ is easier to upgrade than lines and cables and is therefore not expected to restrict access to the transmission system. A small number of 110 kV stations are connected to the transmission system via a tee. A tee is an un-switched connection into an existing line between two other stations. For the purposes of describing the various sections of lines in the following tables, tee points are identified by the name of the tee'd 110 kV station with a suffix "T" added. ³ ESB Networks previously calculated winter ratings based on an assumed winter temperature of 5° C. In 2018 this was changed to 11° C. ⁴ For example, current transformers. ### **B.1** Characteristics of the Existing Transmission System (January 2024) ### Characteristics of Existing Transmission Circuits | Table E | 3-2: Chara | cteristic | s of E | Existing 1 | Transmis | ssion Circ | cuits | | | | | |-----------------|------------|-----------|--------|----------------|-----------------------------------|------------|-------|--------|-----------------|--------|--| | Voltage
(kV) | From | То | No. | Length
(km) | Impedance on
100 MVA base (pu) | | | | Rating
(MVA) | | | | | | | | | R | х | В | Summer | Autumn | Winter | | | 380 | DSN | MP | 1 | 208.5 | 0.004 | 0.044 | 1.14 | 1283 | 1331 | 1454 | | | 380 | MP | OST | 1 | 104.14 | 0.004 | 0.027 | 0.489 | 1283 | 1331 | 1454 | | | 380 | OST | WOO | 1 | 126 | 0.002 | 0.028 | 0.636 | 997 | 997 | 997 | | | 380 | WOO | WOO | 1 | 0.5 | 0 | 0 | 0.043 | 685 | 685 | 685 | | | 275 | BPS | HAN | 2 | 45.5 | 0.002 | 0.019 | 0.114 | 710 | 820 | 881 | | | 275 | BPS | KEL | 1 | 34.5 | 0.002 | 0.014 | 0.089 | 710 | 820 | 881 | | | 275 | BPS | MAG | 1 | 65.5 | 0.003 | 0.027 | 0.169 | 710 | 820 | 881 | | | 275 | BPS | MOY | 1 | 0.8 | 0 | 0 | 0.002 | 710 | 820 | 881 | | | 275 | CAS | HAN | 1 | 18.4 | 0.001 | 0.008 | 0.046 | 710 | 820 | 881 | | | 275 | CAS | HAN | 2 | 18.4 | 0.001 | 0.008 | 0.046 | 710 | 820 | 881 | | | 275 | CAS | KPS | 1 | 66.8 | 0.003 | 0.028 | 0.171 | 710 | 820 | 881 | | | 275 | CAS | TAN | 1 | 45.6 | 0.002 | 0.019 | 0.114 | 710 | 820 | 881 | | | 275 | HAN | MOY | 1 | 44.7 | 0.002 | 0.019 | 0.112 | 710 | 820 | 881 | | | 275 | KEL | KPS | 1 | 29 | 0.001 | 0.012 | 0.075 | 710 | 820 | 881 | | | 275 | KEL | KPS | 2 | 29 | 0.001 | 0.012 | 0.075 | 710 | 820 | 881 | | | 275 | KEL | MAG | 1 | 31.1 | 0.001 | 0.013 | 0.08 | 710 | 820 | 881 | | | 275 | KPS | TAN | 1 | 80.8 | 0.004 | 0.034 | 0.206 | 710 | 820 | 881 |
 | 275 | LOU | TAN | 1 | 50 | 0.003 | 0.021 | 0.127 | 710 | 820 | 881 | | | 275 | LOU | TAN | 2 | 50 | 0.003 | 0.021 | 0.127 | 710 | 820 | 881 | | | 275 | MAG | TMN | 1 | 25.68 | 0.001 | 0.011 | 0.065 | 710 | 820 | 881 | | | 275 | MAG | TMN | 2 | 25.68 | 0.001 | 0.011 | 0.065 | 710 | 820 | 881 | | | 275 | TAN | TMN | 1 | 25.74 | 0.001 | 0.011 | 0.065 | 710 | 820 | 881 | | | 275 | TAN | TMN | 2 | 25.74 | 0.001 | 0.011 | 0.065 | 710 | 820 | 881 | | | 220 | AD | AD | 1 | 1.4 | 0 | 0.001 | 0.038 | 593 | 593 | 593 | | | 220 | AD | GGO | 1 | 3.78 | 0 | 0.002 | 0.104 | 536 | 573 | 573 | | | 220 | AD | KRA | 1 | 25.6 | 0.003 | 0.022 | 0.034 | 393 | 429 | 468 | | | 220 | AD | KRA | 2 | 25.6 | 0.003 | 0.022 | 0.034 | 393 | 429 | 468 | | | 220 | AD | LPT | 1 | 0.97 | 0 | 0 | 0.026 | 537 | 574 | 574 | | | Table B | 3-2: Charc | acteristic | s of E | Existing T | Transmis | ssion Circ | cuits | | | | |-----------------|------------|------------|--------|----------------|-----------------------------------|------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | Impedance on
100 MVA base (pu) | | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 220 | AD | RAF | 1 | 14.4 | 0.001 | 0.009 | 0.252 | 434 | 474 | 513 | | 220 | ARK | CKM | 1 | 53.61 | 0.006 | 0.046 | 0.081 | 434 | 474 | 513 | | 220 | ARK | LOD | 1 | 39.02 | 0.005 | 0.034 | 0.051 | 434 | 474 | 513 | | 220 | BLC | FIN | 1 | 10 | 0 | 0.002 | 0.332 | 457 | 457 | 457 | | 220 | BRT | CLE | 1 | 2.5 | 0 | 0 | 0.083 | 563 | 583 | 635 | | 220 | BRT | CLE | 2 | 2.5 | 0 | 0 | 0.083 | 563 | 583 | 635 | | 220 | BVK | BYH | 1 | 14.5 | 0.002 | 0.013 | 0.019 | 761 | 780 | 794 | | 220 | BVK | CLA | 1 | 16.78 | 0.002 | 0.014 | 0.025 | 740 | 769 | 792 | | 220 | СВТ | INC | 1 | 10 | 0.001 | 0.007 | 0.153 | 548 | 548 | 548 | | 220 | СВТ | MAY | 1 | 13.7 | 0.004 | 0.01 | 0.169 | 647 | 669 | 692 | | 220 | CDU | CRU | 1 | 2 | 0 | 0.001 | 0.098 | 644 | 667 | 730 | | 220 | CDU | CRU | 2 | 1.64 | 0 | 0.001 | 0.08 | 643 | 666 | 730 | | 220 | CDU | FIN | 1 | 3.73 | 0 | 0.003 | 0.005 | 434 | 474 | 513 | | 220 | CDU | FIN | 2 | 3.73 | 0 | 0.003 | 0.005 | 434 | 474 | 513 | | 220 | CDU | HN | 1 | 3.73 | 0 | 0.001 | 0.134 | 555 | 555 | 555 | | 220 | CDU | WOO | 2 | 17.84 | 0.002 | 0.016 | 0.023 | 434 | 474 | 513 | | 220 | CKM | DSN | 1 | 41.61 | 0.005 | 0.036 | 0.109 | 434 | 474 | 513 | | 220 | CKM | ISH | 1 | 11.89 | 0 | 0.005 | 0.326 | 593 | 593 | 593 | | 220 | CLA | KRA | 1 | 42.93 | 0.005 | 0.037 | 0.057 | 646 | 704 | 751 | | 220 | CLE | CDU | 1 | 5.06 | 0.001 | 0.004 | 0.007 | 434 | 474 | 513 | | 220 | CLE | WOO | 1 | 13.5 | 0.002 | 0.012 | 0.018 | 434 | 474 | 513 | | 220 | CSH | FLA | 1 | 88.09 | 0.01 | 0.076 | 0.115 | 350 | 393 | 436 | | 220 | CSH | PRO | 1 | 88.54 | 0.01 | 0.077 | 0.116 | 392 | 429 | 468 | | 220 | CSH | TYN | 1 | 39.89 | 0.005 | 0.034 | 0.058 | 761 | 777 | 792 | | 220 | CUL | GI | 1 | 23.34 | 0.003 | 0.02 | 0.044 | 746 | 746 | 793 | | 220 | CUL | KRA | 1 | 86 | 0.012 | 0.074 | 0.117 | 646 | 704 | 765 | | 220 | DSN | KLS | 1 | 59.3 | 0.007 | 0.051 | 0.078 | 393 | 429 | 468 | | 220 | DSN | MAY | 1 | 30.55 | 0.004 | 0.026 | 0.04 | 350 | 393 | 436 | | 220 | DSN | MAY | 2 | 36.29 | 0.004 | 0.032 | 0.048 | 350 | 393 | 436 | | 220 | DSN | TH | 1 | 26.62 | 0.003 | 0.022 | 0.144 | 351 | 351 | 351 | | Voltage
(kV) | From | То | No. | Length
(km) | Impedance on
100 MVA base (pu) | | | Rating
(MVA) | | | |-----------------|------|-----|-----|----------------|-----------------------------------|-------|--------|-----------------|--------|-----| | | | | | R | X | В | Summer | Autumn | Winter | | | 220 | FIN | HN | 1 | 1.4 | 0 | 0.001 | 0.038 | 537 | 560 | 560 | | 220 | FIN | NW | 1 | 11.85 | 0.001 | 0.004 | 0.67 | 332 | 332 | 332 | | 220 | FIN | SHL | 1 | 13.4 | 0 | 0.005 | 0.367 | 536 | 557 | 557 | | 220 | FLA | LOU | 1 | 110.08 | 0.013 | 0.098 | 0.145 | 384 | 430 | 475 | | 220 | FLA | SRA | 1 | 56.01 | 0.006 | 0.047 | 0.077 | 434 | 474 | 513 | | 220 | GGO | RAF | 1 | 9.5 | 0 | 0.005 | 0.414 | 547 | 567 | 627 | | 220 | GI | KLS | 1 | 70.43 | 0.008 | 0.061 | 0.101 | 393 | 429 | 468 | | 220 | GI | LOD | 1 | 48.08 | 0.006 | 0.042 | 0.07 | 434 | 474 | 513 | | 220 | GOR | LOU | 1 | 32.41 | 0.004 | 0.028 | 0.042 | 434 | 474 | 476 | | 220 | GOR | MAY | 1 | 42.19 | 0.005 | 0.037 | 0.055 | 350 | 393 | 436 | | 220 | INC | ISH | 1 | 12.06 | 0 | 0.005 | 0.33 | 562 | 582 | 634 | | 220 | INC | MAY | 1 | 19.13 | 0.003 | 0.016 | 0.026 | 793 | 811 | 824 | | 220 | INC | РВ | 1 | 12.5 | 0.001 | 0.004 | 0.498 | 267 | 267 | 267 | | 220 | INC | РВ | 2 | 11.3 | 0 | 0.003 | 0.722 | 351 | 351 | 351 | | 220 | ISH | SHL | 1 | 1.31 | 0 | 0.001 | 0.036 | 593 | 593 | 593 | | 220 | KLN | KLP | 1 | 70.57 | 0.008 | 0.061 | 0.114 | 434 | 474 | 513 | | 220 | KLN | KRA | 1 | 82.16 | 0.013 | 0.069 | 0.107 | 512 | 536 | 564 | | 220 | KLN | SH | 1 | 89.7 | 0.014 | 0.08 | 0.12 | 269 | 313 | 354 | | 220 | KLP | KNR | 1 | 20.76 | 0.003 | 0.018 | 0.054 | 731 | 750 | 762 | | 220 | KLP | KNR | 2 | 21.37 | 0.001 | 0.008 | 0.897 | 660 | 660 | 660 | | 220 | KLP | MP | 1 | 5.4 | 0 | 0.002 | 0.236 | 660 | 660 | 660 | | 220 | KLP | MP | 2 | 5.4 | 0 | 0.002 | 0.236 | 660 | 660 | 660 | | 220 | KLP | ТВ | 1 | 2.5 | 0 | 0.002 | 0.028 | 645 | 669 | 731 | | 220 | KLP | ТВ | 2 | 2.6 | 0 | 0.002 | 0.026 | 434 | 474 | 513 | | 220 | KNR | BYH | 1 | 37.79 | 0.005 | 0.033 | 0.061 | 740 | 769 | 792 | | 220 | KRA | RAF | 1 | 19.25 | 0.002 | 0.017 | 0.026 | 351 | 394 | 436 | | 220 | KYT | MAY | 1 | 13.5 | 0.001 | 0.01 | 0.111 | 726 | 726 | 820 | | 220 | KYT | WOO | 1 | 13.5 | 0.002 | 0.011 | 0.093 | 434 | 474 | 513 | | 220 | LOU | WOO | 1 | 61.2 | 0.007 | 0.053 | 0.08 | 434 | 474 | 476 | | 220 | MAY | SH~ | 1 | 105.6 | 0.017 | 0.094 | 0.142 | 269 | 313 | 354 | | Voltage
(kV) | From | То | No. | Length
(km) | | Impedance on
100 MVA base (pu) | | | Rating
(MVA) | | |-----------------|---------|---------|-----|----------------|-------|-----------------------------------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 220 | MAY | TH | 1 | 53.1 | 0.006 | 0.044 | 0.184 | 325 | 351 | 351 | | 220 | MP | PRO | 1 | 12.7 | 0.001 | 0.011 | 0.017 | 537 | 600 | 610 | | 220 | NW | РВ | 1 | 4.5 | 0 | 0.001 | 0.261 | 332 | 332 | 332 | | 220 | OST | TYN | 1 | 10.04 | 0.001 | 0.008 | 0.014 | 434 | 474 | 513 | | 220 | PB | СКМ | 1 | 14.5 | 0.001 | 0.005 | 0.579 | 267 | 267 | 267 | | 220 | РВ | РВ | 1 | 1 | 0 | 0.037 | 0 | 450 | 450 | 450 | | 220 | РВ | SHL | 1 | 0.12 | 0 | 0 | 0.003 | 574 | 574 | 574 | | 220 | PRO | ТВ | 1 | 10.16 | 0.001 | 0.007 | 0.173 | 467 | 467 | 467 | | 110 | AA | DRU | 1 | 18.15 | 0.027 | 0.063 | 0.006 | 99 | 110 | 121 | | 110 | AA | ENN | 1 | 32.33 | 0.048 | 0.111 | 0.012 | 99 | 110 | 121 | | 110 | AA | LIM | 1 | 11.7 | 0.007 | 0.037 | 0.012 | 178 | 194 | 210 | | 110 | AA1 | SNG | 1 | 5.46 | 0.003 | 0.017 | 0.007 | 178 | 194 | 210 | | 110 | AD | WHI | 1 | 3.1 | 0.005 | 0.011 | 0.001 | 99 | 110 | 121 | | 110 | ADM | GCA | 1 | 2.5 | 0.002 | 0.004 | 0.025 | 160 | 166 | 181 | | 110 | ADM | INC | 1 | 10.7 | 0.005 | 0.005 | 0.118 | 160 | 166 | 181 | | 110 | AGH (N) | ENN (N) | 1 | 31.1 | 0.039 | 0.095 | 0.019 | 109 | 114 | 124 | | 110 | AGL | DBR | 1 | 8 | 0.012 | 0.028 | 0.003 | 105 | 114 | 123 | | 110 | AGL | ENN | 1 | 38.2 | 0.059 | 0.131 | 0.012 | 74 | 83 | 91 | | 110 | AGL | SH | 1 | 45.88 | 0.068 | 0.157 | 0.017 | 104 | 113 | 119 | | 110 | AGN | СВТ | 1 | 0.2 | 0 | 0 | 0.002 | 128 | 128 | 128 | | 110 | AGN | СВТ | 2 | 0.2 | 0 | 0 | 0.002 | 128 | 128 | 128 | | 110 | AHA | KLN | 1 | 3.77 | 0.004 | 0.012 | 0.004 | 45 | 45 | 45 | | 110 | ANR | DOO | 1 | 2 | 0.003 | 0.007 | 0.001 | 45 | 45 | 45 | | 110 | ANT | KEL | 1 | 8.93 | 0.012 | 0.03 | 0.003 | 82 | 95 | 103 | | 110 | ANT | KEL | 2 | 8.93 | 0.012 | 0.03 | 0.003 | 82 | 95 | 103 | | 110 | ARD | TIV | 1 | 35 | 0.054 | 0.12 | 0.011 | 91 | 91 | 91 | | 110 | ARI | ARI-T | 1 | 0.21 | 0 | 0.001 | 0 | 105 | 116 | 123 | | 110 | ARK | BOG | 1 | 29 | 0.021 | 0.095 | 0.01 | 178 | 194 | 210 | | 110 | ARK | SHE | 2 | 2.2 | 0.004 | 0.008 | 0.001 | 63 | 79 | 92 | | 110 | ART | FIN | 1 | 9 | 0.005 | 0.01 | 0.055 | 120 | 124 | 136 | | Voltage
(kV) | From | То | No. | Length
(km) | Impedance on
100 MVA base (pu) | | | | Rating
(MVA) | | |-----------------|---------|-------|-----|----------------|-----------------------------------|-------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | ART | MCD | 1 | 4.9 | 0.003 | 0.006 | 0.03 | 108 | 108 | 115 | | 110 | ARV | COS | 1 | 43.04 | 0.067 | 0.148 | 0.014 | 104 | 113 | 123 | | 110 | ARV | GWE | 1 | 30.6 | 0.019 | 0.099 | 0.011 | 178 | 194 | 210 | | 110 | ARV | NAV | 1 | 65.5 | 0.041 | 0.213 | 0.023 | 178 | 194 | 210 | | 110 | ARV | SKL | 1 | 18.52 | 0.012 | 0.06 | 0.007 | 178 | 194 | 210 | | 110 | ARV | SKL | 2 | 23.56 | 0.015 | 0.076 | 0.01 | 178 | 194 | 210 | | 110 | ATE | DRO | 1 | 5.47 | 0.001 | 0.006 | 0.06 | 120 | 124 | 136 | | 110 | ATE | KNR | 1 | 6.71 | 0.004 | 0.021 | 0.007 | 178 | 194 | 210 | | 110 | ATH | LA | 1 | 35.78 | 0.054 | 0.123 | 0.012 | 99 | 110 | 121 | | 110 | ATH | SH | 1 | 21.63 | 0.014 | 0.07 | 0.011 | 178 | 190 | 190 | | 110 | ATN | INC | 1 | 6.5 | 0.005 | 0.01 | 0.065 | 120 | 124 | 136 | | 110 | ATN | INC | 2 | 6.5 | 0.005 | 0.01 | 0.065 | 120 | 124 | 136 | | 110 | ATY | CLW | 1 | 24.23 | 0.036 | 0.083 | 0.008 | 99 | 110 | 121 | | 110 | ATY | PLS | 1 | 25.48 | 0.038 | 0.088 | 0.008 | 99 | 110 | 121 | | 110 | AUG | CFM | 1 | 0.65 | 0.001 | 0.002 | 0.001 | 96 | 96 | 96 | | 110 | AUG | CFM | 2 | 0.67 | 0.001 | 0.002 | 0.001 | 96 | 96 | 96 | | 110 | AUG | KLP | 1 | 32.83 | 0.021 | 0.107 | 0.012 | 178 | 194 | 210 | | 110 | AUG | MTN | 1 | 27.5 | 0.017 | 0.089 | 0.01 | 178 | 194 | 210 | | 110 | AUG | SK | 3 | 1 | 0.001 | 0.001 | 0.006 | 120 | 120 | 120 | | 110 | AUG | SK | 4 | 1 | 0.001 | 0.001 | 0.006 | 120 | 120 | 120 | |
110 | BAG | CLG | 1 | 0.85 | 0 | 0.001 | 0.009 | 192 | 192 | 192 | | 110 | BAL | CDU | 1 | 15.93 | 0.011 | 0.055 | 0.006 | 178 | 194 | 210 | | 110 | BAL | DRY | 1 | 20 | 0.013 | 0.065 | 0.007 | 178 | 194 | 210 | | 110 | BAN | BRI | 1 | 2.6 | 0.004 | 0.009 | 0.001 | 74 | 83 | 91 | | 110 | BAN | BRI | 2 | 2.5 | 0.004 | 0.009 | 0.001 | 74 | 83 | 91 | | 110 | BAN | DMY | 1 | 25.9 | 0.04 | 0.089 | 0.008 | 99 | 110 | 121 | | 110 | BAN | RAF | 1 | 26.89 | 0.041 | 0.091 | 0.012 | 99 | 110 | 121 | | 110 | BAN (N) | TAN | 1 | 18.4 | 0.024 | 0.062 | 0.006 | 82 | 95 | 103 | | 110 | BAN (N) | TAN | 2 | 18.4 | 0.019 | 0.049 | 0.005 | 82 | 95 | 103 | | 110 | BAR | BAR-T | 1 | 0.31 | 0 | 0.001 | 0 | 136 | 148 | 159 | | Table E | 3-2: Charc | acteristic | s of E | Existing 1 | Transmis | ssion Circ | cuits | | | | |-----------------|------------|------------|--------|----------------|----------|------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | ВСТ | CKM | 1 | 3.1 | 0.002 | 0.005 | 0.031 | 109 | 109 | 116 | | 110 | ВСТ | COO | 1 | 15.1 | 0.014 | 0.045 | 0.027 | 124 | 124 | 133 | | 110 | BDA | MON | 1 | 11.2 | 0.01 | 0.03 | 0.029 | 99 | 110 | 121 | | 110 | BDA | NEW | 1 | 7.2 | 0.006 | 0.017 | 0.028 | 122 | 122 | 122 | | 110 | BDN | CUL | 1 | 21.8 | 0.031 | 0.075 | 0.007 | 196 | 213 | 217 | | 110 | BDN | DOO | 1 | 11.3 | 0.007 | 0.037 | 0.004 | 178 | 194 | 210 | | 110 | BEG | CKM | 1 | 32.3 | 0.015 | 0.116 | 0.01 | 136 | 148 | 159 | | 110 | BGT | KKY | 1 | 22 | 0.014 | 0.072 | 0.008 | 178 | 197 | 210 | | 110 | BIN | CF | 1 | 34.26 | 0.053 | 0.118 | 0.011 | 99 | 110 | 121 | | 110 | BIN | TIV | 1 | 23.2 | 0.024 | 0.077 | 0.008 | 134 | 148 | 159 | | 110 | BK | CBR | 1 | 37.39 | 0.053 | 0.128 | 0.014 | 195 | 202 | 217 | | 110 | BK | MOY | 1 | 27 | 0.017 | 0.088 | 0.01 | 178 | 194 | 210 | | 110 | BK~ | SKY | 1 | 4 | 0.001 | 0.004 | 0.044 | 195 | 202 | 221 | | 110 | BLA | POT | 1 | 5.2 | 0.002 | 0.004 | 0.092 | 109 | 109 | 115 | | 110 | BLA | RE | 1 | 7.7 | 0.003 | 0.006 | 0.136 | 124 | 124 | 151 | | 110 | BLI | DMY | 1 | 27.57 | 0.043 | 0.094 | 0.01 | 68 | 68 | 68 | | 110 | BLK | BLK-T | 1 | 0.5 | 0.001 | 0.002 | 0 | 136 | 148 | 159 | | 110 | Blu | CDU | 1 | 18.93 | 0.017 | 0.057 | 0.038 | 130 | 130 | 130 | | 110 | Blu | MUL | 1 | 56.78 | 0.079 | 0.192 | 0.032 | 105 | 114 | 123 | | 110 | ВМА | KEL | 1 | 10 | 0.013 | 0.035 | 0.003 | 109 | 119 | 124 | | 110 | ВМА | KEL | 2 | 11.5 | 0.015 | 0.04 | 0.004 | 109 | 119 | 124 | | 110 | BNH | CAS | 1 | 21.2 | 0.028 | 0.071 | 0.007 | 82 | 95 | 103 | | 110 | BNH | CAS | 2 | 21.2 | 0.028 | 0.071 | 0.007 | 82 | 95 | 103 | | 110 | BNK | СВТ | 1 | 1 | 0 | 0.001 | 0.011 | 175 | 175 | 175 | | 110 | BNK | СВТ | 2 | 0.6 | 0 | 0.001 | 0.011 | 175 | 175 | 175 | | 110 | BNM | DON | 1 | 6.02 | 0.005 | 0.005 | 0.053 | 75 | 75 | 82 | | 110 | BNM | DON | 2 | 5.81 | 0.005 | 0.005 | 0.053 | 75 | 75 | 82 | | 110 | BOG | CLA | 1 | 13.5 | 0.008 | 0.04 | 0.027 | 178 | 194 | 210 | | 110 | BOG | TTU | 1 | 11.15 | 0.007 | 0.036 | 0.004 | 178 | 197 | 210 | | 110 | BOL | ENN | 1 | 24.69 | 0.016 | 0.08 | 0.009 | 178 | 194 | 210 | | Voltage
(kV) | From | То | No. | Length
(km) | | mpedance o
MVA base | | | Rating
(MVA) | | |-----------------|------|-------|-----|----------------|-------|------------------------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | BOL | TBK-T | 1 | 18.28 | 0.012 | 0.059 | 0.006 | 178 | 194 | 210 | | 110 | BPS | BVG | 1 | 17.3 | 0.023 | 0.058 | 0.006 | 82 | 95 | 103 | | 110 | BPS | BVG | 2 | 17.3 | 0.023 | 0.058 | 0.006 | 82 | 95 | 103 | | 110 | BRY | RAF | 1 | 1.7 | 0.003 | 0.006 | 0.001 | 63 | 79 | 92 | | 110 | BRY | RAF | 2 | 1.8 | 0.002 | 0.006 | 0.001 | 99 | 110 | 121 | | 110 | BUT | CUL | 1 | 12.32 | 0.008 | 0.038 | 0.013 | 178 | 192 | 192 | | 110 | BUT | KTN | 1 | 2.72 | 0.004 | 0.01 | 0.001 | 196 | 209 | 216 | | 110 | BVG | KEL | 1 | 21.2 | 0.028 | 0.073 | 0.007 | 109 | 119 | 124 | | 110 | BVG | KEL | 2 | 20.3 | 0.027 | 0.07 | 0.007 | 109 | 119 | 124 | | 110 | BVG | LAR | 1 | 7.1 | 0.007 | 0.023 | 0.002 | 79 | 79 | 113 | | 110 | BVG | LAR | 2 | 7.1 | 0.007 | 0.023 | 0.002 | 79 | 79 | 113 | | 110 | BVK | KLG | 1 | 31.7 | 0.006 | 0.036 | 0.386 | 195 | 202 | 221 | | 110 | BWR | CRA | 1 | 22.4 | 0.008 | 0.023 | 0.137 | 68 | 68 | 68 | | 110 | BYH | Cor | 1 | 9.54 | 0.002 | 0.011 | 0.105 | 195 | 201 | 220 | | 110 | BYH | Gle | 1 | 19.1 | 0.006 | 0.022 | 0.186 | 134 | 150 | 166 | | 110 | CAB | PTN | 1 | 2.66 | 0.002 | 0.007 | 0.005 | 124 | 124 | 133 | | 110 | CAB | WOL | 1 | 4.7 | 0.002 | 0.005 | 0.029 | 108 | 108 | 115 | | 110 | CAH | BAR-T | 1 | 43.69 | 0.065 | 0.15 | 0.014 | 105 | 114 | 123 | | 110 | CAH | DOO | 1 | 15.73 | 0.01 | 0.051 | 0.006 | 178 | 194 | 210 | | 110 | CAH | KLH | 1 | 17.95 | 0.011 | 0.058 | 0.006 | 178 | 194 | 210 | | 110 | CAH | TIP | 1 | 18.06 | 0.011 | 0.059 | 0.006 | 178 | 194 | 210 | | 110 | CAR | CAS | 1 | 24.7 | 0.037 | 0.088 | 0.008 | 69 | 80 | 86 | | 110 | CAR | CAS | 2 | 24.7 | 0.037 | 0.086 | 0.008 | 70 | 81 | 87 | | 110 | CAR | EDE | 1 | 12.4 | 0.019 | 0.043 | 0.004 | 69 | 80 | 86 | | 110 | CAR | EDE | 2 | 12.4 | 0.019 | 0.044 | 0.004 | 69 | 80 | 86 | | 110 | CAS | CRE | 1 | 2.96 | 0.001 | 0.004 | 0.061 | 132 | 132 | 145 | | 110 | CAS | CRE | 2 | 2.96 | 0.001 | 0.004 | 0.061 | 132 | 132 | 145 | | 110 | CAS | KNO | 1 | 4.59 | 0.005 | 0.004 | 0.044 | 66 | 66 | 73 | | 110 | CAS | KNO | 2 | 4.52 | 0.005 | 0.004 | 0.044 | 66 | 66 | 73 | | 110 | CAS | NAR | 1 | 18 | 0.015 | 0.04 | 0.071 | 109 | 109 | 124 | | Table B | 3-2: Chard | acteristic | s of E | Existing 1 | Transmis | ssion Circ | cuits | | | | |-----------------|------------|------------|--------|----------------|----------|------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | CAS | NAR | 2 | 19.8 | 0.018 | 0.046 | 0.07 | 109 | 124 | 124 | | 110 | CAS | RAT (N) | 1 | 18.9 | 0.025 | 0.064 | 0.006 | 82 | 95 | 103 | | 110 | CAS | RAT (N) | 2 | 18.9 | 0.025 | 0.064 | 0.006 | 82 | 95 | 103 | | 110 | CAS | ROS | 1 | 1.83 | 0.001 | 0.003 | 0.015 | 144 | 144 | 152 | | 110 | CAS | ROS | 2 | 1.83 | 0.001 | 0.003 | 0.015 | 144 | 144 | 152 | | 110 | CAU | KLN | 1 | 29.24 | 0.018 | 0.095 | 0.01 | 178 | 194 | 210 | | 110 | СВА | TRI | 1 | 13.62 | 0.007 | 0.019 | 0.099 | 160 | 166 | 181 | | 110 | CBG | CBR | 1 | 26.71 | 0.035 | 0.078 | 0.059 | 99 | 110 | 121 | | 110 | CBR | CLN | 1 | 57.52 | 0.089 | 0.198 | 0.02 | 99 | 110 | 121 | | 110 | CBR | DLT | 1 | 27.77 | 0.043 | 0.096 | 0.009 | 99 | 110 | 121 | | 110 | CD | KBY | 1 | 32.33 | 0.02 | 0.104 | 0.025 | 178 | 194 | 209 | | 110 | CD | MAC | 1 | 2.41 | 0.002 | 0.008 | 0.001 | 178 | 194 | 210 | | 110 | CDG | GCA | 1 | 1.87 | 0 | 0.002 | 0.021 | 140 | 140 | 140 | | 110 | CDG | GCA | 2 | 2.02 | 0 | 0.002 | 0.022 | 140 | 140 | 140 | | 110 | CDK | LOD | 1 | 8.4 | 0.003 | 0.009 | 0.051 | 91 | 91 | 91 | | 110 | CDU | GLN | 1 | 11.05 | 0.007 | 0.036 | 0.004 | 178 | 194 | 210 | | 110 | CDU | MCE | 1 | 4.13 | 0.003 | 0.01 | 0.016 | 99 | 111 | 121 | | 110 | CDU | RYB | 1 | 13 | 0.014 | 0.043 | 0.004 | 161 | 171 | 171 | | 110 | CDU | Snu | 1 | 1.77 | 0 | 0.003 | 0.015 | 238 | 238 | 238 | | 110 | CDY | ARI-T | 1 | 13.68 | 0.009 | 0.044 | 0.005 | 178 | 194 | 210 | | 110 | CDY | GAR | 1 | 5.83 | 0.004 | 0.019 | 0.003 | 178 | 194 | 210 | | 110 | CDY | SRA | 1 | 12.7 | 0.02 | 0.044 | 0.004 | 178 | 194 | 210 | | 110 | CEN | CRE | 1 | 3.22 | 0.001 | 0.004 | 0.03 | 144 | 144 | 144 | | 110 | CEN | CRE | 2 | 3.22 | 0.001 | 0.004 | 0.03 | 144 | 144 | 144 | | 110 | CF | CL | 1 | 5.5 | 0.006 | 0.018 | 0.002 | 68 | 68 | 68 | | 110 | CF | CLO | 2 | 25.74 | 0.039 | 0.088 | 0.009 | 178 | 194 | 210 | | 110 | CF | COR | 1 | 61.3 | 0.038 | 0.199 | 0.022 | 178 | 194 | 210 | | 110 | CF | SRA | 1 | 52.63 | 0.065 | 0.179 | 0.021 | 191 | 191 | 191 | | 110 | CF~ | CLO | 1 | 26.07 | 0.016 | 0.088 | 0.016 | 178 | 194 | 209 | | 110 | CF~ | SRA | 2 | 49.67 | 0.031 | 0.16 | 0.017 | 178 | 194 | 210 | | Voltage
(kV) | From | То | No. | Length
(km) | | mpedance o
MVA base | | | Rating
(MVA) | | |-----------------|------|-------|-----|----------------|-------|------------------------|-------|--------|-----------------|--------| | | | | | | R | х | В | Summer | Autumn | Winter | | 110 | CGL | GAE | 1 | 2 | 0.001 | 0.001 | 0.011 | 91 | 91 | 91 | | 110 | СНА | GLE | 1 | 28.06 | 0.042 | 0.096 | 0.009 | 99 | 110 | 121 | | 110 | СНА | KLN | 1 | 36.9 | 0.038 | 0.123 | 0.013 | 136 | 148 | 159 | | 110 | СНА | MAL | 1 | 22.5 | 0.014 | 0.073 | 0.008 | 178 | 194 | 210 | | 110 | CHE | FAS | 1 | 2.2 | 0.004 | 0.008 | 0.001 | 105 | 116 | 123 | | 110 | CKG | СВТ | 1 | 0.75 | 0 | 0.001 | 0.008 | 184 | 184 | 184 | | 110 | CKG | СВТ | 2 | 0.75 | 0 | 0.001 | 0.008 | 184 | 184 | 184 | | 110 | CKM | CHE | 1 | 4 | 0.004 | 0.008 | 0.03 | 105 | 116 | 123 | | 110 | CKM | coo | 1 | 16 | 0.013 | 0.042 | 0.06 | 111 | 111 | 138 | | 110 | CKM | FAS | 1 | 2.9 | 0.005 | 0.01 | 0.001 | 105 | 116 | 123 | | 110 | CKM | FAS | 1 | 7.5 | 0.012 | 0.026 | 0.002 | 105 | 116 | 123 | | 110 | CKM | POT | 1 | 3.2 | 0.001 | 0.002 | 0.057 | 119 | 119 | 127 | | 110 | CKN | CGL | 1 | 6.3 | 0.004 | 0.02 | 0.003 | 178 | 190 | 190 | | 110 | CKN | CMC | 1 | 15.17 | 0.009 | 0.008 | 0.137 | 120 | 120 | 120 | | 110 | CKN | KER | 1 | 20.3 | 0.013 | 0.066 | 0.007 | 178 | 194 | 210 | | 110 | CLA | CKN | 1 | 29.97 | 0.019 | 0.096 | 0.015 | 178 | 190 | 190 | | 110 | CLA | DMY | 1 | 38.83 | 0.024 | 0.126 | 0.015 | 178 | 194 | 210 | | 110 | CLA | MAC | 1 | 5.66 | 0.002 | 0.01 | 0.099 | 195 | 201 | 220 | | 110 | CLA | MAC | 2 | 5.66 | 0.004 | 0.018 | 0.002 | 161 | 176 | 191 | | 110 | CLG | CDU | 1 | 2.5 | 0.001 | 0.003 | 0.028 | 195 | 202 | 221 | | 110 | CLH | TRI | 1 | 9 | 0.014 | 0.031
 0.003 | 99 | 110 | 121 | | 110 | CLH | TRL | 1 | 13.5 | 0.02 | 0.045 | 0.013 | 105 | 114 | 123 | | 110 | CLN | LA | 1 | 64.76 | 0.095 | 0.222 | 0.021 | 99 | 111 | 122 | | 110 | CLO | CKL | 1 | 9.61 | 0.002 | 0.008 | 0.13 | 183 | 183 | 183 | | 110 | CLO | GOL-T | 1 | 0.25 | 0 | 0.001 | 0.001 | 177 | 198 | 217 | | 110 | CLO | MRY | 1 | 7.68 | 0.002 | 0.009 | 0.09 | 136 | 136 | 136 | | 110 | CLU | KUD | 1 | 0.9 | 0 | 0.001 | 0.01 | 187 | 206 | 223 | | 110 | CLW | KLS | 1 | 5.4 | 0.008 | 0.019 | 0.002 | 99 | 110 | 121 | | 110 | CLW | KLS | 2 | 5.28 | 0.008 | 0.019 | 0.002 | 99 | 110 | 121 | | 110 | CLW | STR-T | 1 | 17.6 | 0.027 | 0.061 | 0.006 | 68 | 68 | 68 | | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o | | | Rating
(MVA) | | |-----------------|---------|---------|-----|----------------|-------|------------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | CMC | BVK | 1 | 4.91 | 0.002 | 0.002 | 0.054 | 195 | 201 | 220 | | 110 | COL | CDU | 1 | 2.66 | 0.001 | 0.004 | 0.02 | 143 | 143 | 143 | | 110 | COL | FIN | 1 | 5.02 | 0.003 | 0.013 | 0.037 | 104 | 129 | 142 | | 110 | COL (N) | CPS | 1 | 46.7 | 0.061 | 0.161 | 0.015 | 82 | 95 | 103 | | 110 | COL (N) | LIM (N) | 1 | 18.63 | 0.024 | 0.064 | 0.006 | 82 | 95 | 103 | | 110 | COL (N) | LOG | 1 | 8.1 | 0.011 | 0.027 | 0.003 | 82 | 95 | 103 | | 110 | COL (N) | LOG | 2 | 8.1 | 0.011 | 0.027 | 0.003 | 82 | 95 | 103 | | 110 | COL (N) | RSK | 1 | 20.01 | 0.024 | 0.069 | 0.007 | 186 | 191 | 193 | | 110 | coo | FTT | 1 | 4.4 | 0.004 | 0.011 | 0.019 | 110 | 110 | 132 | | 110 | COO | INC | 1 | 6.17 | 0.006 | 0.016 | 0.029 | 111 | 111 | 138 | | 110 | COR | ENN (N) | 1 | 27.5 | 0.041 | 0.095 | 0.009 | 99 | 110 | 121 | | 110 | COR | GWE | 1 | 10.9 | 0.007 | 0.036 | 0.004 | 178 | 194 | 210 | | 110 | COS | ARI-T | 1 | 20.7 | 0.013 | 0.065 | 0.007 | 178 | 194 | 210 | | 110 | COS | FLA | 1 | 3.4 | 0.005 | 0.012 | 0.001 | 99 | 110 | 121 | | 110 | cos | FLA | 2 | 3.3 | 0.005 | 0.011 | 0.001 | 99 | 110 | 121 | | 110 | COW | OLD | 1 | 2.3 | 0.004 | 0.008 | 0.001 | 33 | 33 | 33 | | 110 | COW | OLD | 2 | 2.2 | 0.003 | 0.008 | 0.001 | 42 | 42 | 42 | | 110 | COW | RAF | 1 | 6.9 | 0.01 | 0.024 | 0.003 | 99 | 110 | 121 | | 110 | COW | WHI | 1 | 17.79 | 0.027 | 0.062 | 0.006 | 99 | 110 | 121 | | 110 | СРК | TAN-T | 1 | 3.38 | 0.002 | 0.004 | 0.025 | 100 | 100 | 100 | | 110 | СРК | TNY | 1 | 5.59 | 0.003 | 0.006 | 0.072 | 109 | 109 | 116 | | 110 | CPS | KMT | 1 | 14.5 | 0.011 | 0.048 | 0.005 | 143 | 158 | 166 | | 110 | CPS | LIM (N) | 1 | 29.5 | 0.039 | 0.101 | 0.01 | 82 | 95 | 103 | | 110 | CPS | LMR | 1 | 9 | 0.012 | 0.03 | 0.003 | 82 | 95 | 103 | | 110 | CPS | LMR | 2 | 9 | 0.012 | 0.03 | 0.003 | 82 | 95 | 103 | | 110 | CPS | SPR | 1 | 9.23 | 0.011 | 0.029 | 0.012 | 82 | 95 | 103 | | 110 | CPS | SPR | 2 | 9.38 | 0.011 | 0.029 | 0.013 | 82 | 95 | 103 | | 110 | CPS | STR (N) | 1 | 27 | 0.018 | 0.053 | 0.017 | 143 | 158 | 166 | | 110 | CRA | LOD | 1 | 6.69 | 0.004 | 0.022 | 0.004 | 178 | 194 | 210 | | 110 | CRA | TTU | 1 | 13.65 | 0.011 | 0.045 | 0.005 | 178 | 197 | 210 | | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o
MVA base | | | Rating
(MVA) | | |-----------------|------|-------|-----|----------------|-------|------------------------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | CRA | WEX | 1 | 22.82 | 0.024 | 0.076 | 0.008 | 136 | 148 | 159 | | 110 | CRG | KEL | 1 | 23.1 | 0.029 | 0.077 | 0.013 | 82 | 95 | 103 | | 110 | CRG | TMN | 1 | 36.24 | 0.045 | 0.119 | 0.022 | 109 | 114 | 124 | | 110 | CRM | KLM | 1 | 1.35 | 0.001 | 0.002 | 0.014 | 114 | 114 | 114 | | 110 | CRM | KLM | 2 | 1.35 | 0.001 | 0.002 | 0.014 | 114 | 114 | 114 | | 110 | CRO | IA | 1 | 2.74 | 0.004 | 0.01 | 0.001 | 196 | 213 | 217 | | 110 | CRO | KBY | 1 | 14.35 | 0.02 | 0.049 | 0.016 | 178 | 194 | 201 | | 110 | CSH | CLN | 1 | 22.8 | 0.014 | 0.074 | 0.008 | 178 | 194 | 210 | | 110 | CSH | DLT | 1 | 60.76 | 0.074 | 0.205 | 0.02 | 99 | 110 | 121 | | 110 | CSH | ENN | 1 | 53.47 | 0.034 | 0.174 | 0.019 | 178 | 194 | 210 | | 110 | CSH | GAL | 1 | 13.8 | 0.022 | 0.048 | 0.004 | 105 | 114 | 123 | | 110 | CSH | GAL | 2 | 11.3 | 0.018 | 0.039 | 0.004 | 105 | 114 | 123 | | 110 | CSH | GAL | 3 | 11.3 | 0.018 | 0.039 | 0.004 | 105 | 114 | 123 | | 110 | CSH | SHL | 1 | 24.85 | 0.024 | 0.074 | 0.068 | 97 | 97 | 97 | | 110 | CSH | SOM-T | 1 | 50.02 | 0.078 | 0.172 | 0.016 | 99 | 110 | 121 | | 110 | CTN | TIP | 1 | 13.15 | 0.008 | 0.043 | 0.005 | 178 | 194 | 210 | | 110 | CTY | FTT | 1 | 1.5 | 0.001 | 0.001 | 0.018 | 124 | 124 | 132 | | 110 | CTY | INC | 1 | 8.9 | 0.011 | 0.03 | 0.003 | 103 | 119 | 134 | | 110 | CUL | DGN | 1 | 34.24 | 0.022 | 0.109 | 0.02 | 178 | 192 | 192 | | 110 | CUL | WAT | 1 | 13.14 | 0.007 | 0.03 | 0.055 | 178 | 194 | 201 | | 110 | CUN | ONH | 1 | 26.29 | 0.039 | 0.09 | 0.009 | 178 | 194 | 210 | | 110 | CUN | SLI | 1 | 21.1 | 0.03 | 0.073 | 0.007 | 178 | 194 | 210 | | 110 | CUS | MLU | 1 | 13.67 | 0.015 | 0.048 | 0.005 | 136 | 148 | 159 | | 110 | CUS | NEW | 1 | 24.61 | 0.026 | 0.082 | 0.008 | 134 | 147 | 152 | | 110 | CUS | PLS | 1 | 42.14 | 0.044 | 0.14 | 0.014 | 134 | 148 | 159 | | 110 | CVW | COW | 1 | 17.22 | 0.024 | 0.054 | 0.018 | 99 | 110 | 121 | | 110 | CVW | KRA | 1 | 7.59 | 0.012 | 0.026 | 0.004 | 99 | 110 | 121 | | 110 | DAL | DAL-T | 1 | 12.2 | 0.019 | 0.042 | 0.004 | 105 | 116 | 123 | | 110 | DDK | LOU | 1 | 16.81 | 0.026 | 0.058 | 0.005 | 99 | 110 | 121 | | 110 | DDK | MLN | 1 | 7.5 | 0.012 | 0.026 | 0.002 | 99 | 110 | 121 | | Table B | 3-2: Charc | acteristic | s of E | Existing 1 | Transmis | ssion Circ | cuits | | | | |-----------------|------------|------------|--------|----------------|----------|------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | DER | KIN | 1 | 15.11 | 0.012 | 0.05 | 0.005 | 99 | 110 | 121 | | 110 | DEY | DAL-T | 1 | 6.35 | 0.004 | 0.021 | 0.002 | 178 | 194 | 210 | | 110 | DEY | PLS | 1 | 48.45 | 0.03 | 0.157 | 0.017 | 178 | 194 | 210 | | 110 | DGN | WHE | 1 | 8.65 | 0.006 | 0.028 | 0.003 | 178 | 194 | 210 | | 110 | DMY | CDN | 1 | 10.88 | 0.016 | 0.04 | 0.004 | 209 | 213 | 217 | | 110 | DMY | MAC | 1 | 26.22 | 0.039 | 0.09 | 0.009 | 196 | 213 | 217 | | 110 | DON | FIN (N) | 1 | 3.67 | 0.004 | 0.011 | 0.008 | 69 | 81 | 86 | | 110 | DON | FIN (N) | 2 | 3.74 | 0.004 | 0.011 | 0.007 | 69 | 80 | 86 | | 110 | DON | HAN | 1 | 6.07 | 0.002 | 0.005 | 0.14 | 144 | 144 | 158 | | 110 | DON | HAN | 2 | 5.89 | 0.002 | 0.005 | 0.14 | 144 | 144 | 158 | | 110 | DRM | CLO | 1 | 27 | 0.039 | 0.091 | 0.015 | 103 | 116 | 123 | | 110 | DRM | LET | 1 | 8.35 | 0.012 | 0.028 | 0.003 | 99 | 110 | 123 | | 110 | DRM | MEE | 1 | 5 | 0.008 | 0.017 | 0.002 | 99 | 110 | 121 | | 110 | DRO | ENN (N) | 1 | 24.59 | 0.032 | 0.082 | 0.008 | 82 | 95 | 103 | | 110 | DRO | ENN (N) | 2 | 24.59 | 0.032 | 0.082 | 0.008 | 82 | 95 | 103 | | 110 | DRO | OMA | 1 | 9.21 | 0.012 | 0.031 | 0.003 | 199 | 200 | 200 | | 110 | DRO | OMA | 2 | 9.21 | 0.012 | 0.031 | 0.003 | 199 | 215 | 225 | | 110 | DRU | ENN | 1 | 17.44 | 0.027 | 0.06 | 0.006 | 99 | 110 | 121 | | 110 | DRU | TAN | 1 | 4.4 | 0.004 | 0.014 | 0.002 | 79 | 96 | 113 | | 110 | DRU | TAN | 2 | 4.4 | 0.004 | 0.014 | 0.002 | 79 | 96 | 113 | | 110 | DRU | TAN | 3 | 4.1 | 0.005 | 0.014 | 0.001 | 108 | 119 | 126 | | 110 | DRU | TMN | 1 | 22.69 | 0.029 | 0.075 | 0.008 | 109 | 119 | 124 | | 110 | DRU | TMN | 2 | 21.53 | 0.028 | 0.073 | 0.012 | 109 | 119 | 124 | | 110 | DRY | GOR | 1 | 19.39 | 0.029 | 0.067 | 0.006 | 99 | 110 | 121 | | 110 | DRY | LOU | 1 | 31.9 | 0.02 | 0.104 | 0.011 | 99 | 110 | 121 | | 110 | DRY | OBE | 1 | 2.87 | 0.004 | 0.009 | 0.004 | 105 | 114 | 123 | | 110 | DTN | FIN | 1 | 9.25 | 0.002 | 0.014 | 0.111 | 120 | 124 | 136 | | 110 | DTN | KLM | 1 | 3.2 | 0.002 | 0.005 | 0.032 | 124 | 124 | 151 | | 110 | DUN | OMA | 1 | 36.1 | 0.042 | 0.124 | 0.012 | 186 | 191 | 193 | | 110 | DUN | TMN | 1 | 6.53 | 0.004 | 0.017 | 0.005 | 157 | 171 | 178 | | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o
MVA base | | | Rating
(MVA) | | |-----------------|---------|-------|-----|----------------|-------|------------------------|-------|--------|-----------------|--------| | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | DUN | TMN | 2 | 5.82 | 0.009 | 0.023 | 0.002 | 144 | 144 | 144 | | 110 | DUN | TMN | 3 | 6.01 | 0.004 | 0.02 | 0.019 | 186 | 191 | 193 | | 110 | ENN | SLC | 1 | 31 | 0.003 | 0.048 | 0.271 | 195 | 201 | 220 | | 110 | FAS | FAS | 1 | 5 | 0.008 | 0.017 | 0.002 | 105 | 116 | 123 | | 110 | FIN | GLA | 1 | 14.02 | 0.022 | 0.048 | 0.005 | 99 | 111 | 122 | | 110 | FIN | GRA | 1 | 13.2 | 0.005 | 0.012 | 0.236 | 101 | 101 | 125 | | 110 | FIN | MCD | 1 | 7.9 | 0.003 | 0.007 | 0.141 | 99 | 111 | 114 | | 110 | FIN | POP | 1 | 4.3 | 0.002 | 0.005 | 0.026 | 109 | 109 | 116 | | 110 | FIN | PTN | 1 | 3.52 | 0.003 | 0.01 | 0.006 | 109 | 109 | 116 | | 110 | FIN | SVN | 1 | 32.22 | 0.039 | 0.104 | 0.056 | 105 | 114 | 123 | | 110 | FIN (N) | HAN | 1 | 3.03 | 0.001 | 0.003 | 0.022 | 144 | 144 | 144 | | 110 | FIN (N) | HAN | 2 | 3.21 | 0.001 | 0.003 | 0.022 | 144 | 144 | 144 | | 110 | FLA | GIL | 1 | 10.6 | 0.016 | 0.036 | 0.003 | 68 | 68 | 68 | | 110 | FLA | SLB | 1 | 21.7 | 0.034 | 0.075 | 0.007 | 99 | 110 | 123 | | 110 | FLA | SLI | 1 | 50.5 | 0.078 | 0.174 | 0.016 | 99 | 110 | 121 | | 110 | FLA | TON | 1 | 32.31 | 0.05 | 0.111 | 0.01 | 76 | 76 | 76 | | 110 | FRS | HAR | 1 | 2.28 | 0.002 | 0.004 | 0.03 | 107 | 107 | 114 | | 110 | FRS | HEU | 1 | 2.4 | 0.002 | 0.004 | 0.024 | 124 | 124 | 133 | | 110 | FRS | INC | 1 | 5.6 | 0.004 | 0.01 | 0.073 | 107 | 107 | 114 | | 110 | FRS | TRN | 1 | 2.8 | 0.002 | 0.004 | 0.028 | 120 | 128 | 136 | | 110 | GAL | SEE | 1 | 25.53 | 0.005 | 0.031 | 0.138 | 179 | 182 | 185 | | 110 | GAL | SHL |
1 | 6.12 | 0.003 | 0.003 | 0.067 | 99 | 106 | 106 | | 110 | GBH | PLA | 1 | 6.05 | 0.009 | 0.021 | 0.002 | 105 | 114 | 123 | | 110 | GCA | GRI-T | 1 | 8.87 | 0.009 | 0.029 | 0.006 | 103 | 120 | 131 | | 110 | GCA | INC | 1 | 8.1 | 0.008 | 0.025 | 0.009 | 103 | 103 | 115 | | 110 | GCA | INC | 2 | 8.1 | 0.008 | 0.025 | 0.009 | 103 | 103 | 115 | | 110 | GCA | NAN | 1 | 1.82 | 0.001 | 0.002 | 0.011 | 120 | 120 | 131 | | 110 | GCA | NAN | 2 | 1.74 | 0.001 | 0.002 | 0.011 | 120 | 120 | 131 | | 110 | GCA | YMD | 1 | 5.09 | 0.001 | 0.006 | 0.056 | 187 | 206 | 223 | | 110 | GI | KKY | 1 | 49.2 | 0.031 | 0.16 | 0.017 | 178 | 194 | 210 | | Table E | 3-2: Chara | cteristic | s of E | Existing 1 | Transmis | sion Circ | cuits | | | | |-----------------|------------|-----------|--------|----------------|----------|------------------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o
MVA base | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | GI | RO1 | 1 | 19.7 | 0.012 | 0.064 | 0.01 | 178 | 194 | 210 | | 110 | GI | WAT | 1 | 11.7 | 0.007 | 0.038 | 0.004 | 178 | 194 | 210 | | 110 | GI | WAT | 2 | 12.92 | 0.008 | 0.042 | 0.005 | 178 | 194 | 210 | | 110 | GLA | SVN | 1 | 18 | 0.017 | 0.055 | 0.052 | 134 | 147 | 157 | | 110 | Gle | Kno | 1 | 11.32 | 0.003 | 0.013 | 0.124 | 122 | 122 | 122 | | 110 | GLE (N) | KEL | 1 | 21.4 | 0.027 | 0.068 | 0.027 | 82 | 82 | 90 | | 110 | GLE (N) | KEL | 2 | 21.4 | 0.027 | 0.068 | 0.027 | 82 | 82 | 90 | | 110 | GLN | PLA | 1 | 26.55 | 0.017 | 0.086 | 0.009 | 178 | 197 | 210 | | 110 | GOL | GOL-T | 1 | 3.9 | 0.006 | 0.014 | 0.001 | 105 | 116 | 123 | | 110 | GOR | GBH | 1 | 14.13 | 0.021 | 0.048 | 0.005 | 105 | 114 | 123 | | 110 | GOR | GOR | 1 | 0.5 | 0 | 0.001 | 0.006 | 187 | 206 | 223 | | 110 | GOR | MTH | 1 | 26.39 | 0.026 | 0.087 | 0.012 | 99 | 110 | 121 | | 110 | GOR | NAV | 1 | 5.33 | 0.008 | 0.019 | 0.002 | 99 | 110 | 121 | | 110 | GOR | NAV | 2 | 6.3 | 0.009 | 0.022 | 0.002 | 99 | 110 | 121 | | 110 | GOR | NAV | 3 | 5.49 | 0.005 | 0.017 | 0.007 | 99 | 110 | 121 | | 110 | GOR (N) | OMA | 1 | 17.12 | 0.009 | 0.067 | 0.02 | 200 | 200 | 200 | | 110 | GOR (N) | TMN | 1 | 34.83 | 0.019 | 0.161 | 0.029 | 200 | 200 | 200 | | 110 | GRA | NBY | 1 | 5.05 | 0.002 | 0.005 | 0.089 | 124 | 124 | 124 | | 110 | GRI | GRI-T | 1 | 1 | 0.002 | 0.004 | 0 | 105 | 116 | 123 | | 110 | GRI | MAY | 1 | 2.2 | 0.003 | 0.009 | 0.001 | 99 | 111 | 122 | | 110 | HAN | LIS (N) | 1 | 9.2 | 0.01 | 0.026 | 0.018 | 82 | 95 | 103 | | 110 | HAN | LIS (N) | 2 | 9.2 | 0.009 | 0.026 | 0.018 | 80 | 93 | 100 | | 110 | HAR | RE | 1 | 5.63 | 0.004 | 0.01 | 0.073 | 107 | 107 | 114 | | 110 | HEU | INC | 1 | 3.6 | 0.003 | 0.005 | 0.036 | 124 | 124 | 133 | | 110 | IA | MAC | 1 | 18.16 | 0.027 | 0.062 | 0.006 | 196 | 213 | 217 | | 110 | IKE | IKE-T | 1 | 0.15 | 0 | 0.001 | 0 | 91 | 91 | 91 | | 110 | INC | MIL | 1 | 8.4 | 0.004 | 0.009 | 0.051 | 103 | 119 | 134 | | 110 | INC | YMD | 1 | 3.18 | 0.001 | 0.004 | 0.035 | 187 | 206 | 223 | | 110 | KBR | CUS | 1 | 0.5 | 0 | 0.001 | 0.006 | 140 | 140 | 140 | | 110 | KBY | KRA | 1 | 11.9 | 0.008 | 0.039 | 0.004 | 178 | 194 | 210 | | Voltage
(kV) | From | То | No. | Length
(km) | | mpedance o
MVA base | | | Rating
(MVA) | | |-----------------|------|---------|-----|----------------|-------|------------------------|-------|--------|-----------------|--------| | | | | | | R | Х | В | Summer | Autumn | Winter | | 110 | KBY | KRA | 2 | 12.5 | 0.018 | 0.043 | 0.004 | 99 | 110 | 121 | | 110 | KBY | MAL | 1 | 29.2 | 0.018 | 0.095 | 0.01 | 134 | 147 | 159 | | 110 | KBY | MR | 1 | 4.44 | 0.004 | 0.015 | 0.004 | 103 | 119 | 130 | | 110 | KBY | MR | 2 | 4.65 | 0.005 | 0.015 | 0.004 | 103 | 119 | 130 | | 110 | KEL | RSK | 1 | 25.9 | 0.039 | 0.133 | 0.013 | 185 | 190 | 193 | | 110 | KER | OUG-T | 1 | 22.6 | 0.014 | 0.074 | 0.008 | 178 | 194 | 210 | | 110 | KIN | DFR-T | 1 | 29.25 | 0.021 | 0.096 | 0.01 | 99 | 110 | 121 | | 110 | KIN | MUL | 1 | 24.92 | 0.016 | 0.077 | 0.023 | 178 | 194 | 210 | | 110 | KLH | THU | 1 | 21.24 | 0.013 | 0.069 | 0.008 | 178 | 194 | 210 | | 110 | KLM | NBY | 1 | 1.2 | 0.001 | 0.001 | 0.02 | 119 | 124 | 133 | | 110 | KLM | POP | 1 | 6 | 0.003 | 0.007 | 0.036 | 109 | 109 | 116 | | 110 | KLN | LIM | 1 | 9 | 0.014 | 0.031 | 0.003 | 99 | 110 | 121 | | 110 | KLN | LIM | 2 | 11.7 | 0.018 | 0.04 | 0.009 | 80 | 93 | 104 | | 110 | KLN | NNA | 1 | 33.6 | 0.052 | 0.116 | 0.011 | 76 | 76 | 76 | | 110 | KLN | SNG | 1 | 4.05 | 0.003 | 0.013 | 0.003 | 178 | 194 | 210 | | 110 | KLP | CNO | 1 | 0.3 | 0 | 0 | 0.003 | 140 | 140 | 140 | | 110 | KLP | KNR | 1 | 14.95 | 0.015 | 0.05 | 0.005 | 136 | 148 | 159 | | 110 | KLP | RAT | 1 | 32.42 | 0.033 | 0.107 | 0.018 | 136 | 148 | 159 | | 110 | KLP | ТВ | 1 | 1.61 | 0.002 | 0.006 | 0.001 | 99 | 110 | 121 | | 110 | KLP | TB~ | 2 | 1.61 | 0.002 | 0.006 | 0.001 | 99 | 110 | 121 | | 110 | KLP | TRL | 1 | 39.37 | 0.06 | 0.135 | 0.013 | 105 | 114 | 123 | | 110 | KLP | TRL | 2 | 43.58 | 0.027 | 0.14 | 0.023 | 178 | 190 | 190 | | 110 | KLS | KKY | 1 | 34.3 | 0.053 | 0.118 | 0.011 | 99 | 110 | 121 | | 110 | KMT | SLK | 1 | 6.2 | 0.007 | 0.018 | 0.006 | 109 | 119 | 124 | | 110 | KMT | STR (N) | 1 | 11.2 | 0.008 | 0.037 | 0.004 | 143 | 158 | 166 | | 110 | KNR | TRI | 1 | 4.29 | 0.003 | 0.013 | 0.005 | 178 | 194 | 210 | | 110 | KNR | TRI | 2 | 4.21 | 0.004 | 0.013 | 0.004 | 99 | 110 | 121 | | 110 | KRA | BAR-T | 1 | 19.45 | 0.02 | 0.065 | 0.007 | 136 | 148 | 159 | | 110 | KRA | WHE | 1 | 41.46 | 0.026 | 0.135 | 0.015 | 178 | 194 | 210 | | 110 | KTL | MAY | 1 | 21.39 | 0.022 | 0.072 | 0.007 | 99 | 110 | 121 | | Table B | 3-2: Charc | ıcteristic | s of E | Existing 1 | Transmis | sion Circ | cuits | | | | |-----------------|------------|------------|--------|----------------|----------|------------------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o
MVA base | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | KTL | MON | 1 | 8.88 | 0.009 | 0.03 | 0.003 | 134 | 148 | 159 | | 110 | KTN | WAT | 1 | 3.3 | 0.001 | 0.003 | 0.039 | 99 | 110 | 121 | | 110 | KUD | СВТ | 1 | 0.75 | 0 | 0.001 | 0.008 | 169 | 169 | 169 | | 110 | KUR | NAV | 1 | 6.1 | 0.01 | 0.021 | 0.002 | 99 | 110 | 123 | | 110 | LA | MUL | 1 | 46.27 | 0.072 | 0.16 | 0.015 | 99 | 110 | 121 | | 110 | LA | RIC | 1 | 15.76 | 0.024 | 0.054 | 0.007 | 99 | 110 | 123 | | 110 | LA | RIC | 2 | 12.55 | 0.02 | 0.043 | 0.005 | 99 | 110 | 123 | | 110 | LA | SLB | 1 | 9.1 | 0.014 | 0.031 | 0.003 | 99 | 110 | 123 | | 110 | LET | GOL-T | 1 | 38.4 | 0.058 | 0.132 | 0.014 | 99 | 110 | 121 | | 110 | LET | STR (N) | 1 | 22.25 | 0.035 | 0.076 | 0.007 | 80 | 88 | 93 | | 110 | LET | TLK | 1 | 34.05 | 0.051 | 0.117 | 0.012 | 105 | 114 | 123 | | 110 | LIB | MR ~ | 1 | 2.7 | 0.001 | 0.003 | 0.016 | 68 | 68 | 68 | | 110 | LIB | MR ~ | 2 | 2.74 | 0.002 | 0.003 | 0.017 | 99 | 110 | 119 | | 110 | LIM | MTN | 1 | 6.47 | 0.005 | 0.024 | 0.003 | 178 | 194 | 210 | | 110 | LIM | RAT | 1 | 28.35 | 0.041 | 0.096 | 0.012 | 99 | 110 | 121 | | 110 | LIS | LH1 | 1 | 0.12 | 0 | 0 | 0.001 | 187 | 206 | 223 | | 110 | LIS | LOU | 1 | 40.4 | 0.063 | 0.139 | 0.013 | 99 | 110 | 121 | | 110 | LIS (N) | TAN | 1 | 31 | 0.04 | 0.106 | 0.01 | 82 | 95 | 103 | | 110 | LIS (N) | TAN | 2 | 29.2 | 0.034 | 0.1 | 0.009 | 80 | 93 | 100 | | 110 | LOU | MLN | 1 | 13 | 0.02 | 0.045 | 0.004 | 99 | 110 | 121 | | 110 | LOU | MTH | 1 | 15.1 | 0.024 | 0.052 | 0.005 | 99 | 110 | 121 | | 110 | LOU | RRU | 1 | 38.82 | 0.058 | 0.133 | 0.014 | 95 | 103 | 112 | | 110 | LSN | THU | 1 | 10.4 | 0.016 | 0.036 | 0.003 | 104 | 113 | 122 | | 110 | MAY | BLK-T | 1 | 30.9 | 0.032 | 0.103 | 0.011 | 99 | 110 | 121 | | 110 | MAY | GRI-T | 1 | 2.2 | 0.002 | 0.007 | 0.002 | 99 | 110 | 120 | | 110 | MAY | RNW | 1 | 7.1 | 0.005 | 0.023 | 0.002 | 80 | 92 | 103 | | 110 | MAY | RYB | 1 | 9.02 | 0.009 | 0.03 | 0.005 | 178 | 194 | 210 | | 110 | MCD | NQS | 1 | 2 | 0.001 | 0.002 | 0.036 | 128 | 128 | 136 | | 110 | MCD | WOL | 1 | 1.4 | 0.001 | 0.002 | 0.009 | 108 | 108 | 115 | | 110 | MHL | RE | 1 | 3 | 0.002 | 0.004 | 0.03 | 130 | 130 | 138 | | | 3-2: Charo | | | | | | | | Datin | | |-----------------|------------|---------|-----|----------------|-------|----------------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | mpedance of MVA base | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | MHL | TRN | 1 | 1.4 | 0.001 | 0.002 | 0.014 | 120 | 128 | 136 | | 110 | MID | WHI | 1 | 20.02 | 0.03 | 0.069 | 0.006 | 99 | 110 | 121 | | 110 | MIL | RE | 1 | 4.9 | 0.003 | 0.005 | 0.075 | 100 | 100 | 107 | | 110 | MIL | RE | 2 | 5.55 | 0.003 | 0.006 | 0.034 | 108 | 108 | 115 | | 110 | MIL | TNY | 1 | 5.55 | 0.003 | 0.006 | 0.07 | 100 | 100 | 107 | | 110 | MKL | OMA | 1 | 37.5 | 0.028 | 0.113 | 0.015 | 139 | 150 | 157 | | 110 | MLU | TSB | 1 | 18.29 | 0.016 | 0.056 | 0.028 | 135 | 147 | 159 | | 110 | MOY | TAW | 1 | 8.39 | 0.013 | 0.028 | 0.004 | 195 | 202 | 217 | | 110 | MOY | TAW | 2 | 7.49 | 0.012 | 0.029 | 0.004 | 105 | 114 | 123 | | 110 | MP | TBK-T | 1 | 7.29 | 0.005 | 0.024 | 0.003 | 178 | 194 | 210 | | 110 | MR | TBG | 1 | 3.25 | 0.001 | 0.002 | 0.036 | 178 | 198 | 219 | | 110 | MR | TBG | 2 | 2.8 | 0.001 | 0.001 | 0.031 | 178 | 197 | 219 | | 110 | MTN | MUN | 1 | 0.7 | 0.001 | 0.002 | 0 | 45 | 45 | 45 | | 110 | MTN | MUN | 2 | 0.7 | 0.001 | 0.002 | 0 | 45 | 45 | 45 | | 110 | NEW | BLK-T | 1 | 12.2 | 0.013 | 0.041 | 0.004 | 136 | 148 | 159 | | 110 | NEW | PLS | 1 | 43.01 | 0.055 | 0.146 | 0.014 | 105 | 114 | 123 | | 110 | NEW (N) | TAN | 1 | 24.1 | 0.031 | 0.08 | 0.008 | 82 | 95 | 103 | | 110 | NEW (N) | TAN | 2 | 24 | 0.031 | 0.08 | 0.008 | 82 | 95 | 103 | | 110 | NQS | RE | 1 | 2.1 | 0.001 | 0.002 | 0.038 | 128 | 128 | 136 | | 110 | OMA | STR (N) | 1 | 35.5 | 0.046 | 0.123 | 0.012 | 109 | 119 | 124 | |
110 | OMA | STR (N) | 2 | 35.5 | 0.047 | 0.125 | 0.012 | 82 | 95 | 103 | | 110 | OMA | TRE | 1 | 21.45 | 0.025 | 0.073 | 0.007 | 186 | 191 | 193 | | 110 | ONH | MOY | 1 | 13.96 | 0.022 | 0.048 | 0.004 | 105 | 116 | 123 | | 110 | OUG | OUG-T | 1 | 11 | 0.017 | 0.038 | 0.004 | 105 | 116 | 123 | | 110 | PA | STR-T | 1 | 22.4 | 0.035 | 0.077 | 0.007 | 68 | 68 | 68 | | 110 | РВ | RE | 3 | 1.4 | 0 | 0.002 | 0.046 | 238 | 238 | 254 | | 110 | РВ | RE | 4 | 1.4 | 0 | 0.002 | 0.046 | 242 | 242 | 258 | | 110 | PLA | OBE | 1 | 2.95 | 0.004 | 0.01 | 0.004 | 105 | 114 | 123 | | 110 | RAF | RSY | 1 | 2.1 | 0.003 | 0.007 | 0.001 | 63 | 82 | 92 | | 110 | RAF | TBG | 1 | 11.03 | 0.016 | 0.037 | 0.005 | 195 | 201 | 220 | | Table E | 3-2: Charo | cteristic | s of E | Existing 1 | Transmis | sion Circ | cuits | | | | |-----------------|------------|-----------|--------|----------------|----------|------------------------|-------|--------|-----------------|--------| | Voltage
(kV) | From | То | No. | Length
(km) | | npedance o
MVA base | | | Rating
(MVA) | | | | | | | | R | X | В | Summer | Autumn | Winter | | 110 | RAF | TBG | 2 | 9.5 | 0.006 | 0.031 | 0.005 | 178 | 194 | 210 | | 110 | RE | WBK | 1 | 0.62 | 0 | 0 | 0.021 | 125 | 130 | 141 | | 110 | REA | TRL | 1 | 11.99 | 0.005 | 0.003 | 0.11 | 125 | 130 | 141 | | 110 | RNW | DFR-T | 1 | 28.98 | 0.02 | 0.085 | 0.009 | 99 | 110 | 121 | | 110 | RO1 | WEX | 1 | 15.2 | 0.01 | 0.049 | 0.009 | 178 | 194 | 210 | | 110 | RRU | SKL | 1 | 12.67 | 0.02 | 0.044 | 0.004 | 95 | 103 | 112 | | 110 | SEE | BUF | 1 | 0.5 | 0 | 0.001 | 0.006 | 140 | 140 | 140 | | 110 | SEE | KLH | 1 | 11.7 | 0.003 | 0.015 | 0.107 | 190 | 190 | 190 | | 110 | SEE | SCR | 1 | 33.33 | 0.031 | 0.108 | 0.04 | 135 | 147 | 159 | | 110 | SEE | SHL | 1 | 22.71 | 0.019 | 0.063 | 0.081 | 195 | 201 | 220 | | 110 | SEE | UGL | 1 | 3.42 | 0.001 | 0.004 | 0.04 | 195 | 201 | 220 | | 110 | SH | DAL-T | 1 | 12 | 0.008 | 0.039 | 0.007 | 178 | 194 | 210 | | 110 | SH | IKE-T | 1 | 53.94 | 0.034 | 0.175 | 0.019 | 178 | 194 | 210 | | 110 | SH | SOM-T | 1 | 8.5 | 0.021 | 0.047 | 0.006 | 99 | 106 | 111 | | 110 | SLI | SRA | 1 | 10.77 | 0.017 | 0.038 | 0.004 | 99 | 110 | 121 | | 110 | SLI | SRA | 2 | 11.19 | 0.019 | 0.041 | 0.004 | 99 | 110 | 121 | | 110 | Snu | MCE | 1 | 4.72 | 0.005 | 0.015 | 0.005 | 99 | 110 | 121 | | 110 | SOM | SOM-T | 1 | 2 | 0.003 | 0.007 | 0.001 | 105 | 116 | 123 | | 110 | SOR | TLK | 1 | 4.4 | 0.007 | 0.015 | 0.002 | 105 | 116 | 123 | | 110 | STR | STR-T | 1 | 2 | 0.003 | 0.007 | 0.001 | 45 | 45 | 45 | | 110 | TAN | WAR | 1 | 12.9 | 0.013 | 0.042 | 0.005 | 79 | 96 | 113 | | 110 | TAN | WAR | 2 | 12.9 | 0.013 | 0.042 | 0.005 | 79 | 96 | 113 | | 110 | TBK | TBK-T | 1 | 2.9 | 0.005 | 0.01 | 0.001 | 105 | 116 | 123 | | 110 | THU | IKE-T | 1 | 25.68 | 0.016 | 0.083 | 0.009 | 178 | 194 | 210 | | 110 | TRE | TMN | 1 | 42.93 | 0.025 | 0.082 | 0.025 | 186 | 191 | 193 | | 110 | TRL | OUG-T | 1 | 11.3 | 0.007 | 0.037 | 0.004 | 161 | 176 | 191 | | 110 | TEN | MAY | 1 | 43.45 | 0.028 | 0.146 | 0.018 | 74 | 84 | 93 | | 110 | DER | TSB | 1 | 19.67 | 0.031 | 0.068 | 0.006 | 99 | 110 | 121 | ### Characteristics of Existing Transformers in Ireland | Station | Transformer | Rating
(MVA) | HV/LV
(kV) | | ance on
base (pu) | Voltage ratio tapping range | | | |---------|-------------|-----------------|---------------|---------|----------------------|-----------------------------|-------|--| | | | | | R pu | X pu | + | - | | | AD | T2102 | 125 | 220/110 | 0.001 | 0.124 | -0.1 | 0.18 | | | ARK | T2101 | 63 | 220/110 | 0.007 | 0.18 | -0.23 | 0.19 | | | ARK | T2102 | 125 | 220/110 | 0.0021 | 0.1237 | -0.097 | 0.182 | | | BVK | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | BVK | T2102 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | BLC | T2101 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CLA | T2102 | 250 | 220/110 | 0.0013 | 0.0647 | -0.097 | 0.179 | | | CLA | T2101 | 250 | 220/110 | 0.0013 | 0.0647 | -0.097 | 0.179 | | | CSH | T2101 | 238 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | CSH | T2102 | 250 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | CSH | T2104 | 175 | 220/110 | 0.0021 | 0.1332 | -0.227 | 0.182 | | | CKM | T2101 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CKM | T2102 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CKM | T2103 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CKM | T2104 | 250 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | CKM | PST2201 | 350 | 220/220 | 0 | 0.029 | -14.3 | 16.3 | | | CUL | T2101 | 250 | 220/110 | 0.0005 | 0.064 | -0.09 | 0.182 | | | CDU | T2101 | 250 | 220/110 | 0.00093 | 0.06152 | -0.097 | 0.178 | | | CDU | T2102 | 250 | 220/110 | 0.00066 | 0.061 | -0.099 | 0.177 | | | DSN | T4201 | 500 | 380/220 | 0.0002 | 0.0317 | -0.013 | 0.156 | | | DSN | T4202 | 500 | 380/220 | 0.0003 | 0.027 | -0.105 | 0.079 | | | FLA | T2101 | 125 | 220/110 | 0.0027 | 0.128 | -0.097 | 0.182 | | | FLA | T2102 | 125 | 220/110 | 0.0008 | 0.1331 | -0.097 | 0.182 | | | FIN | T2101 | 250 | 220/110 | 0.0013 | 0.0651 | -0.098 | 0.18 | | | FIN | T2102 | 250 | 220/110 | 0.0013 | 0.0648 | -0.099 | 0.18 | | | FIN | T2104 | 250 | 220/110 | 0.001 | 0.0638 | -0.099 | 0.177 | | | FIN | T2105 | 250 | 220/110 | 0.001 | 0.064 | -0.099 | 0.177 | | | GI | T2101 | 125 | 220/110 | 0.0026 | 0.1331 | -0.097 | 0.182 | | | Station | Transformer | Rating
(MVA) | HV/LV
(kV) | | ance on
base (pu) | _ | atio tapping
inge | | |---------|-------------|-----------------|---------------|---------|----------------------|--------|----------------------|--| | | | | | R pu | X pu | + | - | | | GI | T2102 | 125 | 220/110 | 0.0023 | 0.1237 | -0.229 | 0.182 | | | GOR | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.182 | | | INC | T2102 | 250 | 220/110 | 0.001 | 0.0564 | -0.095 | 0.178 | | | INC | T2104 | 250 | 220/110 | 0.0001 | 0.06 | -0.09 | 0.182 | | | KNR | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | KNR | T2102 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | KRA | T2101 | 250 | 220/110 | 0.0013 | 0.0647 | -0.097 | 0.179 | | | KRA | T2102 | 250 | 220/110 | 0.0013 | 0.0652 | -0.097 | 0.179 | | | KLN | T2101 | 63 | 220/110 | 0.0065 | 0.2453 | -0.229 | 0.182 | | | KLN | T2102 | 63 | 220/110 | 0.0095 | 0.2473 | -0.229 | 0.182 | | | KLN | T2103 | 250 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | KLN | T2104 | 125 | 220/110 | 0.001 | 0.123 | -0.097 | 0.182 | | | BYH | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | BYH | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | KLS | T2101 | 125 | 220/110 | 0.00132 | 0.1237 | -0.097 | 0.182 | | | KLS | T2102 | 125 | 220/110 | 0.0008 | 0.1237 | -0.097 | 0.182 | | | KLP | T2101 | 250 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | KLP | T2102 | 250 | 220/110 | 0.0004 | 0.0631 | -0.096 | 0.182 | | | СВТ | T2101 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CBT | T2102 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CBT | T2103 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | CBT | T2104 | 250 | 220/110 | 0.001 | 0.0646 | -0.097 | 0.179 | | | LOU | T2101 | 125 | 220/110 | 0.0022 | 0.1331 | -0.229 | 0.182 | | | LOU | T2103 | 125 | 220/110 | 0.0023 | 0.1324 | -0.229 | 0.182 | | | LOU | T2102 | 125 | 220/110 | 0.0022 | 0.1324 | -0.23 | 0.182 | | | LOU | T2104 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | LOU | AT1 | 300 | 220/275 | 0.0008 | 0.03 | -0.154 | 0.154 | | | LOU | AT3 | 300 | 220/275 | 0.0008 | 0.0303 | -0.154 | 0.154 | | | LOU | AT2 | 600 | 220/275 | 0.0008 | 0.015 | -0.154 | 0.154 | | | LOD | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.099 | 0.18 | | | Station | Transformer | Rating
(MVA) | HV/LV
(kV) | | ance on
base (pu) | Voltage ratio tapping range | | | |---------|-------------|-----------------|---------------|----------|----------------------|-----------------------------|-------|--| | | | | | R pu | X pu | + | - | | | MAY | T2103 | 125 | 220/110 | 0.0021 | 0.1324 | -0.227 | 0.182 | | | MAY | T2104 | 250 | 220/110 | 0.001 | 0.064 | -0.099 | 0.177 | | | MAY | T2101 | 125 | 220/110 | 0.0021 | 0.1339 | -0.227 | 0.182 | | | MAY | T2102 | 238 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | MP | T4202 | 500 | 380/220 | 0.0003 | 0.027 | -0.105 | 0.079 | | | MP | T2101 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | MP | T4202 | 500 | 380/220 | 0.0002 | 0.0329 | -0.013 | 0.156 | | | OST | T4202 | 500 | 380/220 | 0.0003 | 0.027 | -0.105 | 0.079 | | | РВ | T2103 | 250 | 220/110 | 0.0013 | 0.059 | -0.089 | 0.173 | | | РВ | T2104 | 250 | 220/110 | 0.0013 | 0.0609 | -0.089 | 0.173 | | | RAF | T2101 | 238 | 220/110 | 0.001 | 0.064 | -0.097 | 0.178 | | | RAF | T2102 | 250 | 220/110 | 0.000446 | 0.0558 | -0.097 | 0.178 | | | SH | T2102 | 125 | 220/110 | 0.00131 | 0.1237 | -0.097 | 0.182 | | | SH~ | T2101 | 125 | 220/110 | 0.00574 | 0.1237 | -0.097 | 0.182 | | | SRA | T2102 | 250 | 220/110 | 0.001 | 0.064 | -0.097 | 0.182 | | | ТВ | T2102 | 238 | 220/110 | 0.00099 | 0.0554 | -0.097 | 0.179 | | | WOO | T4201 | 500 | 380/220 | 0.0002 | 0.0316 | -0.014 | 0.155 | | | WOO | T4202 | 500 | 380/220 | 0.0002 | 0.0316 | -0.014 | 0.155 | | | WOO | T4204 | 550 | 380/220 | 0.0002 | 0.027 | 0.018 | 0.018 | | | INC | T2101 | 250 | 220/110 | 0.001 | 0.0564 | -0.095 | 0.178 | | | INC | T2103 | 250 | 220/110 | 0.0001 | 0.06 | -0.09 | 0.182 | | | WOO | Woodland | 582 | 380/260 | 0 | 0.024 | -0.225 | 0.195 | | #### Characteristics of Existing 3 Winding Transformers in Northern Ireland | Substation/ | HV/LV | Impedance pu on 100 MVA base | | | | | | | Rating | , | | minal | No. of taps | |-------------|---------|------------------------------|--------|--------|--------|--------|--------|-------|--------|----|------------|-------|-------------| | Transformer | (kV) | W1-2 | | W2-3 | | W3-1 | | (MVA) | | | ratio (pu) | | | | | | R | X | R | Х | R | Х | W1 | W2 | W3 | Upper | Lower | | | BPS IBTx 1 | 275/110 | 0.0018 | 0.0641 | 0.0018
| 0.2092 | 0 | 0.1325 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | BPS IBTx 2 | 275/110 | 0.0018 | 0.0641 | 0.0018 | 0.2059 | 0 | 0.128 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | TMN IBTx 1 | 275/110 | 0.0014 | 0.0644 | 0.0037 | 0.2315 | 0.0002 | 0.1514 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | | TMN IBTx 2 | 275/110 | 0.0014 | 0.0644 | 0.004 | 0.2299 | 0.0003 | 0.15 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | | CAS IBTx 1 | 275/110 | 0.0014 | 0.0639 | 0.0014 | 0.2236 | 0 | 0.1449 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | CAS IBTx 2 | 275/110 | 0.0018 | 0.0641 | 0.0018 | 0.2092 | 0 | 0.1325 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | CAS IBTx 3 | 275/110 | 0.0018 | 0.0656 | 0.0018 | 0.2375 | 0 | 0.1593 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | CPS IBTx 1 | 275/110 | 0.001 | 0.0699 | 0.0032 | 0.2173 | 0.0031 | 0.123 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | | CPS IBTx 2 | 275/110 | 0.0014 | 0.0639 | 0.0014 | 0.2236 | 0 | 0.1449 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | HAN IBTx 1 | 275/110 | 0.0018 | 0.0591 | 0.0018 | 0.1261 | 0 | 0.056 | 240 | 240 | 45 | 1.15 | 0.85 | 19 | | HAN IBTx 2 | 275/110 | 0.0014 | 0.0639 | 0.0014 | 0.2236 | 0 | 0.1449 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | | HAN IBTx 3 | 275/110 | 0.001 | 0.07 | 0.0031 | 0.2166 | 0.0032 | 0.1233 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | | KEL IBTx 1 | 275/110 | 0.0018 | 0.0609 | 0.0018 | 0.1273 | 0 | 0.057 | 240 | 240 | 45 | 1.15 | 0.85 | 19 | | KEL IBTx 2 | 275/110 | 0.0018 | 0.0607 | 0.0018 | 0.1317 | 0 | 0.057 | 240 | 240 | 45 | 1.15 | 0.85 | 19 | | TAN IBTx 1 | 275/110 | 0.0018 | 0.0641 | 0.0018 | 0.2092 | 0 | 0.1325 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | TAN IBTx 2 | 275/110 | 0.0018 | 0.0641 | 0.0018 | 0.2092 | 0 | 0.1325 | 240 | 240 | 30 | 1.15 | 0.85 | 19 | | TAN IBTx 3 | 275/110 | 0.001 | 0.0698 | 0.0032 | 0.217 | 0.0032 | 0.123 | 240 | 240 | 60 | 1.15 | 0.85 | 19 | ### Characteristics of Existing Transformers in Northern Ireland⁵ | Table B-5: | Table B-5: Characteristics of Existing 2 Winding Transformers in Northern Ireland | | | | | | | | | | |------------|---|--------|--------------|----------------|---------|------------|--------|--|--|--| | Station | HV/LV | Rating | Impedance pu | on rating base | Off nom | inal ratio | No. of | | | | | | (kV) | (MVA) | R | X | Upper | Lower | taps | | | | | AGH (N) | 110/33 | 90 | 0.0039 | 0.2464 | 1.1 | 0.8 | 19 | | | | | ANT | 110/33 | 90 | 0.0039 | 0.2464 | 1.1 | 0.8 | 19 | | | | | ANT | 110/33 | 90 | 0.0039 | 0.2473 | 1.1 | 0.8 | 19 | | | | | ВМА | 110/33 | 90 | 0.0039 | 0.2447 | 1.1 | 0.8 | 19 | | | | | ВМА | 110/33 | 90 | 0.0039 | 0.2463 | 1.1 | 0.8 | 19 | | | | | ВМА | 110/33 | 90 | 0.0065 | 0.2893 | 1.1 | 0.8 | 19 | | | | | ВМА | 110/33 | 90 | 0.0065 | 0.2867 | 1.1 | 0.8 | 19 | | | | | BAN (N) | 110/33 | 30 | 0.0171 | 0.4133 | 1.1 | 0.8 | 15 | | | | | BAN (N) | 110/33 | 30 | 0.019 | 0.414 | 1.1 | 0.8 | 15 | | | | | BAN (N) | 110/33 | 30 | 0.019 | 0.4167 | 1.1 | 0.8 | 15 | | | | | BAN (N) | 110/33 | 30 | 0.019 | 0.415 | 1.1 | 0.8 | 15 | | | | | BNH | 110/33 | 90 | 0.0037 | 0.2419 | 1.1 | 0.8 | 19 | | | | | BNH | 110/33 | 90 | 0.0038 | 0.2413 | 1.1 | 0.8 | 19 | | | | | BNM | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | | | | | BNM | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | | | | | CAR | 110/33 | 90 | 0.0039 | 0.248 | 1.1 | 0.8 | 19 | | | | | CAR | 110/33 | 90 | 0.0039 | 0.248 | 1.1 | 0.8 | 19 | | | | | CEN | 110/33 | 90 | 0.0037 | 0.2422 | 1.1 | 0.8 | 19 | | | | | CEN | 110/33 | 90 | 0.0038 | 0.2419 | 1.1 | 0.8 | 19 | | | | | COL (N) | 110/33 | 60 | 0.0074 | 0.2512 | 1.1 | 0.8 | 19 | | | | | COL (N) | 110/33 | 60 | 0.0075 | 0.2508 | 1.1 | 0.8 | 19 | | | | | CPS | 110/33 | 90 | 0.0087 | 0.2559 | 1.1 | 0.8 | 19 | | | | | CPS | 110/33 | 90 | 0.0087 | 0.2573 | 1.1 | 0.8 | 19 | | | | | CRG | 110/33 | 60 | 0.0074 | 0.2515 | 1.1 | 0.8 | 19 | | | | | CRG | 110/33 | 60 | 0.0074 | 0.2508 | 1.1 | 0.8 | 19 | | | | | CRE | 110/33 | 75 | 0.0091 | 0.1953 | 1.1 | 0.8 | 19 | | | | | CRE | 110/33 | 75 | 0.0091 | 0.1967 | 1.1 | 0.8 | 19 | | | | | DON | 110/33 | 60 | 0.0119 | 0.3607 | 1.1 | 0.8 | 19 | | | | $^{5\,}$ 110/33 kV transformers in Northern Ireland are included here as these are controlled by SONI. 110/38 kV transformers in Ireland are not included here as these are controlled by ESB Networks. | Station | HV/LV | Rating | Impedance pu | on rating base | Off nom | No. of | | |---------|--------|--------|--------------|----------------|---------|--------|------| | | (kV) | (MVA) | R | X | Upper | Lower | taps | | DON | 110/33 | 60 | 0.0119 | 0.3658 | 1.1 | 0.8 | 19 | | DON | 110/33 | 90 | 0.004 | 0.2403 | 1.1 | 0.8 | 19 | | DON | 110/33 | 60 | 0.0119 | 0.3658 | 1.1 | 0.8 | 19 | | DRU | 110/33 | 90 | 0.0061 | 0.2423 | 1.1 | 0.8 | 19 | | DRU | 110/33 | 90 | 0.0061 | 0.2426 | 1.1 | 0.8 | 19 | | DUN | 110/33 | 90 | 0.0087 | 0.2566 | 1.1 | 0.8 | 19 | | DUN | 110/33 | 90 | 0.0087 | 0.2599 | 1.1 | 0.8 | 19 | | EDE | 110/33 | 45 | 0.0125 | 0.2733 | 1.1 | 0.8 | 19 | | EDE | 110/33 | 45 | 0.0123 | 0.2738 | 1.1 | 0.8 | 19 | | ENN (N) | 110/33 | 45 | 0.0126 | 0.272 | 1.1 | 0.8 | 19 | | ENN (N) | 110/33 | 45 | 0.0126 | 0.2733 | 1.1 | 0.8 | 19 | | ENN (N) | 110/33 | 60 | 0.0078 | 0.2512 | 1.1 | 0.8 | 19 | | FIN (N) | 110/33 | 45 | 0.0076 | 0.2533 | 1.1 | 0.8 | 19 | | FIN (N) | 110/33 | 45 | 0.0076 | 0.2549 | 1.1 | 0.8 | 19 | | GLE (N) | 110/33 | 90 | 0.0119 | 0.2692 | 1.1 | 0.8 | 19 | | KEL | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | | KNO | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | | KNO | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | | LAR | 110/33 | 45 | 0.0116 | 0.2778 | 1.1 | 0.8 | 15 | | LAR | 110/33 | 45 | 0.0116 | 0.2771 | 1.1 | 0.8 | 15 | | LIM (N) | 110/33 | 45 | 0.0125 | 0.2809 | 1.1 | 0.8 | 15 | | LIM (N) | 110/33 | 45 | 0.0122 | 0.2764 | 1.1 | 0.8 | 15 | | LIS (N) | 110/33 | 90 | 0.0087 | 0.254 | 1.1 | 0.8 | 19 | | LIS (N) | 110/33 | 90 | 0.0086 | 0.2569 | 1.1 | 0.8 | 19 | | LMR | 110/33 | 45 | 0.0076 | 0.254 | 1.1 | 0.8 | 19 | | LMR | 110/33 | 45 | 0.0076 | 0.2533 | 1.1 | 0.8 | 19 | | LOG | 110/33 | 45 | 0.0126 | 0.2738 | 1.1 | 0.8 | 19 | | LOG | 110/33 | 45 | 0.0128 | 0.28 | 1.1 | 0.8 | 19 | | NAR | 110/33 | 60 | 0.0075 | 0.2505 | 1.1 | 0.8 | 19 | | NAR | 110/33 | 60 | 0.0073 | 0.25 | 1.1 | 0.8 | 19 | | NEW (N) | 110/33 | 90 | 0.0038 | 0.2427 | 1.1 | 0.8 | 19 | | Table B-5: | Characteri | stics of Exis | ting 2 Windir | ng Transform | ners in Nor | thern Irelo | and | |------------|------------|---------------|---------------|----------------|-------------|-------------|--------| | Station | HV/LV | Rating | Impedance pu | on rating base | Off nom | inal ratio | No. of | | | (kV) | (MVA) | R | x | Upper | Lower | taps | | NEW (N) | 110/33 | 90 | 0.0038 | 0.2419 | 1.1 | 0.8 | 19 | | OMA | 110/33 | 90 | 0.0039 | 0.2481 | 1.1 | 0.8 | 19 | | OMA | 110/33 | 90 | 0.0039 | 0.249 | 1.1 | 0.8 | 19 | | RAT (N) | 110/33 | 90 | 0.0087 | 0.2549 | 1.1 | 0.8 | 19 | | RAT (N) | 110/33 | 90 | 0.0046 | 0.2402 | 1.1 | 0.8 | 19 | | ROS | 110/33 | 90 | 0.0087 | 0.2576 | 1.1 | 0.8 | 19 | | ROS | 110/33 | 90 | 0.0087 | 0.2533 | 1.1 | 0.8 | 19 | | STR (N) | 110/33 | 45 | 0.0076 | 0.2522 | 1.1 | 0.8 | 19 | | STR (N) | 110/33 | 45 | 0.0076 | 0.2516 | 1.1 | 0.8 | 19 | | WAR | 110/33 | 90 | 0.0039 | 0.2481 | 1.1 | 0.8 | 19 | | WAR | 110/33 | 90 | 0.0039 | 0.2488 | 1.1 | 0.8 | 19 | # Characteristics of Existing Power Flow Controllers | Table B-6: | Character | istics of Existi | ng Power F | low Contro | ollers | | | |------------|-----------------|------------------|-----------------|------------|----------------------|------|-------------------------| | Station | Voltage
(kV) | Circuit | Rating
(MVA) | | ance on
Base (pu) | | gle range
I degrees) | | | | | | R | x | + | - | | CKM | 220 | CKM-PB | 350 | 0 | 0.029 | 15.3 | 15.3 | | ENN (N) | 110 | ENN (N) – COR | 125 | 0 | 0.0213 | 45 | 45 | | STR (N) | 110 | STR (N) – LET | 125 | 0 | 0.0213 | 45 | 45 | # Characteristics of Existing Reactive Compensation | Station | Voltage | | Capabilit | y (Mvar) | |---------|---------|-----------------------------------|-----------|----------| | | (kV) | | Generate | Absorb | | AA | 110 | 1 Capacitor | 30 | | | ATH | 110 | 3 Capacitors (1 Mobile) | 90 | | | BYC | 275 | 4 Capacitors (4 x 59) | 236 | | | BAN | 110 | 1 Capacitor | 15 | | | BK | 110 | 1 Capacitor | 10 | | | BVK | 110 | 1 Static Var Compensator | -50 | 50 | | CAH | 110 | 4 Capacitors (4 x 15) | 60 | | | CKM | 38 | 1 Shunt Reactor | | -20 | | CSH | 110 | 2 Capacitors (2 x 40) | 80 | | | CAS | 22 | 2 Shunt Reactor (2 x 30) | | 60 | | CAS | 22 | 2 Capacitors (2 x 25) | 50 | | | CAS | 220 | 1 Static Var Compensator | 60 | -60 | | CF | 110 | 1 Capacitor | 15 | | | CBR | 110 | 2 Capacitor | 60 | | | CBR | 110 | 1 Static Var Compensator | -10 | 60 | | CKM-SR | 220 | 1 Shunt Reactor | | -100 | | COL (N) | 110 | 1 Capacitor | 36 | | | CPS | 110 | 1 Capacitor | 40 | | | CGL | 20 | 3 Capacitors (3 x 3) | 9 | | | CUN | 20 | 2 Capacitors (2 x 4) | 8 | | | DLT | 110 | 1 Capacitor | 15 | | | DRB | 20 | 2 Capacitors (2 x 6.5) | 13 | | | DOO | 110 | 1 Capacitor | 15 | | | DRU | 110 | 1 Capacitor | 15 | | | DMY | 110 | 1 Capacitor | 15 | | | ENN (N) | 33 | 1 Capacitor | 5 | | | FIN | 38 | 1 Shunt Reactor | | -20 | | GAR | 20 | 1 Static Var Compensator | -7.5 | 7.5 | | GAR | 20 | 2 Capacitors (1 x 12.38, 1 x 1.5) | 13.9 | | | GAR | 21 | 1 Shunt Reactor | | 9 | | GIL | 20 | 1 Capacitor | 12 | | | Station | Voltage | | Capabili | ty (Mvar) | |---------|---------|---------------------------|----------|-----------| | | (kV) | | Generate | Absorb | | GWE | 110 | 1 Capacitor | 15 | | | HAN | 22 | 2 Shunt Reactors (2 x 30) | | 60 | | IA | 38 | 2 Shunt Reactors (2 x 20) | | -40 | | KEL | 22 | 2 Shunt Reactors (2 x 30) | | 60 | | KTL | 110 | 1 Capacitor | 30 | | | KKY | 110 | 2 Capacitor (2 x 15) | 30 | | | KNR | 220 | 1 Shunt Reactor | | 50 | | KNY | 110 | 1 Capacitor | 30 | | | LLA | 33 | Lenalea | 3 | | | LIS (I) | 110 | 2
Capacitors (2 x 15) | 30 | | | LSN | 20 | 1 Capacitor | 4 | | | LET | 110 | 2 Capacitor (1 Mobile) | 45 | | | LET | 110 | 1 Static Var Compensator | 30 | | | LOU | 110 | 1 Capacitor | 30 | | | MOY | 110 | 2 Capacitors (2 x 15) | 30 | | | MP | 6.6 | 1 Capacitor | 1 | | | MUL | 110 | 2 Capacitors (2 x 15) | 30 | | | MRY | 20 | 1 Capacitor | 4 | | | РВ | 220 | 2 Shunt Reactors (2 x 50) | | 100 | | RAF | 110 | 1 Capacitor | 60 | | | RE | 38 | 1 Shunt Reactor | | 20 | | SKL | 110 | 1 Capacitor (1 Mobile) | 30 | | | SLI | 110 | 1 Capacitor | 15 | | | TMN | 22 | 1 Shunt Reactor | | -30 | | TAN | 22 | 2 Capacitors (2 x 25) | 50 | | | TAN | 22 | 3 Shunt Reactors (3 x 30) | | 90 | | THU | 110 | 1 Capacitor | 15 | | | THU | 110 | 1 Static Var Compensator | 30 | 30 | | TRI | 110 | 1 Capacitor | 30 | | | TRL | 110 | 1 Capacitor | 30 | | | SLB | 20 | 1 Capacitor | 15 | | | WEX | 110 | 2 Capacitors (2 x 15) | 30 | | | SLK | 20 | 1 Capacitor | 13 | | #### **B.2 Transmission System Developments** Future developments of the transmission system are listed in this section according to the year in which they are expected to be completed. The physical and electrical characteristics of future transmission plant or changes to the characteristics brought about by planned developments are listed in the tables. These characteristics are indicative at this stage and will be reviewed when the item of plant is commissioned. #### **Expected Changes in Transmission Circuits** | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M) | ing
VA) | Year | |--------|-----------------|------|---------|-----|--------|----------|--------------------------------|---------|------------|------------|------| | | | | | | - | R | х | В | Summer | Winter | | | Add | 220 | GI | LTN | 1 | 0.4 | 0.0001 | 0.0002 | 0.011 | 593 | 593 | 2024 | | Add | 110 | LET | LLA | 1 | 12.23 | 0.0128 | 0.0408 | 0.0042 | 136 | 159 | 2024 | | Remove | 110 | KRA | MID | 1 | 10.7 | 0.0167 | 0.0368 | 0.0035 | 99 | 121 | 2024 | | Add | 110 | AGT | CRD | 1 | | 0.0084 | 0.0223 | 0.0502 | 200 | 200 | 2024 | | Add | 110 | CPS | CRD | 1 | | 0.001013 | 0.002801 | 0.0867 | 200 | 200 | 2024 | | Add | 110 | LLA | SKL | 1 | 18 | 0.0274 | 0.0606 | 0.0126 | 105 | 123 | 2024 | | Add | 110 | LCK | MUL | 1 | 26 | 0.0185 | 0.0387 | 0.2608 | 124 | 124 | 2024 | | Add | 110 | LIS | LLA | 1 | 22.7 | 0.0347 | 0.0767 | 0.0141 | 105 | 123 | 2024 | | Remove | 110 | LIS | SKL | 1 | 39.3 | 0.0611 | 0.1352 | 0.0126 | 99 | 121 | 2024 | | Amend | 110 | CAS | FIN (N) | 2 | 9.1 | 0.01369 | 0.03189 | 0.003 | 70 | 87 | 2024 | | Amend | 110 | CAS | FIN (N) | 1 | 9.1 | 0.01376 | 0.0323 | 0.003 | 69 | 86 | 2024 | | Add | 110 | СВТ | KGE | 1 | 1.9 | 0.0005 | 0.0021 | 0.021 | 187 | 223 | 2024 | | Remove | 110 | CAR | CAS | 1 | | 0.03714 | 0.0875 | 0.00798 | 69 | 86 | 2024 | | Add | 110 | KRA | LGT | 1 | 7.83 | 0.0121 | 0.0267 | 0.004 | 105 | 123 | 2024 | | Remove | 110 | LET | TIV | 1 | 45.2 | 0.0471 | 0.1508 | 0.0154 | 136 | 159 | 2024 | | Add | 110 | LLA | TIV | 1 | 33.13 | 0.0345 | 0.1106 | 0.0113 | 136 | 159 | 2024 | | Add | 110 | AGN | KGE | 1 | 1.7 | 0.0004 | 0.0019 | 0.0188 | 187 | 223 | 2024 | | Remove | 110 | AGN | СВТ | 2 | 0.2 | 0.0001 | 0.0003 | 0.0022 | 128 | 128 | 2024 | | Add | 110 | MID | LGT | 1 | 3.13 | 0.0047 | 0.0106 | 0.0025 | 105 | 123 | 2024 | | Remove | 110 | MID | WHI | 1 | 20.022 | 0.0303 | 0.0691 | 0.0065 | 99 | 121 | 2024 | | Add | 110 | KNM | WHE | 1 | 1.5 | 0.0011 | 0.0023 | 0.0151 | 124 | 124 | 2024 | | Add | 110 | BK ~ | CGW | 1 | 3.3 | 0.0021 | 0.0108 | 0.0012 | 178 | 210 | 2024 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M\ | | Year | |--------|-----------------|------|-----|-----|--------|----------|--------------------------------|----------|------------|--------|------| | | | | | | | R | X | В | Summer | Winter | | | Remove | 110 | DER | MAY | 1 | 43.448 | 0.027698 | 0.145671 | 0.017697 | 74 | 93 | 2024 | | Remove | 110 | CAR | CAS | 2 | | 0.03695 | 0.08641 | 0.00803 | 70 | 87 | 2024 | | Add | 110 | DGN | RTH | 1 | 15.475 | 0.0098 | 0.0502 | 0.006 | 178 | 210 | 2024 | | Add | 110 | ATY | CNB | 1 | 21.94 | 0.0341 | 0.0755 | 0.0071 | 105 | 123 | 2024 | | Remove | 110 | ATY | PLS | 1 | 25.482 | 0.038223 | 0.087643 | 0.008479 | 99 | 121 | 2024 | | Add | 110 | BAL | Den | 1 | 10.75 | 0.0068 | 0.0349 | 0.0044 | 178 | 210 | 2024 | | Remove | 110 | BAL | DRY | 1 | 20 | 0.0126 | 0.065 | 0.0071 | 178 | 210 | 2024 | | Add | 110 | BTN | MLU | 1 | 10 | 0.0071 | 0.0149 | 0.1004 | 124 | 124 | 2024 | | Add | 110 | BDM | MID | 1 | 3.516 | 0.0047 | 0.0122 | 0.0012 | 99 | 121 | 2024 | | Add | 110 | BDM | WHI | 1 | 18.306 | 0.0268 | 0.0628 | 0.006 | 99 | 121 | 2024 | | Remove | 110 | CUS | PLS | 1 | 42.14 | 0.0436 | 0.1396 | 0.0143 | 134 | 159 | 2024 | | Add | 110 | CUL | RTH | 1 | 19.175 | 0.0121 | 0.0622 | 0.0074 | 178 | 210 | 2024 | | Add | 110 | DRY | Den | 1 | 9.55 | 0.006 | 0.031 | 0.004 | 178 | 210 | 2024 | | Remove | 110 | CUL | DGN | 1 | 34.239 | 0.0215 | 0.1093 | 0.0203 | 178 | 192 | 2024 | | Add | 220 | FIN | MTN | 1 | 1.4 | 0.0001 | 0.0006 | 0.0384 | 593 | 593 | 2025 | | Add | 220 | HN | MTN | 1 | 0.15 | 0.0001 | 0.0001 | 0.0042 | 593 | 593 | 2025 | | Remove | 220 | INC | MAY | 1 | 19.128 | 0.0026 | 0.0164 | 0.026 | 793 | 824 | 2025 | | Add | 220 | GLH | KLP | 1 | 0.5 | 0.0001 | 0.0001 | 0.0166 | 570 | 570 | 2025 | | Remove | 220 | MAY | SH~ | 1 | 105.6 | 0.0169 | 0.0936 | 0.141675 | 269 | 354 | 2025 | | Add | 220 | СВТ | MAY | 2 | 13.982 | 0.0039 | 0.01 | 0.183 | 647 | 693 | 2025 | | Add | 220 | CLT | SH~ | 1 | 54.5 | 0.0086 | 0.048 | 0.099 | 356 | 420 | 2025 | | Remove | 220 | FIN | HN | 1 | 1.4 | 0.0001 | 0.0006 | 0.0384 | 537 | 560 | 2025 | | Add | 220 | CDU | MTN | 1 | 3.728 | 0.0002 | 0.0015 | 0.1021 | 593 | 593 | 2025 | | Add | 220 | СВТ | INC | 2 | 10 | 0.0036 | 0.01 | 0.1584 | 647 | 692 | 2025 | | Remove | 220 | CDU | HN | 1 | 3.728 | 0.000109 | 0.001412 | 0.133753 | 555 | 555 | 2025 | | Add | 220 | HN | MTN | 1 | 0.15 | 0.0001 | 0.0001 | 0.0042 | 593 | 593 | 2025 | | Add | 220 | CLT | MAY | 1 | 53.05 | 0.0086 | 0.047 | 0.0697 | 356 | 420 | 2025 | | Add | 110 | FIN | MCE | 1 | 8.37 | 0.0081 | 0.0262 | 0.0127 | 99 | 121 | 2025 | | Remove | 110 | CD | KBY | 1 | 32.338 | 0.019884 | 0.1043 | 0.024969 | 178 | 209 | 2025 | | Add | 110 | CD | KLP | 1 | 32.091 | 0.0202 | 0.1043 | 0.0113 | 178 | 210 | 2025 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M\ | | Year | |--------|-----------------|------|-------|-----|--------|----------|--------------------------------|----------|------------|--------|------| | | | | | | | R | X | В | Summer | Winter | | | Add | 110 | DJG | KLP | 1 | 13.895 | 0.0081 | 0.0452 | 0.0104 | 178 | 210 | 2025 | | Add | 110 | DJG | TRL | 1 | 32.333 | 0.0203 | 0.1047 | 0.0138 | 178 | 210 | 2025 | | Add | 110 | KEL | KELC | 1 | | 0.00033 | 0.00131 | 0.00798 | 144 | 144 | 2025 | | Add | 110 | CTE | RAF | 1 | 4.125 | 0.0025 | 0.0024 | 0.0502 | 124 | 124 | 2025 | | Add | 110 | GRA | KLM | 1 | | 0.0022 | 0.0052 | 0.1055 | 119 | 119 | 2025 | | Add | 110 | BNK | KCY | 1 | 0.75 | 0.0002 | 0.0009 | 0.0083 | 187 | 223 | 2025 | | Remove | 110 | KBY | MAL | 1 | 29.2 | 0.0184 | 0.0949 | 0.0103 | 134 | 159 | 2025 | | Add | 110 | CUR | CRY | 1 | 17.3 | 0.0039 | 0.0189 | 0.1921 | 190 | 190 | 2025 | | Add | 110 | CUR | NNA | 1 | 18.83 | 0.0293 | 0.0648 | 0.0061 | 105 | 123 | 2025 | | Add | 110 | CFN | MUL | 1 | 18.97 | 0.012 | 0.0617 | 0.0067 | 178 | 210 | 2025 | | Add | 110 | DLN | SH | 1 | 3.5 | 0.0009 | 0.0043 | 0.0386 | 140 | 140 | 2025 | | Remove | 110 | BNK | СВТ | 1 | 1 | 0.0003 | 0.0011 | 0.011 | 175 | 175 | 2025 | | Add | 110 | GAR | GLN | 1 | 0.1 | 0.0001 | 0.0002 | 0.0012 | 140 | 140 | 2025 | | Remove | 110 | KLP | TRL | 2 | 43.578 | 0.0271 | 0.1405 | 0.0231 | 178 | 190 | 2025 | | Remove | 110 | KLM | NBY | 1 | 1.2 | 0.0006 | 0.0012 | 0.0199 | 119 | 133 | 2025 | | Remove | 110 | KIN | DFR-T | 1 | 29.25 | 0.0213 | 0.0957 | 0.0103 | 99 | 121 | 2025 | | Remove | 110 | KIN | MUL | 1 | 24.919 | 0.0155 | 0.077309 | 0.022705 | 178 | 210 | 2025 | | Add | 110 | СВТ | KCY | 1 | 0.75 | 0.0002 | 0.0009 | 0.0083 | 187 | 223 | 2025 | | Add | 110 | KLP | MAL | 1 | 28.1 | 0.0184 | 0.0949 | 0.0103 | 134 | 159 | 2025 | | Remove | 110 | GRA | NBY | 1 | 5.05 | 0.002 | 0.0046 | 0.0887 | 124 | 124 | 2025 | | Amend | 110 | HRR | DFR-T | 1 | 24.503 | 0.0158 | 0.0797 | 0.0087 | 104 | 157 | 2025 | | Remove | 110 | KBY | KRA | 2 | 12.5 | 0.0183 | 0.0428 | 0.0041 | 99 | 121 | 2025 | | Remove | 110 | KLN | NNA | 1 | 33.6 | 0.0523 | 0.1156 | 0.0108 | 76 | 76 | 2025 | | Add | 110 | KLN | CUR | 1 | 14.77 | 0.0109 | 0.0484 | 0.0052 | 136 | 159 | 2025 | | Remove | 110 | KBY | MR | 1 | 4.438 | 0.004475 | 0.01466 | 0.003997 | 103 | 130 | 2025 | | Add | 110 | DRE | OBE | 1 | 5 | 0.001 | 0.0068 | 0.0573 | 228 | 228 | 2025 | | Add | 110 | BDL | BNK | 1 | 0.73 | 0.0006 | 0.0011 | 0.0074 | 140 | 140 | 2025 | | Remove | 110 | Snu | MCE | 1 | 4.7271 | 0.0047 | 0.0151 | 0.0054 | 99 | 121 | 2025 | | Add | 110 | TOY | IKE-T | 1 | 1.54 | 0.0005 | 0.003 | 0.0128 | 178 | 210 | 2025 | | Add | 110 | CFN | KIN | 1 | 6.59 | 0.0042 | 0.0215 | 0.0024 | 178 | 210 | 2025 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M) | _ | Year | |--------|-----------------|------|-------|-----|--------|----------|--------------------------------|----------|------------|--------|------| | | | | | | | R | X | В | Summer | Winter | - | | Remove | 110 | AUG | KLP | 1 | 32.83 | 0.0207 | 0.1067 | 0.0116 | 178 | 210 | 2025 | | Add | 110 | AUG | BLE | 1 | 4.56 | 0.0029 | 0.0149 | 0.0017 | 178 | 210 | 2025 | | Add | 110 | BLE | KLP | 1 | 28.23 | 0.0178 | 0.0917 | 0.01 | 178 | 210 | 2025 | | Add | 110 | ATH | CUI | 1 | 2.25 | 0.0016 | 0.0034 | 0.0226 | 140 | 140 | 2025 | | Add | 110 | BAG | Snu | 1 | 1.2 | 0.0003 |
0.0014 | 0.0133 | 192 | 192 | 2025 | | Remove | 110 | SH | IKE-T | 1 | 53.94 | 0.0339 | 0.1752 | 0.019 | 178 | 210 | 2025 | | Add | 110 | SH | TOY | 1 | 54.6 | 0.0339 | 0.1753 | 0.0315 | 178 | 210 | 2025 | | Add | 110 | BLC | NBY | 1 | 2.3 | 0.0007 | 0.0029 | 0.0254 | 124 | 132 | 2025 | | Add | 110 | KLP | KRA | 2 | 12.5 | 0.0183 | 0.0428 | 0.0041 | 99 | 121 | 2025 | | Amend | 110 | BLC | NBY | 2 | 2.3 | 0.0006 | 0.0028 | 0.0254 | 124 | 132 | 2025 | | Remove | 380 | DSN | MP | 1 | 208.5 | 0.004054 | 0.043588 | 1.139728 | 1283 | 1454 | 2026 | | Add | 380 | CEL | KRA | 1 | 0.1 | 0.0001 | 0.0001 | 0.0181 | 1100 | 1100 | 2026 | | Add | 380 | KLP | MP | 1 | 6 | 0.000838 | 0.000229 | 0.548912 | 1210 | 1210 | 2026 | | Amend | 380 | DSN | CNB | 1 | 45 | 0.0009 | 0.0101 | 0.226 | 1577 | 1944 | 2026 | | Amend | 380 | CNB | MP | 1 | 164.8 | 0.0032 | 0.0367 | 0.831 | 1577 | 1944 | 2026 | | Add | 220 | РВ | SBK | 1 | 0.06 | 0.0001 | 0.0001 | 0.002 | 593 | 593 | 2026 | | Remove | 220 | FIN | SHL | 1 | 13.4 | 0.0005 | 0.0053 | 0.3668 | 536 | 557 | 2026 | | Add | 220 | BLC | SHL | 1 | 23.4 | 0.001 | 0.0034 | 0.7769 | 570 | 570 | 2026 | | Remove | 110 | ARV | NAV | 1 | 65.497 | 0.0412 | 0.2128 | 0.0231 | 178 | 210 | 2026 | | Add | 110 | ARV | BRH | 1 | 52.6 | 0.0331 | 0.1708 | 0.02 | 178 | 210 | 2026 | | Add | 110 | AA | CHY | 1 | 21 | 0.0049 | 0.0229 | 0.232 | 192 | 192 | 2026 | | Add | 110 | BRH | NAV | 1 | 52.6 | 0.0331 | 0.1708 | 0.02 | 178 | 210 | 2026 | | Add | 110 | GI | KVG | 1 | 29.8 | 0.017 | 0.0875 | 0.057 | 178 | 210 | 2026 | | Remove | 110 | GI | KKY | 1 | 49.2 | 0.0309 | 0.1599 | 0.0174 | 178 | 210 | 2026 | | Remove | 110 | GLN | PLA | 1 | 26.55 | 0.0167 | 0.0863 | 0.0094 | 178 | 210 | 2026 | | Remove | 110 | GOL | GOL-T | 1 | 3.9 | 0.0061 | 0.0135 | 0.0013 | 105 | 123 | 2026 | | Add | 110 | DER | KDN | 1 | 0.26 | 0.0001 | 0.0004 | 0.003 | 228 | 228 | 2026 | | Add | 110 | ARK | OLS | 1 | 6.7 | 0.0035 | 0.0184 | 0.024 | 178 | 210 | 2026 | | Add | 110 | ARK | KDF | 1 | 1.2 | 0.0008 | 0.0007 | 0.0147 | 124 | 124 | 2026 | | Remove | 110 | ARK | BOG | 1 | 29.006 | 0.0207 | 0.0952 | 0.0102 | 178 | 210 | 2026 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M\ | | Year | |--------|-----------------|------|-------|-----|--------|----------|--------------------------------|----------|------------|--------|------| | | | | | | | R | Х | В | Summer | Winter | | | Add | 110 | DRQ | PT~. | 1 | 2.4 | 0.0017 | 0.002688 | 0.018721 | 60 | 60 | 2026 | | Add | 110 | BOG | OLS | 1 | 25.506 | 0.0178 | 0.0804 | 0.031 | 178 | 210 | 2026 | | Add | 110 | TMN | HRN | 1 | | 0.000187 | 0.000726 | 0.005032 | 144 | 144 | 2026 | | Add | 110 | CRA | EFF | 1 | 2.53 | 0.0016 | 0.0083 | 0.001 | 178 | 210 | 2026 | | Remove | 110 | CRA | LOD | 1 | 6.692 | 0.0042 | 0.0216 | 0.0035 | 178 | 210 | 2026 | | Add | 110 | СНА | BLN | 1 | 3 | 0.0007 | 0.0036 | 0.0331 | 140 | 140 | 2026 | | Add | 110 | BGT | GGT | 1 | 13.45 | 0.0085 | 0.0437 | 0.0048 | 178 | 210 | 2026 | | Remove | 110 | ВК | MOY | 1 | 27 | 0.017 | 0.0877 | 0.0096 | 178 | 210 | 2026 | | Add | 110 | ВК | LTK | 1 | 2.19 | 0.0006 | 0.0024 | 0.025 | 192 | 192 | 2026 | | Add | 110 | EFF | LOD | 1 | 5.06 | 0.0032 | 0.0165 | 0.002 | 178 | 210 | 2026 | | Add | 110 | DRU | COG | 1 | 6.127 | 0.0094 | 0.021 | 0.0026 | 99 | 121 | 2026 | | Add | 110 | DRQ | CMK. | 1 | | 0.000594 | 0.00224 | 0.015601 | 80 | 50 | 202 | | Add | 110 | DNN | GHK | 1 | 8.5 | 0.0061 | 0.0127 | 0.0853 | 140 | 140 | 202 | | Add | 110 | DNN | WEX | 1 | 9.8 | 0.007 | 0.0146 | 0.0983 | 140 | 140 | 202 | | Add | 110 | DER | CBN | 1 | 0.9 | 0.0003 | 0.0014 | 0.0103 | 228 | 228 | 202 | | Add | 110 | BVK | CLY | 1 | 10 | 0.0071 | 0.0149 | 0.1004 | 140 | 140 | 202 | | Add | 110 | SEE | FVW | 1 | 2 | 0.0004 | 0.0028 | 0.0229 | 228 | 228 | 202 | | Add | 110 | BLT | GLN | 1 | 26.5 | 0.0165 | 0.085 | 0.015 | 178 | 190 | 202 | | Add | 110 | BLT | PLA | 1 | 0.8 | 0.0003 | 0.0016 | 0.006 | 178 | 190 | 202 | | Add | 110 | FIN | NBN | 1 | | 0 | 0.01 | 0 | | | 202 | | Remove | 110 | DRU | ENN | 1 | 17.437 | 0.027 | 0.0601 | 0.0063 | 99 | 121 | 202 | | Add | 110 | LA | RPL | 1 | 5.5 | 0.0035 | 0.0179 | 0.002 | 178 | 210 | 202 | | Add | 110 | AIR | ROS | 1 | | 0.013124 | 0.034062 | 0.003377 | 82 | 103 | 202 | | Add | 110 | AIR | ROS | 1 | | 0.013124 | 0.034062 | 0.003377 | 82 | 103 | 202 | | Add | 110 | KKY | KVG | 1 | 29.15 | 0.0166 | 0.0853 | 0.057 | 178 | 210 | 2020 | | Remove | 110 | DEY | DAL-T | 1 | 6.35 | 0.004 | 0.0207 | 0.0023 | 178 | 210 | 2020 | | Add | 110 | DEY | STN | 1 | 3.94 | 0.0025 | 0.0128 | 0.0014 | 178 | 210 | 2020 | | Add | 110 | CNB | GGT | 1 | 13.85 | 0.0087 | 0.045 | 0.0049 | 178 | 210 | 202 | | Add | 110 | MUL | SGH | 1 | 4.25 | 0.0027 | 0.0139 | 0.0015 | 178 | 210 | 202 | | Add | 110 | MGT | DFR-T | 1 | 6.175 | 0.0037 | 0.0188 | 0.0105 | 104 | 157 | 202 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M) | _ | Year | |--------|-----------------|------------|-----|-----|-------|----------|--------------------------------|----------|------------|--------|------| | | | | | | | R | X | В | Summer | Winter | | | Add | 110 | LTK | MOY | 1 | 29.13 | 0.0175 | 0.0901 | 0.033 | 178 | 192 | 2026 | | Add | 110 | LA | SGH | 1 | 42.25 | 0.0266 | 0.1373 | 0.0149 | 178 | 210 | 2026 | | Add | 110 | COL
(N) | COL | 1 | | 0.000038 | 0.000258 | 0.002908 | 200 | 200 | 2026 | | Remove | 110 | NEW | PLS | 1 | 43.01 | 0.0553 | 0.146 | 0.0143 | 105 | 123 | 2026 | | Add | 110 | CLO | GOL | 1 | 4 | 0.0063 | 0.0138 | 0.002 | 105 | 123 | 2026 | | Add | 110 | DER | LCN | 1 | 0.09 | 0.0001 | 0.0002 | 0.0011 | 228 | 228 | 2026 | | Add | 110 | DAL-T | STN | 1 | 3.36 | 0.0022 | 0.011 | 0.0012 | 178 | 210 | 2026 | | Add | 110 | CSH | GTL | 1 | 3.36 | 0.0021 | 0.002 | 0.0409 | 124 | 124 | 2026 | | Add | 110 | KRA | BBH | 1 | 2.8 | 0.0017 | 0.0016 | 0.0341 | 124 | 124 | 2026 | | Add | 110 | COG | ENN | 1 | 11.41 | 0.0177 | 0.0394 | 0.0037 | 99 | 121 | 2026 | | Add | 110 | KLS | BDT | 1 | 2.65 | 0.0018 | 0.0039 | 0.0266 | 140 | 140 | 2026 | | Amend | 380 | OST | WOO | 1 | 126 | 0.0025 | 0.028 | 0.644 | 997 | 997 | 2027 | | Add | 380 | DSN | CNB | 1 | 45 | 0.0009 | 0.01 | 0.226 | 1577 | 1944 | 2027 | | Add | 380 | CNB | MP | 1 | 164.8 | 0.0033 | 0.0367 | 0.858 | 1577 | 1944 | 2027 | | Remove | 380 | OST | woo | 1 | 126 | 0.0024 | 0.028 | 0.636 | 997 | 997 | 2027 | | Add | 380 | TUR | woo | 1 | | 0.0027 | 0.0311 | 0.7066 | 1424 | 1731 | 2027 | | Add | 275 | TAN | TUR | 2 | | 0.00092 | 0.00862 | 0.05139 | 710 | 881 | 2027 | | Remove | 275 | TAN | TMN | 2 | | 0.00116 | 0.01085 | 0.0647 | 710 | 881 | 2027 | | Add | 275 | TMN | TUR | 2 | | 0.00024 | 0.00227 | 0.01354 | 710 | 881 | 2027 | | Add | 275 | TAN | TUR | 1 | | 0.00092 | 0.00862 | 0.05139 | 710 | 881 | 2027 | | Add | 275 | TMN | TUR | 1 | | 0.00024 | 0.00227 | 0.01354 | 710 | 881 | 2027 | | Remove | 275 | TAN | TMN | 1 | | 0.00116 | 0.01085 | 0.0647 | 710 | 881 | 2027 | | Add | 220 | РВ | COD | 1 | 30 | 0.001 | 0.0117 | 0.8212 | 593 | 593 | 2027 | | Add | 220 | BLC | FGN | 1 | 20 | 0.0007 | 0.0078 | 0.5474 | 593 | 593 | 2027 | | Add | 220 | CKM | JTN | 1 | 25 | 0.001 | 0.0036 | 0.83 | 570 | 570 | 2027 | | Add | 220 | СКМ | JTN | 2 | 25 | 0.001 | 0.0036 | 0.83 | 570 | 570 | 2027 | | Add | 220 | PB | COD | 1 | 30 | 0.001 | 0.0117 | 0.8212 | 593 | 593 | 2027 | | Add | 220 | MP | CWA | 1 | 100 | 0.0039 | 0.0143 | 3.32 | 570 | 570 | 2027 | | Remove | 220 | LOU | woo | 1 | 61.2 | 0.0071 | 0.053 | 0.08 | 434 | 476 | 2027 | | Add | 220 | PB | COD | 1 | 30 | 0.001 | 0.0117 | 0.8212 | 593 | 593 | 2027 | | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M) | _ | Year | |--------|-----------------|------|-------|-----|--------|----------|--------------------------------|-----------|------------|--------|------| | | | | | | | R | X | В | Summer | Winter | | | Add | 220 | ORL | ORL | 1 | 20.1 | 0.0007 | 0.0079 | 0.5502 | 593 | 593 | 2027 | | Add | 220 | ORL | ORL | 1 | 15.9 | 0.0007 | 0.0023 | 0.5279 | 570 | 570 | 2027 | | Add | 220 | GNT | ARK | 1 | 30 | 0.0012 | 0.0043 | 0.996 | 570 | 570 | 2027 | | Add | 220 | GNT | ARK | 2 | 30 | 0.0012 | 0.0043 | 0.996 | 570 | 570 | 2027 | | Add | 220 | ARK | GNT | 1 | 1.95 | 0.0002 | 0.0017 | 0.0025 | 434 | 513 | 2027 | | Add | 110 | FLG | MOY | 1 | 15.87 | 0.0086 | 0.0449 | 0.0484 | 178 | 210 | 2027 | | Remove | 110 | ARK | SHE | 2 | 2.2 | 0.0035 | 0.0077 | 0.0008 | 63 | 92 | 2027 | | Add | 110 | ARK | PHY | 2 | 2.38 | 0.0015 | 0.0078 | 0.0009 | 178 | 210 | 2027 | | Add | 110 | FLG | ONH | 1 | 5.701 | 0.0022 | 0.0119 | 0.0448 | 178 | 210 | 2027 | | Add | 110 | PHY | SHE | 1 | 0.375 | 0.0003 | 0.0013 | 0.0002 | 178 | 210 | 2027 | | Add | 110 | ARK | PHY | 1 | 2.25 | 0.0015 | 0.0074 | 0.0008 | 178 | 210 | 2027 | | Remove | 110 | RNW | DFR-T | 1 | 28.979 | 0.0202 | 0.085 | 0.009 | 99 | 121 | 2027 | | Add | 110 | HAN | HAN | 1 | 1.5 | 0.0011 | 0.0023 | 0.0151 | 140 | 140 | 2027 | | Add | 110 | BVG | BVG | 1 | 0.17 | 0.0002 | 0.0003 | 0.0018 | 140 | 140 | 2027 | | Add | 380 | DSN | WOO | 1 | 52.85 | 0.0003 | 0.0059 | 6.114 | 1283 | 1473 | 2028 | | Add | 275 | BPS | MOY | 2 | | 0.000015 | 0.000194 | 0.071014 | 710 | 881 | 2028 | | Remove | 220 | KLP | ТВ | 1 | 2.5 | 0.000315 | 0.00195 | 0.028 | 645 | 731 | 2028 | | Add | 220 | GSH | ТВ | 1 | 6.9 | 0.0004 | 0.0038 | 0.1972 | 746 | 794 | 2028 | | Add | 220 | GSH | KLP | 1 | 5.4 | 0.0002 | 0.0023 | 0.2102 | 746 | 842 | 2028 | | Amend | 110 | BNM | CEN | 1 | | 0.000249 | 0.00169 | 0.019047 | 200 | 200 | 2028 | | Add | 110 | MOY | TON | 1 | 58 | 0.01707 | 0.0659 | 0.7937 | 228 | 228 | 2028 | | Amend | 110 | BNM | CEN | 1 | | 0.000249 | 0.00169 | 0.019047 | 200 | 200 | 2028 | | Add | 380 | RCB | WOO | 1 | 50 | 0.001 | 0.0111 | 0.2524 | 997 | 997 | 2029 | | Add | 380 | BLC | WOO | 1 | 37 | 0.003552 | 0.003552 | 3.7018496 | 1283 | 1473 | 2029 | | Add | 380 | OST | RCB | 1
| 80 | 0.0015 | 0.0178 | 0.4038 | 997 | 997 | 2029 | | Add | 220 | DRG | RCB | 2 | 9.05 | 0.0004 | 0.0046 | 0.2903 | 746 | 794 | 2029 | | Add | 220 | SBK | SHL | 1 | 0.06 | 0.0001 | 0.0001 | 0.002 | 593 | 593 | 2029 | | Add | 220 | DRG | RCB | 1 | 9.09 | 0.0004 | 0.0046 | 0.2903 | 746 | 794 | 2029 | | Remove | 220 | РВ | SHL | 1 | 0.12 | 0.0001 | 0.0001 | 0.0033 | 574 | 574 | 2029 | | Add | 110 | KEL | TGN | 1 | | 0.009702 | 0.041247 | 0.004431 | 185 | 195 | 2029 | | Table | B-8: Ex | pected | l Chan | ges ir | n Trans | smission Cir | cuits | | | | | |--------|-----------------|--------|--------|--------|---------|--------------|--------------------------------|------------|------------|--------|------| | Action | Voltage
(kV) | From | То | ckt | total | 10 | Impedance on
00 MVA Base (p | u) | Rat
(M) | | Year | | | | | | | | R | X | В | Summer | Winter | | | Add | 110 | KTY | CRE | 1 | | 0.00118008 | 0.00471463 | 0.0341974 | 200 | 200 | 2029 | | Add | 110 | KTY | CEN | 2 | | 5.00826E-05 | 0.000344628 | 0.00387735 | 200 | 200 | 2029 | | Add | 110 | KTY | CRE | 2 | | 0.00118008 | 0.00471463 | 0.0341974 | 200 | 200 | 2029 | | Remove | 110 | CRG | KEL | 1 | | 0.02933 | 0.07667 | 0.01292 | 82 | 103 | 2029 | | Add | 110 | CRG | TGN | 1 | | 0.01276 | 0.034 | 0.00896 | 109 | 124 | 2029 | | Add | 110 | RSK | TGN | 1 | | 0.012635 | 0.072311 | 0.030873 | 211 | 235 | 2029 | | Add | 110 | YKT | KTY | 1 | | 0.00011686 | 0.000804132 | 0.00904716 | 200 | 200 | 2029 | | Add | 110 | BLC | MTN | 1 | 5 | 0.0119 | 0.0085 | 0.055 | 372 | 420 | 2029 | | Add | 110 | DON | YKT | 1 | | 0.000617686 | 0.00425041 | 0.0478207 | 200 | 200 | 2029 | | Add | 110 | YKT | BNM | 1 | | 0.000100165 | 0.000689256 | 0.00775471 | 200 | 200 | 2029 | | Remove | 110 | CEN | CRE | 1 | | 0.00113 | 0.00437 | 0.03032 | 144 | 144 | 2029 | | Add | 110 | CNB | KKY | 1 | 30 | 0.0039 | 0.0467 | 0.365 | 295 | 295 | 2029 | | Add | 110 | MTN | MTA | 1 | 3 | 0.0007 | 0.0033 | 0.0333 | 190 | 190 | 2029 | | Add | 110 | KTY | CEN | 1 | | 5.00826E-05 | 0.000344628 | 0.00387735 | 200 | 200 | 2029 | | Add | 110 | YKT | KTY | 2 | | 0.00011686 | 0.000804132 | 0.00904716 | 200 | 200 | 2029 | | Add | 110 | DON | YKT | 2 | | 0.000617686 | 0.00425041 | 0.0478207 | 200 | 200 | 2029 | | Remove | 110 | CEN | CRE | 2 | | 0.00113 | 0.00437 | 0.03032 | 144 | 144 | 2029 | | Add | 110 | NBY | MTA | 1 | 2.5 | 0.0006 | 0.0028 | 0.0278 | 190 | 190 | 2029 | | Add | 110 | YKT | BNM | 2 | | 0.000100165 | 0.000689256 | 0.00775471 | 200 | 200 | 2029 | ## **Expected Changes in Transformers in Ireland** | Table B | -9: Expe | cted Change | es in Trar | nsformers | in Ireland | d | | | | |---------|----------|-------------|-----------------|---------------|------------|----------------------|------|---------------------|------| | Action | Station | Transformer | Rating
(MVA) | HV/LV
(kV) | | ance on
base (pu) | _ | je ratio
g range | Year | | | | | | | R | x | + | - | | | Add | GLK | T2101 | 582 | 220/150 | 0 | 0.024 | 0.23 | 0.19 | 2024 | | Add | CDU | T2104 | 250 | 220/110 | 0.00066 | 0.061 | 0.1 | 0.18 | 2024 | | Add | DSN | T4103 | 500 | 380/220 | 0.0003 | 0.027 | 0.1 | 0.08 | 2025 | | Add | BLC | T2102 | 250 | 220/110 | 0.001 | 0.0646 | | | 2025 | | Add | CEL | T4101 | 834 | 380/365 | | 0.022 | 0.3 | 0.07 | 2026 | | Add | KLP | T4101 | 500 | 380/220 | 0.0003 | 0.027 | 0.1 | 0.08 | 2026 | | Add | KRA | T4101 | 790 | 380/220 | 0.0005 | 0.017 | 0.1 | 0.08 | 2026 | | Add | CNB | T4101 | 500 | 380/110 | 0.00048 | 0.072 | 0.16 | 0.16 | 2026 | | Add | CNB | T4102 | 500 | 380/110 | 0.00048 | 0.072 | 0.16 | 0.16 | 2026 | | Add | KLN | T2104 | 250 | 220/110 | 0.0004 | 0.0631 | 0.1 | 0.18 | 2027 | | Remove | KLN | T2104 | 125 | 220/110 | 0.001 | 0.123 | 0.1 | 0.18 | 2027 | | Remove | KLN | T2102 | 63 | 220/110 | 0.0095 | 0.2473 | 0.23 | 0.18 | 2027 | | Remove | KLN | T2101 | 63 | 220/110 | 0.0065 | 0.2453 | 0.23 | 0.18 | 2027 | | Add | GI | T2102 | 250 | 220/110 | 0.0004 | 0.0631 | 0.1 | 0.18 | 2028 | | Remove | GI | T2101 | 125 | 220/110 | 0.0026 | 0.1331 | 0.1 | 0.18 | 2028 | | Remove | GI | T2102 | 125 | 220/110 | 0.0023 | 0.1237 | 0.23 | 0.18 | 2028 | | Add | GI | T2101 | 250 | 220/110 | 0.0004 | 0.0631 | 0.1 | 0.18 | 2028 | | Add | RCB | T4102 | 500 | 380/220 | 0.0003 | 0.027 | 0.1 | 0.08 | 2029 | | Add | BLC | T4101 | 500 | 380/220 | 0.001 | 0.0646 | | | 2029 | | Add | RCB | T4101 | 500 | 380/220 | 0.0003 | 0.027 | 0.1 | 0.08 | 2029 | | Add | ARK | T2102 | 250 | 220/110 | 0.0004 | 0.0631 | 0.1 | 0.18 | 2029 | | Remove | ARK | T2102 | 125 | 220/110 | 0.0021 | 0.1237 | 0.1 | 0.18 | 2029 | | Add | ARK | T2101 | 250 | 220/110 | 0.0004 | 0.0631 | 0.1 | 0.18 | 2029 | | Remove | ARK | T2101 | 63 | 220/110 | 0.007 | 0.18 | 0.23 | 0.19 | 2029 | # Expected Changes in 3 Winding Transformers in Northern Ireland | Table B | -10: Cho | aracteristics | of 3-U | Jinding Tra | ınsform | er Chang | ges in Nor | thern Irel | and | |---------|----------|---------------------|--------|-------------|---------|----------|--------------------|--------------------|------------------| | Action | Station | Transformer
Name | Rating | HV/LV (kV) | R pu | X pu | Tapping
Range - | Tapping
Range + | Relevant
date | | Add | CAS | CAST2- | 240 | 110/275 | 0.001 | 0.0689 | 0.1 | 0.1 | 2024 | | Amend | CAS | CSTAT1P | 240 | 110/275 | 0.0014 | 0.0639 | 0.15 | 0.15 | 2024 | | Remove | CAS | CSTAT1P | 240 | 110/275 | 0.0014 | 0.0639 | 0.15 | 0.15 | 2024 | | Add | HAN | HNNHAT1 | 240 | 110/275 | 0.001 | 0.07 | 0.15 | 0.15 | 2025 | | Remove | HAN | HNNHAT1 | 240 | 110/275 | 0.0018 | 0.0591 | 0.15 | 0.15 | 2025 | | Add | CAS | CSTAT1R | 240 | 110/275 | 0.0018 | 0.0656 | 0.15 | 0.15 | 2025 | | Remove | CAS | CSTAT1R | 240 | 110/275 | 0.0018 | 0.0656 | 0.15 | 0.15 | 2025 | | Add | TUR | TURAT3 | 500 | 275/380 | 0.0003 | 0.0329 | 0.1 | 0.1 | 2027 | | Add | TUR | TURAT2 | 500 | 275/380 | 0.0003 | 0.0329 | 0.1 | 0.1 | 2027 | | Add | TUR | TURAT1 | 500 | 275/380 | 0.0003 | 0.0329 | 0.1 | 0.1 | 2027 | ## **Expected Changes in 2 Winding Transformers in Northern Ireland** | Table B | -11: Exp | ected Chan | ges in 2 | : Winding | Transfor | mers in l | Northern | Ireland | | |---------|------------|------------|----------|-----------|----------|---|---|-------------------|------| | Action | Station | HV/LV (kV) | Rating | R pu | X pu | off
nominal
ratio -
upper
limit | off
nominal
ratio -
lower
limit | number
of taps | Year | | Add | CAM | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | 2024 | | Add | CAM | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | 2024 | | Add | AGT | 110/33 | 80 | 0.0266 | 0.335 | | | 15 | 2024 | | Add | GOR
(N) | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | 2024 | | Add | ENN
(N) | 110/33 | 90 | 0.0126 | 0.2733 | | | 15 | 2024 | | Add | ENN
(N) | 110/33 | 90 | 0.0126 | 0.272 | | | 15 | 2024 | | Add | GRV | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | | 2025 | | Add | GLE (N) | 110/33 | 90 | 0.0119 | 0.2692 | 1.1 | 0.8 | 19 | 2025 | | Add | CRE | 110/33 | 90 | 0.0091 | 0.1953 | | | | 2025 | | Add | CRE | 110/33 | 90 | 0.0091 | 0.1967 | | | | 2025 | | Add | PT~. | 110/33 | 60 | 0.0228 | 0.3201 | | | | 2026 | | Add | AIR | 110/33 | 90 | 0.0073 | 0.25 | 1.1 | 0.8 | 19 | 2026 | | Add | BAN
(N) | 110/33 | 90 | 0.0039 | 0.2461 | | | 15 | 2026 | | Add | BAN
(N) | 110/33 | 90 | 0.0039 | 0.2461 | | | 15 | 2026 | | Add | AIR | 110/33 | 90 | 0.0073 | 0.25 | 1.1 | 0.8 | 19 | 2026 | | Add | CMK. | 110/33 | 50 | 0.0071 | 0.4126 | | | | 2026 | | Add | HRN | 110/33 | 110 | 0.005 | 0.12 | 1.1625 | 0.9125 | 20 | 2026 | | Add | LAR | 110/33 | 90 | 0.0116 | 0.2278 | | | | 2026 | | Add | LAR | 110/33 | 90 | 0.0116 | 0.2771 | | | | 2026 | | Add | HAN | 110/33 | 100 | 0.005 | 0.12 | | | | 2027 | | Add | LIM (N) | 110/33 | 90 | 0.0125 | 0.2809 | | | | 2027 | | Table B | -11: Exp | ected Chan | ges in 2 | : Winding | Transfor | mers in | Northern | Ireland | | |---------|----------|------------|----------|-----------|----------|---|---|-------------------|------| | Action | Station | HV/LV (kV) | Rating | R pu | X pu | off
nominal
ratio -
upper
limit | off
nominal
ratio -
lower
limit | number
of taps | Year | | Add | BVG | 110/33 | 50 | 0.005 | 0.24 | | | | 2027 | | Add | LIM (N) | 110/33 | 90 | 0.0122 | 0.2764 | | | | 2027 | | Add | DON | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | 19 | 2027 | | Add | GRV | 110/33 | 90 | 0.0039 | 0.2461 | 1.1 | 0.8 | | 2028 | | Add | LOG | 110/33 | 90 | 0.0126 | 0.2738 | 1.1 | 0.8 | 19 | 2028 | | Add | LOG | 110/33 | 90 | 0.128 | 0.28 | 1.1 | 0.8 | 19 | 2028 | # Appendix C: Demand forecasts at individual transmission interface stations Transmission Interface Stations and Bulk Supply Points are connection points to the transmission system. These connection points include transmission system connections to the distribution system or directly-connected customers. Table C-1 to Table C-4 list the demand forecasts at each Transmission Interface Station and Bulk Supply Point. The forecasts are noted for each node between 2024 and 2033 at the winter peak, summer peak, and summer valley. The autumn peak forecasts are also given for Northern Ireland. The station demand values do not include transmission losses. Demand values at stations that interface with the distribution system do include distribution losses. Transmission Interface Stations are generally 110 kV stations. The exceptions to this are six 220/110 kV interface stations that supply the Dublin network. These interface stations are Belcamp, Carrickmines, Castlebagot, Finglas, Inchicore and Poolbeg. Only stations feeding demand are included in the tables below, generation stations are not included. #### **Demand Forecasts at Time of Winter Peak** | Code | Station | PF | 2024 | 2025 | 2026
| 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |------------|--------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | ADM | Adamstown | 0.995 | 19.17 | 19.23 | 19.42 | 19.52 | 19.62 | 19.59 | 19.75 | 19.97 | 20.23 | 20.36 | | AGH
(N) | AGHYOULE | 0.99 | 20.73 | 20.49 | 20.54 | 21.23 | 21.45 | 21.4 | 21.44 | 21.37 | 10.92 | 22.1 | | АНА | Ahane | 0.9998 | 5.12 | 5.16 | 5.26 | 5.31 | 5.37 | 5.35 | 5.43 | 5.55 | 5.68 | 5.76 | | AIR | Airport Road | 0.99 | | 0 | 23.86 | 25.5 | 26.62 | 28.31 | 29.18 | 29.89 | 15.2 | 30.77 | | ATN | Airton | 0.999 | 56.94 | 58.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.9 | | ANR | Anner | 0.897 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | ANT | Antrim | 0.98 | | 44.98 | 45.61 | 47.65 | 48.44 | 48.8 | 49.4 | 49.97 | 25.89 | 52.4 | | AA | Ardnacrusha | 0.9994 | 72.49 | 72.95 | 74.35 | 75.15 | 75.9 | 75.64 | 76.84 | 78.51 | 80.41 | 81.4 | | ARD | Ardnagappary | 0.9806 | 9.67 | 9.73 | 9.92 | 10.02 | 10.12 | 10.09 | 10.25 | 10.47 | 10.73 | 10.80 | | ARI | Arigna | 1 | 4.92 | 4.95 | 5.05 | 5.1 | 5.15 | 5.14 | 5.22 | 5.33 | 5.46 | 5.53 | | ARK | Arklow | 0.9974 | 41.44 | 41.7 | 42.51 | 42.96 | 43.39 | 43.25 | 43.93 | 44.87 | 45.98 | 46.50 | | ART | Artane | 1 | 17.59 | 17.7 | 18.04 | 18.23 | 18.42 | 18.35 | 18.64 | 19.05 | 19.51 | 19.70 | | ATH | Athlone | 0.9947 | 75.71 | 76.19 | 77.66 | 78.49 | 79.28 | 79.01 | 80.25 | 81.99 | 83.98 | 85.0 | | ATY | Athy | 0.9814 | 22.45 | 22.59 | 23.03 | 23.28 | 23.51 | 23.43 | 23.8 | 24.31 | 24.91 | 25.2 | | AGN | Aungierstown | 0.997 | 13.98 | 18.94 | 20.94 | 23.93 | 25.92 | 28.91 | 30.91 | 33.9 | 35.89 | 35.8 | | BEG | Ballybeg | 1 | 15.76 | 15.86 | 16.17 | 16.34 | 16.5 | 16.45 | 16.71 | 17.07 | 17.48 | 17.7 | | BDN | Ballydine | 0.9857 | 16.72 | 16.79 | 17 | 17.12 | 17.23 | 17.19 | 17.37 | 17.61 | 17.9 | 18.0 | | BLY | Ballylickey | 0.9967 | 13.1 | 13.18 | 13.44 | 13.58 | 13.72 | 13.67 | 13.89 | 14.19 | 14.53 | 14.7 | | ВМА | BALLYMENA | 0.9551 | 63.94 | 62.46 | 60.78 | 61.96 | 60.82 | 61.73 | 64.5 | 63.16 | 32.62 | 66.0 | | BNH | BALLYNAHINCH | 0.99 | 56.72 | 56.81 | 57.78 | 60.57 | 62.18 | 63.03 | 64.41 | 65.85 | 34.46 | 69.7 | | BGT | Ballyragget | 0.9772 | 23.59 | 23.74 | 24.2 | 24.46 | 24.7 | 24.62 | 25.01 | 25.55 | 26.17 | 26.5 | | BAL | Baltrasna | 0.9991 | 15.66 | 15.75 | 16.06 | 16.23 | 16.39 | 16.34 | 16.59 | 16.95 | 17.37 | 17.5 | | BAN
(N) | BANBRIDGE | 0.99 | 39.84 | 39.9 | 40.52 | 42.37 | 43.4 | 43.94 | 44.79 | 45.73 | 23.89 | 48.3 | | ВСТ | Bancroft | 0.9864 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | | BAN | Bandon | 0.9928 | 46.79 | 47.09 | 48 | 48.51 | 49 | 48.82 | 49.59 | 50.67 | 51.9 | 52.5 | | BOG | Banoge | 1 | 7.74 | 7.78 | 7.93 | 8.02 | 8.1 | 8.07 | 8.2 | 8.38 | 8.58 | 8.69 | | BAG | Barnageeragh | 0.994 | 14.91 | 20.87 | 26.84 | 32.79 | 35.78 | 35.78 | 35.78 | 36 | 35.78 | 35.7 | | BRY | Barnahely | 0.9875 | 39.18 | 39.42 | 40.18 | 40.6 | 41.01 | 40.87 | 41.52 | 42.42 | 43.46 | 44.0 | | BNK | Barnakyle | 1 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 66 | | BDA | Baroda | 0.9881 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | | BAR | Barrymore | 0.9974 | 31.46 | 31.65 | 32.26 | 32.61 | 32.94 | 32.82 | 33.34 | 34.06 | 34.89 | 35.3 | | Table | e C-1: Deman | d Fore | casts c | at Time | of Wir | nter Pe | eak | | | | | | |------------|-----------------------|--------|---------|---------|--------|---------|--------|--------|--------|--------|--------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | CEN | BELFAST
CENTRAL | 0.99 | 48.39 | 47.44 | 47.02 | 48.57 | 49.03 | 48.83 | 48.8 | 48.72 | 24.96 | 50.53 | | ВК | Bellacorick | 0.9966 | 5.26 | 5.29 | 5.4 | 5.45 | 5.51 | 5.49 | 5.58 | 5.7 | 5.83 | 5.91 | | BIN | Binbane | 1 | 18.71 | 18.83 | 19.19 | 19.4 | 19.59 | 19.52 | 19.83 | 20.26 | 20.75 | 21.02 | | BRK | Blackrock | 0.9614 | 62.49 | 62.88 | 64.09 | 64.78 | 65.43 | 65.2 | 66.23 | 67.66 | 69.31 | 70.2 | | BLK | Blake | 0.9989 | 26.28 | 26.45 | 26.96 | 27.25 | 27.52 | 27.43 | 27.86 | 28.46 | 29.15 | 29.53 | | Blu | Blundelstown | 0.9501 | 0 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | | BRI | Brinny | 0.9706 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | | BUT | Butlerstown | 0.9947 | 42.29 | 42.55 | 43.37 | 43.84 | 44.28 | 44.12 | 44.82 | 45.79 | 46.9 | 47.5 | | CAB | Cabra | 0.9607 | 13.21 | 13.29 | 13.55 | 13.69 | 13.83 | 13.78 | 14 | 14.3 | 14.65 | 14.84 | | CAH | Cahir | 0.9913 | 26.87 | 27.04 | 27.56 | 27.86 | 28.14 | 28.04 | 28.48 | 29.1 | 29.81 | 30.19 | | CLW | Carlow | 0.9961 | 65.54 | 65.95 | 67.22 | 67.94 | 68.63 | 68.39 | 69.47 | 70.97 | 72.7 | 73.63 | | CAR | CARNMONEY | 0.99 | 38.61 | 38.24 | 38.47 | 39.9 | 40.49 | 40.59 | 40.91 | 41.1 | 21.18 | 42.88 | | COS | Carrick on
Shannon | 0.9974 | 29.73 | 29.92 | 30.5 | 30.82 | 31.13 | 31.03 | 31.52 | 32.2 | 32.98 | 33.4 | | СКМ | Carrickmines | 0.9992 | 67.69 | 68.11 | 69.43 | 70.17 | 70.87 | 70.63 | 71.75 | 73.3 | 75.08 | 76.04 | | CBG | Carrowbeg | 0.9963 | 17.02 | 17.13 | 17.46 | 17.64 | 17.82 | 17.76 | 18.04 | 18.43 | 18.88 | 19.12 | | CBR | Castlebar | 0.9968 | 29.85 | 30.04 | 30.62 | 30.94 | 31.26 | 31.15 | 31.64 | 32.32 | 33.11 | 33.53 | | CFM | Castlefarm | 0.9006 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | | CVI | Castleview | 0.9961 | 28.71 | 28.89 | 29.45 | 29.76 | 30.06 | 29.96 | 30.43 | 31.09 | 31.85 | 32.25 | | CF | Cath_Fall | 0.9744 | 17.04 | 17.15 | 17.48 | 17.66 | 17.84 | 17.78 | 18.06 | 18.45 | 18.9 | 19.14 | | СРК | Central Park | 0.9987 | 9.67 | 9.73 | 9.92 | 10.02 | 10.12 | 10.09 | 10.25 | 10.47 | 10.73 | 10.86 | | СНА | Charleville | 0.9866 | 21.59 | 21.73 | 22.15 | 22.38 | 22.61 | 22.53 | 22.89 | 23.38 | 23.95 | 24.26 | | CHE | Cherrywood | 0.9998 | 22.2 | 22.34 | 22.77 | 23.02 | 23.25 | 23.17 | 23.53 | 24.04 | 24.63 | 24.94 | | CTY | City West | 0.9604 | 13.44 | 13.53 | 13.79 | 13.93 | 14.07 | 14.03 | 14.25 | 14.55 | 14.91 | 15.1 | | CLG | Cloghran | 0.9912 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | | CLE | Clonee | 0.998 | 127.74 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.7 | | CLO | Cloon | 0.9891 | 27.31 | 27.48 | 28.01 | 28.31 | 28.59 | 28.49 | 28.94 | 29.57 | 30.29 | 30.68 | | CLU | Clutterland | 0.998 | 37.92 | 47.9 | 57.88 | 67.86 | 77.84 | 87.82 | 97.8 | 106 | 115.77 | 115.7 | | COL
(N) | COLERAINE | 0.99 | 39.28 | 39.32 | 39.83 | 41.48 | 42.44 | 42.9 | 43.7 | 44.54 | 23.23 | 47.02 | | COL | College Park | 0.9994 | 23.05 | 23.2 | 23.64 | 23.9 | 24.14 | 24.06 | 24.43 | 24.96 | 25.57 | 25.9 | | COO | Cookstown | 0.997 | 75.66 | 76.13 | 77.59 | 78.43 | 79.21 | 78.95 | 80.2 | 81.93 | 83.92 | 85 | | CDG | Coolderrig | 1 | 30 | 36 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | | CPS | COOLKEERAGH | 0.99 | 53.56 | 53.61 | 54.04 | 55.58 | 56.17 | 56.34 | 56.7 | 56.93 | 38.99 | 58.5 | | CLR | Coolroe | 1 | 10.89 | 10.96 | 11.17 | 11.29 | 11.4 | 11.36 | 11.54 | 11.79 | 12.08 | 12.23 | | Table | e C-1: Deman | d Fore | casts c | ıt Time | of Wir | nter Pe | eak | | | | | | |------------|--------------|--------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | CDU | Corduff | 0.9921 | 33.41 | 33.62 | 34.27 | 34.63 | 34.98 | 34.86 | 35.41 | 36.18 | 37.06 | 37.53 | | CKG | Corkagh | 0.999 | 124.88 | 141.86 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | | COW | Cow Cross | 0.9989 | 16.44 | 16.54 | 16.86 | 17.04 | 17.21 | 17.15 | 17.42 | 17.8 | 18.23 | 18.47 | | CRA | Crane | 0.9991 | 38.82 | 39.07 | 39.82 | 40.24 | 40.66 | 40.51 | 41.15 | 42.04 | 43.06 | 43.61 | | CRG | CREAGH | 0.99 | 55.51 | 56.6 | 58.47 | 62.14 | 64.5 | 66 | 67.84 | 69.52 | 36.42 | 73.73 | | CRE | CREGAGH | 0.99 | 61.38 | 61.56 | 64.78 | 67.09 | 65.01 | 66.74 | 69.84 | 70.37 | 34.81 | 70.46 | | CRH | CRUISERATH | 0.999 | 66.93 | 81.92 | 96.9 | 111.89 | 126.87 | 141.86 | 156.84 | 171.83 | 171.83 | 171.83 | | DAL | Dallow | 0.9958 | 19.44 | 19.56 | 19.94 | 20.15 | 20.35 | 20.28 | 20.6 | 21.05 | 21.56 | 21.83 | | DLT | Dalton_A1 | 0.9914 | 29.14 | 29.33 | 29.89 | 30.21 | 30.52 | 30.41 | 30.89 | 31.56 | 32.33 | 32.74 | | DTN | Dardistown | 0.9743 | 9.67 | 9.73 | 9.92 | 10.02 | 10.12 | 10.09 | 10.25 | 10.47 | 10.73 | 10.86 | | DND | Darndale | 0.9941 | 117.29 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | | DON | DONEGALL | 0.99 | 88.49 | 88.13 | 87.75 | 90.75 | 91.87 | 91.63 | 92.1 | 92.31 | 47.82 | 96.81 | | DRE | Donore | 0.9804 | 0 | 14.37 | 14.46 | 14.51 | 14.56 | 14.55 | 14.62 | 14.74 | 14.86 | 14.93 | | DOO | Doon | 0.9932 | 28.41 | 28.59 | 29.14 | 29.45 | 29.75 | 29.65 | 30.11 | 30.76 | 31.51 | 31.92 | | DRU | Drumline | 0.9889 | 26.49 | 26.65 | 27.17 | 27.46 | 27.73 | 27.64 | 28.07 | 28.68 | 29.38 | 29.75 | | DRU
(N) | DRUMNAKELLY | 0.99 | 82.15 | 81.75 | 82.47 | 85.81 | 87.43 | 88.38 | 90.06 | 91.89 | 47.99 | 97.13 | | DRY | Drybridge | 0.9992 | 89.75 | 85.45 | 87.1 | 88.03 | 88.92 | 88.61 | 90.01 | 91.96 | 94.19 | 95.4 | | DDK | Dundalk | 0.9976 | 60.05 | 60.43 | 61.59 | 62.25 | 62.88 | 62.66 | 63.65 | 65.03 | 66.61 | 67.46 | | DFR | Dunfirth | 1 | 10.08 | 10.14 | 10.33 | 10.45 | 10.55 | 10.51 | 10.68 | 10.91 | 11.18 | 11.32 | | DUN | DUNGANNON | 0.99 | 95.1 | 94.64 | 95.42 | 99.14 | 100.82 | 101.22 | 102.22 | 102.87 | 53.01 | 107.3 | | DGN | Dungarvan | 0.9948 | 46.16 | 46.45 | 47.35 | 47.86 | 48.34 | 48.17 | 48.93 | 49.99 | 51.21 | 51.86 | | DMY | Dunmanway | 0.9953 | 35.32 | 35.55 | 36.23 | 36.62 | 36.99 | 36.86 | 37.44 | 38.25 | 39.18 | 39.68 | | EDE | EDEN | 0.99 | 34.51 | 34.25 | 34.83 | 36.49 | 37.42 | 37.91 | 38.66 | 39.44 | 20.63 | 41.76 | | ENN | Ennis | 0.9974 | 64.9 | 65.31 | 66.57 | 67.28 | 67.95 | 67.73 | 68.79 | 70.28 | 72 | 72.91 | | ENN
(N) | Enniskillen | 0.99 | 53.37 | 53.81 | 54.99 |
57.68 | 59.24 | 60.06 | 61.29 | 62.55 | 32.65 | 66.09 | | FAS | Fass East | 1 | 59.47 | 59.84 | 61 | 61.65 | 62.27 | 62.05 | 63.03 | 64.4 | 65.96 | 66.81 | | FIN (N) | FINAGHY | 0.99 | 31.31 | 31.67 | 30.43 | 31.84 | 33.09 | 33.71 | 34.41 | 33.19 | 17.28 | 34.98 | | F_M | Finglas | 1 | 166.88 | 167.93 | 171.16 | 152.95 | 154.48 | 153.95 | 156.39 | 159.77 | 163.65 | 165.75 | | FTT | Fortunestown | 0.9995 | 15.15 | 15.25 | 15.54 | 15.71 | 15.87 | 15.81 | 16.06 | 16.41 | 16.81 | 17.02 | | GAL | Galway | 0.9985 | 89.67 | 90.23 | 91.97 | 92.95 | 93.89 | 93.56 | 95.04 | 97.1 | 99.46 | 100.74 | | GIL | Gilra | 0.9706 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | | GLS | Glasmore | 0.9618 | 69.25 | 69.69 | 71.03 | 71.79 | 72.51 | 72.27 | 73.41 | 74.99 | 76.82 | 77.8 | | GLE
(N) | GLENGORMLEY | 0.99 | 18.09 | 18.34 | 18.5 | 19.3 | 19.24 | 19.34 | 20.03 | 20.32 | 10.61 | 21.47 | | Table | : C-1: Deman | d Fore | casts c | ıt Time | of Wir | nter Pe | eak | | | | | | |---------|----------------|--------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | GLE | Glenlara | 0.9801 | 14.36 | 14.45 | 14.73 | 14.89 | 15.04 | 14.98 | 15.22 | 15.55 | 15.93 | 16.13 | | GWE | Gortawee | 0.9839 | 33.44 | 33.5 | 33.71 | 33.83 | 33.94 | 33.9 | 34.07 | 34.32 | 34.6 | 34.75 | | GRA | Grange | 0.9779 | 57.72 | 58.08 | 59.2 | 59.83 | 60.44 | 60.23 | 61.18 | 62.5 | 64.02 | 64.84 | | GCA | Grange Castle | 1 | 62.8 | 63.19 | 64.41 | 65.1 | 65.75 | 65.53 | 66.56 | 68 | 69.66 | 70.54 | | GI | Great Island | 0.9865 | 19.82 | 19.95 | 20.33 | 20.55 | 20.76 | 20.68 | 21.01 | 21.47 | 21.99 | 22.27 | | GRI | Griffinrath | 0.9995 | 67.69 | 68.11 | 69.43 | 52.13 | 52.65 | 52.47 | 53.3 | 54.45 | 55.77 | 56.49 | | HX2 | Harolds Cross | 0.9602 | 18.64 | 18.76 | 19.12 | 19.33 | 19.52 | 19.45 | 19.76 | 20.19 | 20.68 | 20.94 | | HEU | Heuston Square | 0.999 | 9.67 | 9.73 | 9.92 | 10.02 | 10.12 | 10.09 | 10.25 | 10.47 | 10.73 | 10.86 | | IKE | lkerrin | 0.9906 | 25.85 | 26.01 | 26.51 | 26.79 | 27.06 | 26.97 | 27.4 | 27.99 | 28.67 | 29.04 | | F_I | Inchicore | 1 | 163.17 | 164.2 | 167.37 | 169.15 | 170.86 | 170.27 | 172.96 | 176.7 | 180.99 | 183.32 | | KYT | Kellystown | 0.95 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | | KBY | Kilbarry | 0.9997 | 85.21 | 80.88 | 82.44 | 83.32 | 84.16 | 83.87 | 85.19 | 87.03 | 89.15 | 90.29 | | KCY | Kilcarbery | 0.99 | 0 | 3.96 | 7.92 | 11.88 | 15.84 | 19.8 | 23.76 | 27.72 | 31.68 | 35.64 | | KKY | Kilkenny | 0.9928 | 51.34 | 51.66 | 52.65 | 53.22 | 53.75 | 53.57 | 54.41 | 55.59 | 56.94 | 57.67 | | KTN | Killoteran | 0.9867 | 10.66 | 10.72 | 10.93 | 11.05 | 11.16 | 11.12 | 11.29 | 11.54 | 11.82 | 11.97 | | KUD | Kilmahud | 0.9874 | 29.61 | 33.56 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | KLP | Kilnap | 0.9804 | 0 | 4.87 | 4.96 | 5.01 | 5.06 | 5.05 | 5.12 | 5.24 | 5.36 | 5.43 | | KIL | Kilteel | 0.9916 | 34.1 | 34.31 | 34.97 | 35.34 | 35.7 | 35.58 | 36.14 | 36.92 | 37.82 | 38.3 | | KIN | Kinnegad | 0.9725 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | | KGE | Kishoge | 0.99 | 2.97 | 4.95 | 7.92 | 9.9 | 12.87 | 14.85 | 17.82 | 19.8 | 21.78 | 21.78 | | KNO | KNOCK | 0.99 | 45.57 | 44.7 | 44.58 | 45.56 | 45.94 | 45.81 | 46.06 | 46.42 | 24.04 | 48.67 | | KER | Knockearagh | 0.9933 | 41.32 | 41.58 | 42.38 | 42.83 | 43.26 | 43.12 | 43.8 | 44.74 | 45.83 | 46.42 | | KUR | Knockumber | 0.9069 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | | LAZ | Lanesboro_A1 | 0.9961 | 17.86 | 17.97 | 18.32 | 18.51 | 18.7 | 18.64 | 18.93 | 19.34 | 19.81 | 20.06 | | LAR | LARNE | 0.99 | 43.21 | 42.64 | 43.47 | 45.73 | 47.24 | 48.54 | 49.24 | 50.61 | 26.65 | 53.94 | | LET | Letterkenny | 0.994 | 66.08 | 66.5 | 67.78 | 68.5 | 69.19 | 68.96 | 70.04 | 71.56 | 73.3 | 74.24 | | LIB | Liberty St | 0.9975 | 23.21 | 23.35 | 23.8 | 24.06 | 24.3 | 24.22 | 24.6 | 25.13 | 25.74 | 26.07 | | LIM (N) | LIMAVADY | 0.99 | 22.07 | 22.13 | 22.71 | 23.34 | 23.48 | 24.02 | 24.84 | 24.77 | 12.75 | 25.81 | | LIM | Limerick | 0.9974 | 80.74 | 92.93 | 94.49 | 95.38 | 96.22 | 95.93 | 97.26 | 99.11 | 101.24 | 102.39 | | LMR | LISAGHMORE | 0.98 | 38.13 | 37.59 | 37.69 | 39.03 | 39.58 | 39.64 | 40.05 | 40.44 | 20.95 | 42.4 | | LIS (N) | LISBURN | 0.99 | 64.36 | 64.6 | 65.85 | 69.04 | 70.81 | 71.71 | 72.99 | 74.45 | 38.88 | 78.7 | | LIS | Lisdrum | 0.979 | 34.85 | 35.07 | 35.74 | 36.13 | 36.49 | 36.37 | 36.94 | 37.74 | 38.66 | 39.15 | | LOG | LOGUESTOWN | 0.98 | 37.99 | 37.89 | 38.47 | 40.29 | 41.28 | 41.75 | 42.54 | 43.33 | 22.61 | 45.76 | | MCE | Macetown | 1 | 25.18 | 25.31 | 25.71 | 25.93 | 26.15 | 26.07 | 26.41 | 26.88 | 27.43 | 27.72 | | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 203 | |------------|-----------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | MAC | Macroom | 0.8676 | 18.37 | 18.49 | 18.84 | 19.05 | 19.24 | 19.17 | 19.47 | 19.9 | 20.38 | 20.6 | | MAL | Mallow | 0.9929 | 23.46 | 23.61 | 24.06 | 24.32 | 24.56 | 24.48 | 24.86 | 25.4 | 26.02 | 26.3 | | MR | Marina | 0.9991 | 19.34 | 19.46 | 19.84 | 20.05 | 20.25 | 20.18 | 20.5 | 20.94 | 21.45 | 21.7 | | MTH | Meath Hill | 0.9816 | 52.22 | 52.54 | 53.56 | 54.13 | 54.67 | 54.49 | 55.35 | 56.54 | 57.92 | 58.6 | | MTA | Metro Airport | 0.95 | 0 | 0 | 0 | 0 | 0 | 23.75 | 23.75 | 23.75 | 23.75 | 23.7 | | MTN | Metro North | 0.95 | 0 | 0 | 0 | 0 | 0 | 29.45 | 29.45 | 29.45 | 29.45 | 29.4 | | MID | Midleton | 0.9967 | 42.96 | 43.22 | 44.05 | 44.53 | 44.97 | 44.82 | 45.53 | 46.51 | 47.64 | 48.2 | | MIL | Milltown | 0.9997 | 20.73 | 20.85 | 21.25 | 21.48 | 21.7 | 21.63 | 21.96 | 22.43 | 22.98 | 23.2 | | MHL | Misery Hill | 0.9998 | 18.38 | 18.5 | 18.85 | 19.06 | 19.25 | 19.18 | 19.48 | 19.91 | 20.39 | 20.6 | | MON | Monread | 0.9911 | 19.13 | 19.25 | 19.62 | 19.83 | 20.03 | 19.96 | 20.27 | 20.71 | 21.22 | 21.4 | | MTN | Mooretown | 0.99 | 0 | 2.97 | 10.89 | 18.8 | 26.73 | 35 | 43 | 51 | 58.41 | 58.4 | | MOY | Moy | 0.9987 | 26.88 | 27.05 | 27.57 | 27.87 | 28.15 | 28.05 | 28.49 | 29.11 | 29.82 | 30.2 | | MLN | Mullagharlin | 0.9935 | 7.8 | 7.82 | 7.88 | 7.92 | 7.95 | 7.94 | 8 | 8.07 | 8.16 | 8.2 | | MUL | Mullingar | 0.9994 | 49.31 | 49.63 | 50.58 | 51.13 | 51.63 | 51.46 | 52.27 | 53.41 | 54.7 | 55. | | MUN | Mungret A | 0.8715 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21. | | NAN | Nangor | 0.9731 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.1 | | NAV | Navan | 0.9924 | 67.02 | 67.44 | 68.74 | 69.48 | 70.18 | 69.94 | 71.04 | 72.58 | 74.34 | 75.2 | | NNA | Nenagh | 0.9821 | 24.88 | 25.04 | 25.52 | 25.79 | 26.05 | 25.96 | 26.37 | 26.94 | 27.6 | 27.9 | | NEW | Newbridge | 0.9944 | 46.45 | 46.75 | 47.65 | 48.16 | 48.64 | 48.47 | 49.24 | 50.3 | 51.53 | 52.1 | | NBY | Newbury | 0.9817 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | NEW
(N) | NEWRY | 0.99 | 73.89 | 73.34 | 73.46 | 76.37 | 77.67 | 80.05 | 80.22 | 80.77 | 41.95 | 84.9 | | NAR | NEWTOWNARDS | 0.99 | 41.06 | 41.06 | 41.67 | 43.56 | 44.53 | 44.93 | 45.6 | 46.33 | 24.12 | 48.8 | | NQS | North Quays | 0.9998 | 21.8 | 21.94 | 22.36 | 22.6 | 22.83 | 22.75 | 23.11 | 23.61 | 24.19 | 24. | | ODE | Oldbridge | 0.985 | 12.8 | 19.7 | 26.6 | 34 | 41 | 48 | 48 | 48 | 47.28 | 47.2 | | OLD | Oldcourt | 0.9487 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | ОМА | OMAGH | 0.99 | 56.66 | 56.99 | 57.72 | 60.25 | 61.72 | 62.3 | 63.17 | 63.96 | 33.18 | 67.1 | | OUG | Oughtragh | 0.9998 | 26 | 26.17 | 26.67 | 26.95 | 27.23 | 27.13 | 27.56 | 28.16 | 28.84 | 29.2 | | PTN | Pelletstown | 0.9994 | 14.18 | 14.26 | 14.54 | 14.7 | 14.84 | 14.79 | 15.03 | 15.35 | 15.72 | 15.9 | | PLA | Platin | 0.9503 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | POP | Poppintree | 0.9995 | 28.35 | 28.53 | 29.08 | 29.39 | 29.69 | 29.58 | 30.05 | 30.7 | 31.45 | 31.8 | | PLS | Portlaoise | 0.9982 | 43.85 | 44.13 | 44.98 | 45.46 | 45.92 | 45.76 | 46.48 | 47.49 | 48.64 | 49.2 | | POT | Pottery Road | 0.9991 | 15.94 | 16.04 | 16.34 | 16.52 | 16.69 | 16.63 | 16.89 | 17.26 | 17.68 | 17. | | BNM | Power Station
West | 0.99 | 46.15 | 46.18 | 46.65 | 48.66 | 49.52 | 49.91 | 50.72 | 51.23 | 26.73 | 54.1 | | Table | : C-1: Deman | d Fore | casts c | ıt Time | of Wir | nter Pe | eak | | | | | | |---------|---------------|--------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | RAT (N) | RATHGAEL | 0.99 | 52.23 | 51.99 | 52.64 | 54.93 | 56.13 | 56.69 | 57.88 | 59.57 | 31.27 | 63.3 | | RAT | Rathkeale | 0.9996 | 41.87 | 42.13 | 42.94 | 43.4 | 43.84 | 43.69 | 44.38 | 45.34 | 46.44 | 47.04 | | RIC | Richmond | 0.9866 | 39.51 | 39.76 | 40.52 | 40.96 | 41.37 | 41.23 | 41.88 | 42.79 | 43.83 | 44.39 | | RNW | Rinawade | 0.988 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | | BR | Ringsend | 1 | 116.14 | 116.86 | 119.11 | 120.4 | 121.6 | 121.19 | 123.09 | 125.76 | 128.82 | 130.46 | | ROS | ROSEBANK | 0.99 | 33.87 | 33.99 | 34.69 | 36.46 | 37.5 | 38.07 | 38.89 | 39.76 | 20.82 | 42.14 | | RYB | Ryebrook | 0.9279 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | | SHL | Salthill | 0.9993 | 45.84 | 46.13 | 47.02 | 47.52 | 48 | 47.84 | 48.59 | 49.64 | 50.85 | 51.5 | | SCR | Screeb | 0.9995 | 20.24 | 20.37 | 20.76 | 20.98 | 21.19 | 21.12 | 21.45 | 21.92 | 22.45 | 22.74 | | SKL | Shankill | 0.9825 | 54.51 | 54.85 | 55.91 | 56.51 | 57.07 | 56.88 | 57.78 | 59.03 | 60.46 | 61.24 | | SHE | Shelton Abbey | 0.9563 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | | SNG | Singland | 0.9979 | 15.36 | 15.45 | 15.75 | 15.92 | 16.08 | 16.02 | 16.28 |
16.63 | 17.03 | 17.25 | | SLI | Sligo | 0.9985 | 54.19 | 54.53 | 55.58 | 56.18 | 56.74 | 56.55 | 57.44 | 58.68 | 60.11 | 60.88 | | Snu | Snugborough | 0.998 | 35.93 | 40.92 | 45.9 | 49.9 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | | SOM | Somerset | 0.9907 | 24.39 | 24.54 | 25.01 | 25.28 | 25.53 | 25.45 | 25.85 | 26.41 | 27.05 | 27.4 | | SPR | SPRINGTOWN | 0.99 | 32.95 | 32.73 | 32.86 | 34.3 | 34.92 | 35.12 | 35.51 | 35.84 | 18.55 | 37.54 | | SVN | Stephenstown | 1 | 10.66 | 10.72 | 10.93 | 11.05 | 11.16 | 11.12 | 11.29 | 11.54 | 11.82 | 11.97 | | STR (N) | STRABANE | 0.99 | 40.47 | 40.49 | 41.07 | 42.91 | 43.87 | 44.26 | 44.89 | 45.43 | 23.53 | 47.64 | | STR | Stratford | 0.9941 | 22.68 | 22.83 | 23.27 | 23.52 | 23.75 | 23.67 | 24.05 | 24.57 | 25.16 | 25.48 | | TNY | Taney | 0.9994 | 7.52 | 7.57 | 7.72 | 7.8 | 7.88 | 7.85 | 7.97 | 8.15 | 8.34 | 8.45 | | TNB | Thornsberry | 0.9901 | 34.01 | 34.22 | 34.88 | 35.25 | 35.61 | 35.49 | 36.05 | 36.83 | 37.72 | 38.21 | | THU | Thurles | 0.9957 | 26.75 | 26.91 | 27.43 | 27.73 | 28.01 | 27.91 | 28.35 | 28.96 | 29.67 | 30.05 | | TIP | Tipperary | 0.9905 | 21.12 | 21.25 | 21.66 | 21.89 | 22.11 | 22.04 | 22.38 | 22.87 | 23.43 | 23.73 | | TON | Tonroe | 0.9867 | 16.45 | 16.55 | 16.87 | 17.05 | 17.22 | 17.16 | 17.43 | 17.81 | 18.24 | 18.48 | | TBG | Trabeg | 0.9995 | 70.75 | 76.77 | 78.14 | 78.92 | 79.65 | 79.4 | 80.57 | 82.19 | 84.05 | 85.05 | | TRL | Tralee | 0.9983 | 51.24 | 51.56 | 52.56 | 53.12 | 53.65 | 53.47 | 54.31 | 55.49 | 56.84 | 57.56 | | TRI | Trien | 0.9978 | 22.47 | 22.61 | 23.05 | 23.3 | 23.53 | 23.45 | 23.82 | 24.33 | 24.93 | 25.25 | | TLK | Trillick | 0.9949 | 20.07 | 20.2 | 20.59 | 20.81 | 21.02 | 20.95 | 21.28 | 21.74 | 22.27 | 22.55 | | TRN | Trinity | 0.9991 | 11.05 | 11.12 | 11.34 | 11.46 | 11.57 | 11.53 | 11.72 | 11.97 | 12.26 | 12.42 | | TBR | Tullabrack | 0.9786 | 11.6 | 11.68 | 11.9 | 12.03 | 12.15 | 12.11 | 12.3 | 12.57 | 12.87 | 13.04 | | WLN | Walterstown | 0.9731 | 0 | 0 | 0 | 47.59 | 47.97 | 47.84 | 48.45 | 49.29 | 50.26 | 50.78 | | WAR | WARINGSTOWN | 0.99 | 64.98 | 64.93 | 65.65 | 68.42 | 69.7 | 70.14 | 70.96 | 71.62 | 37.01 | 74.91 | | WAT | Waterford | 0.9916 | 58.02 | 58.38 | 59.51 | 60.14 | 60.75 | 60.54 | 61.5 | 62.83 | 64.36 | 65.18 | | WEX | Wexford | 0.9994 | 56.83 | 57.2 | 58.29 | 58.92 | 59.52 | 59.31 | 60.24 | 61.55 | 63.04 | 63.85 | | Table | Table C-1: Demand Forecasts at Time of Winter Peak | | | | | | | | | | | | | |-------|--|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | | WHI | Whitegate | 0.87 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | WLT | Wolfe Tone | 0.96 | 27.14 | 27.31 | 27.84 | 28.14 | 28.42 | 28.32 | 28.77 | 29.39 | 30.11 | 30.49 | | | YMD | YellowMeadows | 0.99 | 3.96 | 6.93 | 9.9 | 12.87 | 15.84 | 18.8 | 21.78 | 24.75 | 27.72 | 27.72 | | #### **Demand Forecasts at Time of Summer Peak** | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | ADM | Adamstown | 0.995 | 16.7 | 16.75 | 16.8 | 16.87 | 16.91 | 16.83 | 16.94 | 17.1 | 17.29 | 17.39 | | AGH
(N) | AGHYOULE | 0.99 | 16.3 | 14.26 | 16.15 | 16.69 | 16.86 | 14.89 | 16.85 | 14.88 | 8.58 | 15.38 | | АНА | Ahane | 1 | 3.82 | 3.84 | 3.87 | 3.91 | 3.93 | 3.89 | 3.94 | 4.03 | 4.13 | 4.18 | | AIR | Airport Road | 0.99 | 0 | 0 | 18.76 | 20.04 | 20.92 | 19.7 | 22.93 | 20.81 | 11.95 | 21.42 | | ATN | Airton | 0.999 | 56.94 | 58.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | | ANR | Anner | 0.897 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | ANT | Antrim | 0.98 | 0 | 31.29 | 35.85 | 37.45 | 38.07 | 33.97 | 38.83 | 34.79 | 20.35 | 36.48 | | AA | Ardnacrusha | 0.999 | 54 | 54.33 | 54.76 | 55.28 | 55.55 | 54.97 | 55.78 | 56.95 | 58.38 | 59.16 | | ARD | Ardnagappary | 0.981 | 7.2 | 7.25 | 7.3 | 7.37 | 7.41 | 7.33 | 7.44 | 7.6 | 7.79 | 7.89 | | ARI | Arigna | 1 | 3.67 | 3.7 | 3.72 | 3.76 | 3.78 | 3.74 | 3.79 | 3.87 | 3.97 | 4.02 | | ARK | Arklow | 0.997 | 30.87 | 31.05 | 31.29 | 31.6 | 31.75 | 31.42 | 31.88 | 32.55 | 33.37 | 33.81 | | ART | Artane | 1 | 13.1 | 13.18 | 13.28 | 13.41 | 13.48 | 13.34 | 13.53 | 13.82 | 14.16 | 14.35 | | ATH | Athlone | 0.995 | 56.41 | 56.74 | 57.19 | 57.74 | 58.02 | 57.41 | 58.26 | 59.48 | 60.98 | 61.79 | | ATY | Athy | 0.981 | 16.72 | 16.82 | 16.95 | 17.12 | 17.2 | 17.02 | 17.27 | 17.63 | 18.08 | 18.32 | | AGN | Aungierstown | 0.997 | 13.98 | 18.94 | 20.94 | 23.93 | 25.92 | 28.91 | 30.91 | 33.9 | 35.89 | 35.89 | | BEG | Ballybeg | 1 | 11.74 | 11.81 | 11.91 | 12.02 | 12.08 | 11.95 | 12.13 | 12.38 | 12.69 | 12.86 | | BDN | Ballydine | 0.986 | 13.99 | 14.03 | 14.1 | 14.18 | 14.22 | 14.13 | 14.25 | 14.42 | 14.63 | 14.75 | | BLY | Ballylickey | 0.997 | 9.76 | 9.82 | 9.9 | 9.99 | 10.04 | 9.94 | 10.08 | 10.29 | 10.55 | 10.69 | | BMA | BALLYMENA | 0.955 | 50.25 | 43.46 | 47.78 | 48.7 | 47.81 | 42.97 | 50.69 | 43.97 | 25.64 | 45.96 | | BNH | BALLYNAHINCH | 0.99 | 44.58 | 39.52 | 45.42 | 47.61 | 48.87 | 43.88 | 50.62 | 45.85 | 27.09 | 48.55 | | BGT | Ballyragget | 0.977 | 17.58 | 17.68 | 17.82 | 17.99 | 18.08 | 17.89 | 18.16 | 18.54 | 19 | 19.26 | | BAL | Baltrasna | 0.999 | 11.66 | 11.73 | 11.82 | 11.94 | 12 | 11.87 | 12.04 | 12.3 | 12.61 | 12.78 | | BAN
(N) | BANBRIDGE | 0.99 | 31.31 | 27.76 | 31.85 | 33.3 | 34.12 | 30.59 | 35.2 | 31.83 | 18.78 | 33.66 | | ВСТ | Bancroft | 0.986 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | | BAN | Bandon | 0.993 | 34.85 | 35.05 | 35.33 | 35.67 | 35.85 | 35.47 | 36 | 36.75 | 37.67 | 38.17 | | Table | e C-2: Deman | d Fore | casts (| at Time | of Su | mmer | Peak | | | | | | |------------|-----------------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | BOG | Banoge | 1 | 5.76 | 5.8 | 5.84 | 5.9 | 5.93 | 5.87 | 5.95 | 6.08 | 6.23 | 6.31 | | BAG | Barnageeragh | 0.994 | 14.91 | 20.87 | 26.84 | 32.79 | 35.78 | 35.78 | 35.78 | 36 | 35.78 | 35.78 | | BRY | Barnahely | 0.988 | 29.18 | 29.35 | 29.58 | 29.86 | 30.02 | 29.7 | 30.13 | 30.76 | 31.54 | 31.96 | | BNK | Barnakyle | 1 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 66 | | BDA | Baroda | 0.988 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | | BAR | Barrymore | 0.997 | 23.43 | 23.57 | 23.76 | 23.99 | 24.1 | 23.85 | 24.2 | 24.71 | 25.33 | 25.67 | | CEN | BELFAST
CENTRAL | 0.99 | 38.03 | 33 | 36.96 | 38.17 | 38.54 | 33.99 | 38.35 | 33.92 | 19.62 | 35.17 | | ВК | Bellacorick | 0.996 | 3.92 | 3.94 | 3.97 | 4.01 | 4.03 | 3.99 | 4.05 | 4.13 | 4.23 | 4.29 | | BIN | Binbane | 1 | 13.94 | 14.02 | 14.13 | 14.27 | 14.34 | 14.19 | 14.4 | 14.7 | 15.07 | 15.27 | | BRK | Blackrock | 0.961 | 46.55 | 46.82 | 47.19 | 47.65 | 47.88 | 47.38 | 48.08 | 49.08 | 50.32 | 50.99 | | BLK | Blake | 0.999 | 19.58 | 19.69 | 19.85 | 20.04 | 20.14 | 19.93 | 20.22 | 20.64 | 21.16 | 21.45 | | Blu | Blundelstown | 0.95 | 0 | 0 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | | BRI | Brinny | 0.971 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | | BUT | Butlerstown | 0.995 | 31.5 | 31.69 | 31.94 | 32.25 | 32.4 | 32.06 | 32.54 | 33.22 | 34.05 | 34.51 | | САВ | Cabra | 0.961 | 9.83 | 9.89 | 9.97 | 10.07 | 10.11 | 10.01 | 10.16 | 10.37 | 10.63 | 10.77 | | CAH | Cahir | 0.991 | 20.02 | 20.14 | 20.3 | 20.49 | 20.59 | 20.37 | 20.68 | 21.11 | 21.64 | 21.93 | | CLW | Carlow | 0.996 | 48.83 | 49.11 | 49.5 | 49.98 | 50.22 | 49.7 | 50.43 | 51.48 | 52.78 | 53.49 | | CAR | CARNMONEY | 0.99 | 30.34 | 26.61 | 30.24 | 31.36 | 31.83 | 28.26 | 32.16 | 28.61 | 16.65 | 29.85 | | cos | Carrick on
Shannon | 0.997 | 22.15 | 22.28 | 22.46 | 22.68 | 22.79 | 22.55 | 22.88 | 23.36 | 23.95 | 24.27 | | СКМ | Carrickmines | 0.999 | 50.43 | 50.73 | 51.13 | 51.62 | 51.87 | 51.33 | 52.09 | 53.17 | 54.51 | 55.24 | | CBG | Carrowbeg | 0.996 | 12.68 | 12.75 | 12.85 | 12.98 | 13.04 | 12.91 | 13.1 | 13.37 | 13.71 | 13.89 | | CBR | Castlebar | 0.997 | 22.23 | 22.37 | 22.54 | 22.76 | 22.87 | 22.63 | 22.96 | 23.44 | 24.03 | 24.36 | | CVI | Castleview | 0.996 | 21.39 | 21.51 | 21.68 | 21.89 | 22 | 21.77 | 22.09 | 22.55 | 23.12 | 23.43 | | CF | Cath_Fall | 0.974 | 12.69 | 12.76 | 12.86 | 12.99 | 13.05 | 12.91 | 13.11 | 13.38 | 13.72 | 13.9 | | СРК | Central Park | 0.999 | 7.2 | 7.25 | 7.3 | 7.37 | 7.41 | 7.33 | 7.44 | 7.6 | 7.79 | 7.89 | | СНА | Charleville | 0.987 | 16.08 | 16.18 | 16.31 | 16.46 | 16.54 | 16.37 | 16.61 | 16.96 | 17.39 | 17.62 | | CHE | Cherrywood | 1 | 16.53 | 16.63 | 16.76 | 16.92 | 17.01 | 16.83 | 17.08 | 17.43 | 17.87 | 18.11 | | CTY | City West | 0.96 | 10.01 | 10.07 | 10.15 | 10.25 | 10.3 | 10.19 | 10.34 | 10.56 | 10.82 | 10.97 | | CLG | Cloghran | 0.991 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | | CLE | Clonee | 0.998 | 127.74 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.7 | | CLO | Cloon | 0.989 | 20.34 | 20.46 | 20.62 | 20.82 | 20.92 | 20.7 | 21.01 | 21.45 | 21.99 | 22.28 | | CLU | Clutterland | 0.998 | 37.92 | 47.9 | 57.88 | 67.86 | 77.84 | 87.82 | 97.8 | 106 | 115.77 | 115.7 | | COL
(N) | COLERAINE | 0.99 | 30.87 | 27.36 | 31.3 | 32.61 | 33.36 | 29.86 | 34.35 | 31.01 | 18.26 | 32.73 | | Table | e C-2: Deman | d Fore | casts (| at Time | of Su | mmer | Peak | | | | | | |------------|--------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | COL | College Park | 0.999 | 17.17 | 17.27 | 17.41 | 17.58 | 17.66 | 17.48 | 17.74 | 18.11 | 18.56 | 18.81 | | COO | Cookstown | 0.997 | 56.35 | 56.69 | 57.13 | 57.68 | 57.97 | 57.36 | 58.21
| 59.43 | 60.92 | 61.73 | | CDG | Coolderrig | 1 | 30 | 36 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | | CPS | COOLKEERAGH | 0.99 | 46.37 | 43.37 | 46.74 | 47.96 | 48.42 | 45.28 | 48.83 | 45.7 | 34.92 | 46.78 | | CLR | Coolroe | 1 | 8.1 | 8.15 | 8.22 | 8.3 | 8.34 | 8.25 | 8.37 | 8.55 | 8.76 | 8.88 | | CDU | Corduff | 0.992 | 24.89 | 25.04 | 25.23 | 25.48 | 25.6 | 25.33 | 25.71 | 26.25 | 26.91 | 27.27 | | CKG | Corkagh | 0.999 | 124.88 | 141.86 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | | COW | Cow Cross | 0.999 | 12.25 | 12.32 | 12.42 | 12.54 | 12.6 | 12.47 | 12.65 | 12.91 | 13.24 | 13.42 | | CRA | Crane | 0.999 | 28.92 | 29.08 | 29.32 | 29.6 | 29.74 | 29.44 | 29.87 | 30.49 | 31.26 | 31.68 | | CRG | CREAGH | 0.99 | 43.63 | 39.38 | 45.96 | 48.84 | 50.7 | 45.94 | 53.32 | 48.4 | 28.63 | 51.32 | | CRE | CREGAGH | 0.99 | 48.24 | 42.83 | 50.92 | 52.74 | 51.1 | 46.46 | 54.9 | 48.99 | 27.36 | 49.05 | | CRH | CRUISERATH | 0.999 | 66.93 | 81.92 | 96.9 | 111.89 | 126.87 | 141.86 | 156.84 | 171.83 | 171.83 | 171.83 | | DAL | Dallow | 0.996 | 14.48 | 14.57 | 14.68 | 14.82 | 14.89 | 14.74 | 14.96 | 15.27 | 15.65 | 15.86 | | DLT | Dalton_A1 | 0.991 | 21.71 | 21.84 | 22.01 | 22.23 | 22.33 | 22.1 | 22.42 | 22.89 | 23.47 | 23.78 | | DTN | Dardistown | 0.974 | 7.2 | 7.25 | 7.3 | 7.37 | 7.41 | 7.33 | 7.44 | 7.6 | 7.79 | 7.89 | | DND | Darndale | 0.994 | 117.29 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | | DON | DONEGALL | 0.99 | 69.55 | 61.31 | 68.97 | 71.33 | 72.21 | 63.78 | 72.39 | 64.27 | 37.59 | 67.38 | | DRE | Donore | 0.981 | 0 | 13.12 | 13.15 | 13.19 | 13.21 | 13.17 | 13.22 | 13.3 | 13.39 | 13.45 | | DOO | Doon | 0.993 | 21.16 | 21.29 | 21.45 | 21.66 | 21.77 | 21.54 | 21.86 | 22.31 | 22.88 | 23.18 | | DRU | Drumline | 0.989 | 19.73 | 19.85 | 20 | 20.2 | 20.29 | 20.08 | 20.38 | 20.8 | 21.33 | 21.61 | | DRU
(N) | DRUMNAKELLY | 0.99 | 64.57 | 56.87 | 64.82 | 67.45 | 68.72 | 61.52 | 70.79 | 63.97 | 37.72 | 67.61 | | DRY | Drybridge | 0.999 | 66.86 | 63.64 | 64.14 | 64.76 | 65.07 | 64.39 | 65.34 | 66.71 | 68.38 | 69.3 | | DDK | Dundalk | 0.998 | 44.74 | 45 | 45.36 | 45.8 | 46.02 | 45.53 | 46.21 | 47.17 | 48.36 | 49.01 | | DUN | DUNGANNON | 0.99 | 74.75 | 65.84 | 75 | 77.92 | 79.24 | 70.46 | 80.34 | 71.62 | 41.66 | 74.69 | | DGN | Dungarvan | 0.995 | 34.39 | 34.59 | 34.87 | 35.2 | 35.37 | 35 | 35.52 | 36.26 | 37.18 | 37.67 | | DMY | Dunmanway | 0.995 | 26.31 | 26.47 | 26.68 | 26.94 | 27.07 | 26.78 | 27.18 | 27.75 | 28.44 | 28.83 | | EDE | EDEN | 0.99 | 27.13 | 23.83 | 27.37 | 28.68 | 29.42 | 26.39 | 30.39 | 27.46 | 16.21 | 29.07 | | ENN | Ennis | 0.997 | 48.35 | 48.64 | 49.02 | 49.49 | 49.73 | 49.21 | 49.94 | 50.98 | 52.26 | 52.97 | | ENN
(N) | Enniskillen | 0.99 | 41.95 | 37.44 | 43.22 | 45.34 | 46.56 | 41.81 | 48.18 | 43.55 | 25.66 | 46 | | FIN (N) | FINAGHY | 0.99 | 24.61 | 22.03 | 23.92 | 25.03 | 26.01 | 23.47 | 27.05 | 23.1 | 13.58 | 24.35 | | F_M | Finglas | 1 | 124.33 | 125.06 | 126.04 | 127.27 | 113.06 | 111.88 | 113.53 | 115.91 | 118.83 | 120.41 | | FTT | Fortunestown | 1 | 11.28 | 11.35 | 11.44 | 11.55 | 11.61 | 11.48 | 11.65 | 11.9 | 12.2 | 12.36 | | GAL | Galway | 0.999 | 66.8 | 67.2 | 67.72 | 68.38 | 68.71 | 67.99 | 68.99 | 70.44 | 72.21 | 73.18 | | Table | : C-2: Deman | d Fore | casts (| at Time | of Su | mmer | Peak | | | | | | |------------|----------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | GIL | Gilra | 0.971 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | | GLS | Glasmore | 0.962 | 51.59 | 51.9 | 52.3 | 52.81 | 53.07 | 52.51 | 53.29 | 54.4 | 55.77 | 56.52 | | GLE
(N) | GLENGORMLEY | 0.99 | 14.22 | 12.76 | 14.54 | 15.17 | 15.12 | 13.46 | 15.75 | 14.15 | 8.34 | 14.94 | | GLE | Glenlara | 0.98 | 10.7 | 10.76 | 10.85 | 10.95 | 11 | 10.89 | 11.05 | 11.28 | 11.56 | 11.72 | | GWE | Gortawee | 0.984 | 30.72 | 30.77 | 30.83 | 30.91 | 30.95 | 30.87 | 30.98 | 31.16 | 31.37 | 31.48 | | GRA | Grange | 0.978 | 43 | 43.25 | 43.59 | 44.02 | 44.23 | 43.77 | 44.41 | 45.34 | 46.48 | 47.11 | | GCA | Grange Castle | 1 | 46.77 | 47.05 | 47.42 | 47.88 | 48.11 | 47.61 | 48.31 | 49.32 | 50.56 | 51.24 | | GI | Great Island | 0.987 | 14.77 | 14.86 | 14.97 | 15.12 | 15.19 | 15.03 | 15.25 | 15.57 | 15.96 | 16.18 | | GRI | Griffinrath | 0.999 | 50.43 | 50.73 | 51.13 | 51.62 | 38.53 | 38.13 | 38.69 | 39.5 | 40.49 | 41.04 | | HX2 | Harolds Cross | 0.96 | 13.89 | 13.97 | 14.08 | 14.21 | 14.28 | 14.13 | 14.34 | 14.64 | 15.01 | 15.21 | | HEU | Heuston Square | 0.999 | 7.2 | 7.25 | 7.3 | 7.37 | 7.41 | 7.33 | 7.44 | 7.6 | 7.79 | 7.89 | | IKE | Ikerrin | 0.991 | 19.25 | 19.37 | 19.52 | 19.71 | 19.8 | 19.6 | 19.89 | 20.3 | 20.81 | 21.09 | | F_I | Inchicore | 1 | 121.56 | 122.29 | 123.24 | 124.44 | 125.03 | 123.72 | 125.56 | 128.18 | 131.4 | 133.17 | | KYT | Kellystown | 0.95 | 114 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | | KBY | Kilbarry | 1 | 63.47 | 63.85 | 60.7 | 61.29 | 61.59 | 60.94 | 61.84 | 63.14 | 64.73 | 65.6 | | KCY | Kilcarbery | 0.99 | 0 | 3.96 | 7.92 | 11.88 | 15.84 | 19.8 | 23.76 | 27.72 | 31.68 | 35.64 | | KKY | Kilkenny | 0.993 | 38.24 | 38.47 | 38.77 | 39.15 | 39.34 | 38.93 | 39.5 | 40.33 | 41.34 | 41.9 | | KTN | Killoteran | 0.987 | 7.93 | 7.98 | 8.04 | 8.12 | 8.16 | 8.07 | 8.19 | 8.37 | 8.58 | 8.69 | | KUD | Kilmahud | 0.987 | 29.61 | 33.56 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | KLP | Kilnap | 0.981 | 0 | 0 | 3.65 | 3.69 | 3.71 | 3.67 | 3.72 | 3.8 | 3.89 | 3.95 | | KIL | Kilteel | 0.992 | 25.39 | 25.54 | 25.75 | 26 | 26.12 | 25.85 | 26.23 | 26.78 | 27.45 | 27.82 | | KIN | Kinnegad | 0.973 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | | KGE | Kishoge | 0.99 | 0 | 2.97 | 4.95 | 7.92 | 9.9 | 12.87 | 14.85 | 17.82 | 19.8 | 21.78 | | KNO | KNOCK | 0.99 | 35.82 | 31.1 | 35.04 | 35.81 | 36.11 | 31.89 | 36.2 | 32.32 | 18.9 | 33.87 | | KUR | Knockumber | 0.907 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | | LAZ | Lanesboro_A1 | 0.996 | 13.3 | 13.38 | 13.48 | 13.62 | 13.68 | 13.54 | 13.74 | 14.02 | 14.38 | 14.57 | | LAR | LARNE | 0.99 | 33.96 | 29.66 | 34.17 | 35.94 | 37.13 | 33.79 | 38.7 | 35.24 | 20.94 | 37.54 | | LET | Letterkenny | 0.994 | 49.23 | 49.52 | 49.91 | 50.4 | 50.64 | 50.11 | 50.85 | 51.91 | 53.22 | 53.93 | | LIM (N) | LIMAVADY | 0.99 | 17.34 | 15.39 | 17.85 | 18.34 | 18.46 | 16.72 | 19.52 | 17.24 | 10.02 | 17.96 | | LIM | Limerick | 0.997 | 60.15 | 60.51 | 72.67 | 73.26 | 73.55 | 72.91 | 73.81 | 75.11 | 76.71 | 77.58 | | LMR | LISAGHMORE | 0.98 | 29.97 | 26.15 | 29.63 | 30.68 | 31.11 | 0 | 31.48 | 28.16 | 16.46 | 29.51 | | LIS (N) | LISBURN | 0.99 | 50.58 | 44.94 | 51.76 | 54.27 | 55.66 | 49.92 | 57.37 | 51.83 | 30.56 | 54.78 | | LIS | Lisdrum | 0.979 | 25.97 | 26.12 | 26.33 | 26.59 | 26.71 | 26.43 | 26.82 | 27.38 | 28.07 | 28.45 | | LOG | LOGUESTOWN | 0.98 | 29.86 | 26.36 | 30.24 | 31.67 | 32.45 | 0 | 33.44 | 30.17 | 17.77 | 31.85 | | Table | : C-2: Deman | d Fore | casts o | at Time | of Su | mmer | Peak | | | | | | |------------|-----------------------|--------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | MCE | Macetown | 1 | 19.92 | 20.02 | 20.14 | 20.29 | 20.36 | 20.2 | 20.43 | 20.76 | 21.17 | 21.39 | | MAC | Macroom | 0.868 | 13.69 | 13.77 | 13.88 | 14.01 | 14.08 | 13.93 | 14.14 | 14.43 | 14.8 | 14.99 | | MAL | Mallow | 0.993 | 17.47 | 17.57 | 17.71 | 17.88 | 17.97 | 17.78 | 18.04 | 18.42 | 18.88 | 19.14 | | MR | Marina | 0.999 | 14.41 | 14.49 | 14.61 | 14.75 | 14.82 | 14.66 | 14.88 | 15.19 | 15.57 | 15.78 | | MTH | Meath Hill | 0.982 | 38.9 | 39.13 | 39.44 | 39.82 | 40.01 | 39.6 | 40.18 | 41.02 | 42.05 | 42.62 | | MTA | Metro Airport | 0.95 | 0 | 0 | 0 | 0 | 0 | 23.75 | 23.75 | 23.75 | 23.75 | 23.75 | | MTN | Metro North | 0.95 | 0 | 0 | 0 | 0 | 0 | 29.45 | 29.45 | 29.45 | 29.45 | 29.45 | | MID | Midleton | 0.997 | 31.99 | 32.19 | 32.44 | 32.76 | 32.91 | 32.56 | 33.05 | 33.74 | 34.59 | 35.05 | | MHL | Misery Hill | 1 | 13.69 | 13.77 | 13.88 | 14.01 | 14.08 | 13.93 | 14.14 | 14.43 | 14.8 | 14.99 | | MON | Monread | 0.991 | 14.25 | 14.33 | 14.44 | 14.58 | 14.65 | 14.5 | 14.71 | 15.02 | 15.4 | 15.61 | | MTN | Mooretown | 0.99 | 0 | 0 | 10.89 | 18.8 | 26.73 | 35 | 43 | 51 | 58.41 | 58.41 | | MOY | Moy | 0.999 | 20.03 | 20.15 | 20.3 | 20.5 | 20.6 | 20.38 | 20.69 | 21.12 | 21.65 | 21.94 | | MLN | Mullagharlin | 0.993 | 6.95 | 6.96 | 6.98 | 7 | 7.02 | 6.99 | 7.03 | 7.08 | 7.15 | 7.18 | | MUL | Mullingar | 0.999 | 36.73 | 36.94 | 37.24 | 37.6 | 37.78 | 37.39 | 37.94 | 38.73 | 39.71 | 40.24 | | MUN | Mungret A | 0.871 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | | NAN | Nangor | 0.973 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | | NAV | Navan | 0.992 | 49.92 | 50.22 | 50.62 | 51.11 | 51.35 | 50.81 | 51.57 | 52.64 | 53.97 | 54.69 | | NNA | Nenagh | 0.982 | 18.53 | 18.64 | 18.79 | 18.97 | 19.06 | 18.86 | 19.14 | 19.54 | 20.03 | 20.3 | | NEW | Newbridge | 0.994 | 34.61 | 34.81 | 35.09 | 35.43 | 35.6 | 35.22 | 35.74 | 36.49 | 37.41 | 37.91 | | NBY | Newbury | 0.982 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | NEW
(N) | NEWRY | 0.99 | 58.08 | 51.03 | 57.74 | 60.03 | 0 | 0 | 63.05 | 56.23 | 32.97 | 59.1 | | NAR | NEWTOWNARDS | 0.99 | 32.27 | 28.56 | 32.75 | 34.24 | 0 | 0 | 35.84 | 32.25 | 18.96 | 33.98 | | NQS | North Quays | 1 | 16.25 | 16.34 | 16.47 | 16.63 | 16.71 | 16.53 | 16.78 | 17.13 | 17.56 | 17.8 | | ODE | Oldbridge | 0.985 | 12.8 | 19.7 | 26.6 | 34 | 41 | 48 | 48 | 48 | 47.28 | 47.28 | | OMA | OMAGH | 0.99 | 44.54 | 39.65 | 0 | 0 | 0 | 0 | 49.65 | 44.53 | 26.08 | 46.75 | | OUG | Oughtragh | 1 | 19.37 | 19.48 | 19.64 | 19.83 | 19.92 | 19.72 | 20.01 |
20.42 | 20.94 | 21.22 | | PTN | Pelletstown | 0.999 | 10.55 | 10.62 | 10.7 | 10.8 | 10.86 | 10.74 | 10.9 | 11.13 | 11.41 | 11.56 | | PLA | Platin | 0.95 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | POP | Poppintree | 1 | 21.12 | 21.24 | 21.41 | 21.62 | 21.72 | 21.49 | 21.81 | 22.27 | 22.83 | 23.13 | | PLS | Portlaoise | 0.998 | 32.67 | 32.86 | 33.12 | 33.44 | 33.61 | 33.25 | 33.74 | 34.45 | 35.32 | 35.79 | | POT | Pottery Road | 0.999 | 11.87 | 11.94 | 12.03 | 12.15 | 12.21 | 12.08 | 12.26 | 12.52 | 12.83 | 13 | | BNM | Power Station
West | 0.99 | 36.27 | 32.13 | 36.67 | 38.25 | 38.93 | 34.75 | 39.87 | 35.67 | 21.01 | 37.66 | | RAT (N) | RATHGAEL | 0.99 | 41.06 | 36.17 | 0 | 0 | 0 | 0 | 45.49 | 41.47 | 24.58 | 44.06 | | Table | : C-2: Deman | d Fore | casts o | at Time | of Su | mmer | Peak | | | | | | |---------|---------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | RAT | Rathkeale | 1 | 31.19 | 31.38 | 31.63 | 31.93 | 32.09 | 31.75 | 32.22 | 32.89 | 33.72 | 34.17 | | RIC | Richmond | 0.987 | 29.43 | 29.6 | 29.84 | 30.13 | 30.27 | 29.95 | 30.4 | 31.03 | 31.81 | 32.24 | | RNW | Rinawade | 0.988 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | | BR | Ringsend | 1 | 86.52 | 87.02 | 87.71 | 88.56 | 88.98 | 88.05 | 89.35 | 91.22 | 93.52 | 94.77 | | ROS | ROSEBANK | 0.99 | 26.62 | 23.65 | 0 | 0 | 0 | 0 | 30.57 | 27.68 | 16.36 | 29.33 | | RYB | Ryebrook | 0.928 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | | SHL | Salthill | 0.999 | 34.15 | 34.35 | 34.62 | 34.96 | 35.12 | 34.76 | 35.27 | 36.01 | 36.91 | 37.41 | | SCR | Screeb | 1 | 15.07 | 15.16 | 15.28 | 15.43 | 15.51 | 15.34 | 15.57 | 15.9 | 16.3 | 16.51 | | SKL | Shankill | 0.983 | 40.6 | 40.84 | 41.17 | 41.57 | 41.77 | 41.33 | 41.94 | 42.82 | 43.89 | 44.48 | | SNG | Singland | 0.998 | 11.44 | 11.5 | 11.59 | 11.71 | 11.76 | 11.64 | 11.81 | 12.06 | 12.36 | 12.53 | | SLI | Sligo | 0.999 | 40.37 | 40.61 | 40.93 | 41.33 | 41.52 | 41.09 | 41.7 | 42.57 | 43.64 | 44.22 | | SOM | Somerset | 0.991 | 18.16 | 18.27 | 18.41 | 18.59 | 18.68 | 18.49 | 18.76 | 19.15 | 19.63 | 19.9 | | SPR | SPRINGTOWN | 0.99 | 25.9 | 22.77 | 0 | 0 | 0 | 0 | 27.91 | 24.95 | 14.58 | 26.13 | | SVN | Stephenstown | 1 | 7.93 | 7.98 | 8.04 | 8.12 | 8.16 | 8.07 | 8.19 | 8.37 | 8.58 | 8.69 | | STR (N) | STRABANE | 0.99 | 31.81 | 28.17 | 0 | 0 | 0 | 0 | 35.28 | 31.63 | 18.5 | 33.16 | | STR | Stratford | 0.994 | 16.89 | 16.99 | 17.13 | 17.29 | 17.38 | 17.19 | 17.45 | 17.81 | 18.26 | 18.51 | | TNY | Taney | 0.999 | 5.6 | 5.63 | 5.68 | 5.73 | 5.76 | 5.7 | 5.79 | 5.91 | 6.05 | 6.14 | | TNB | Thornsberry | 0.99 | 25.33 | 25.48 | 25.68 | 25.93 | 26.06 | 25.78 | 26.16 | 26.71 | 27.38 | 27.75 | | THU | Thurles | 0.996 | 19.92 | 20.04 | 20.2 | 20.39 | 20.49 | 20.27 | 20.57 | 21 | 21.53 | 21.82 | | TIP | Tipperary | 0.991 | 15.73 | 15.83 | 15.95 | 16.1 | 16.18 | 16.01 | 16.25 | 16.59 | 17.01 | 17.23 | | TON | Tonroe | 0.987 | 12.25 | 12.32 | 12.42 | 12.54 | 12.6 | 12.47 | 12.65 | 12.91 | 13.24 | 13.42 | | TBG | Trabeg | 1 | 52.71 | 53.02 | 59.02 | 59.53 | 59.8 | 59.23 | 60.02 | 61.16 | 62.56 | 63.32 | | TRL | Tralee | 0.998 | 38.17 | 38.4 | 38.7 | 39.08 | 39.26 | 38.85 | 39.43 | 40.25 | 41.26 | 41.82 | | TRI | Trien | 0.998 | 16.74 | 16.84 | 16.97 | 17.14 | 17.22 | 17.04 | 17.29 | 17.65 | 18.1 | 18.34 | | TLK | Trillick | 0.995 | 14.95 | 15.04 | 15.16 | 15.3 | 15.38 | 15.21 | 15.44 | 15.76 | 16.16 | 16.38 | | TRN | Trinity | 0.999 | 8.23 | 8.28 | 8.34 | 8.43 | 8.47 | 8.38 | 8.5 | 8.68 | 8.9 | 9.02 | | TBR | Tullabrack | 0.979 | 8.64 | 8.7 | 8.76 | 8.85 | 8.89 | 8.8 | 8.93 | 9.12 | 9.34 | 9.47 | | WLN | Walterstown | 0.973 | 0 | 0 | 0 | 0 | 37.66 | 37.36 | 37.78 | 38.37 | 39.09 | 39.49 | | WAR | WARINGSTOWN | 0.99 | 51.08 | 45.17 | 0 | 0 | 0 | 0 | 55.78 | 49.86 | 29.09 | 52.14 | | WAT | Waterford | 0.992 | 43.22 | 43.48 | 43.82 | 44.25 | 44.46 | 43.99 | 44.65 | 45.58 | 46.72 | 47.35 | | WEX | Wexford | 0.999 | 42.33 | 42.58 | 42.92 | 43.33 | 43.54 | 43.09 | 43.72 | 44.64 | 45.76 | 46.38 | | WHI | Whitegate | 0.87 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | WLT | Wolfe Tone | 0.96 | 20.22 | 20.34 | 20.5 | 20.69 | 20.79 | 20.58 | 20.88 | 21.32 | 21.85 | 22.15 | | YMD | YellowMeadows | 0.99 | 3.96 | 6.93 | 9.9 | 12.87 | 15.84 | 18.8 | 21.78 | 24.75 | 27.72 | 27.72 | | Table | e C-2: Deman | d Fore | casts (| at Time | of Su | mmer | Peak | | | | | | |-------|---------------|--------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | OLD | Oldcourt | 0.949 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | CFM | Castlefarm | 0.901 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | | DFR | Dunfirth | 1 | 7.5 | 7.55 | 7.61 | 7.68 | 7.72 | 7.63 | 7.75 | 7.91 | 8.11 | 8.22 | | FAS | Fass East | 1 | 44.31 | 44.57 | 44.92 | 45.35 | 45.57 | 45.09 | 45.76 | 46.72 | 47.89 | 48.54 | | KER | Knockearagh | 0.993 | 30.78 | 30.96 | 31.21 | 31.51 | 31.66 | 31.33 | 31.79 | 32.46 | 33.27 | 33.72 | | LIB | Liberty St | 0.998 | 17.29 | 17.39 | 17.53 | 17.7 | 17.78 | 17.6 | 17.86 | 18.23 | 18.69 | 18.94 | | MIL | Milltown | 1 | 15.44 | 15.52 | 15.65 | 15.8 | 15.87 | 15.71 | 15.94 | 16.27 | 16.69 | 16.91 | | SHE | Shelton Abbey | 0.956 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | | Snu | Snugborough | 0.998 | 35.93 | 40.92 | 45.9 | 49.9 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | ## Demand Forecasts at Time of Summer Valley | Table | e C-3: Demar | nd Fore | casts o | ıt Time | of Sur | nmer | Valley | | | | | | |------------|--------------|---------|---------|---------|--------|-------|--------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | ADM | Adamstown | 0.986 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.49 | 12.49 | 12.49 | 12.49 | 12.49 | | AGH
(N) | AGHYOULE | 0.99 | 6.07 | 6 | 6.02 | 6.22 | 6.28 | 6.27 | 6.28 | 6.26 | 3.2 | 6.44 | | АНА | Ahane | 0.93 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | | AIR | Airport Road | 0.99 | 0 | 0 | 6.99 | 7.47 | 7.8 | 8.29 | 8.55 | 8.75 | 4.45 | 9.01 | | ATN | Airton | 0.999 | 56.94 | 58.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | 59.94 | | ANR | Anner | 0.897 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | ANT | Antrim | 0.98 | 0 | 13.17 | 13.36 | 13.96 | 14.19 | 14.29 | 14.47 | 14.64 | 7.58 | 15.07 | | AA | Ardnacrusha | 0.998 | 33.17 | 33.16 | 33.14 | 33.13 | 33.11 | 33.1 | 33.09 | 33.08 | 33.07 | 33.07 | | ARD | Ardnagappary | 0.974 | 3 | 3 | 3 | 3 | 3 | 2.99 | 2.99 | 2.99 | 2.99 | 2.99 | | ARI | Arigna | 0.906 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | | ARK | Arklow | 1 | 22.36 | 22.35 | 22.34 | 22.34 | 22.33 | 22.31 | 22.3 | 22.3 | 22.29 | 22.29 | | ART | Artane | 0.982 | 3.69 | 3.69 | 3.69 | 3.69 | 3.68 | 3.68 | 3.68 | 3.68 | 3.68 | 3.68 | | ATH | Athlone | 0.982 | 25.72 | 25.7 | 25.69 | 25.68 | 25.67 | 25.65 | 25.65 | 25.64 | 25.63 | 25.63 | | ATY | Athy | 0.996 | 6.28 | 6.28 | 6.27 | 6.27 | 6.27 | 6.27 | 6.26 | 6.26 | 6.26 | 6.26 | | AGN | Aungierstown | 0.997 | 13.98 | 18.94 | 20.94 | 23.93 | 25.92 | 28.91 | 30.91 | 33.9 | 35.89 | 35.89 | | BEG | Ballybeg | 0.978 | 4.44 | 4.44 | 4.44 | 4.43 | 4.43 | 4.43 | 4.43 | 4.43 | 4.43 | 4.43 | | BDN | Ballydine | 0.992 | 9.44 | 9.44 | 9.44 | 9.44 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | | BLY | Ballylickey | 0.832 | 5.2 | 5.2 | 5.2 | 5.19 | 5.19 | 5.19 | 5.19 | 5.19 | 5.18 | 5.18 | | ВМА | BALLYMENA | 0.99 | 18.72 | 18.3 | 17.8 | 18.15 | 17.82 | 18.09 | 18.89 | 18.5 | 9.56 | 19.05 | | Table | e C-3: Deman | d Fore | casts c | ıt Time | of Sur | nmer | Valley | | | | | | |------------|-----------------------|--------|---------|---------|--------|-------|--------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | BNH | BALLYNAHINCH | 0.99 | 16.61 | 16.64 | 16.92 | 17.74 | 18.21 | 18.46 | 18.86 | 19.29 | 10.09 | 19.86 | | BGT | Ballyragget | 0.977 | 8.05 | 8.05 | 8.05 | 8.04 | 8.04 | 8.03 | 8.03 | 8.03 | 8.03 | 8.03 | | BAL | Baltrasna | 0.962 | 5 | 5 | 5 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.98 | | BAN
(N) | BANBRIDGE | 0.99 | 11.67 | 11.69 | 11.87 | 12.41 | 12.71 | 12.87 | 13.12 | 13.39 | 7 | 13.79 | | ВСТ | Bancroft | 0.986 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | | BAN | Bandon | 1 | 18.46 | 18.46 | 18.45 | 18.44 | 18.43 | 18.42 | 18.41 | 18.41 | 18.41 | 18.4 | | BOG | Banoge | 1 | 3 | 3 | 3 | 3 | 3 | 2.99 | 2.99 | 2.99 | 2.99 | 2.99 | | BAG | Barnageeragh | 0.994 | 14.91 | 20.87 | 26.84 | 32.79 | 35.78 | 35.78 | 35.78 | 36 | 35.78 | 35.78 | | BRY | Barnahely | 0.982 | 30.3 | 30.29 | 30.27 | 30.27 | 30.25 | 30.24 | 30.22 | 30.22 | 30.21 | 30.21 | | BNK | Barnakyle | 1 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 66 | | BDA | Baroda | 0.988 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | | BAR | Barrymore | 0.985 | 14.27 | 14.27 | 14.26 | 14.25 | 14.25 | 14.24 | 14.23 | 14.23 | 14.23 | 14.23 | | CEN | BELFAST
CENTRAL | 0.99 | 14.17 | 13.89 | 13.77 | 14.23 | 14.36 | 14.3 | 14.29 | 14.27 | 7.31 | 14.7 | | BK | Bellacorick | 0.979 | 1.93 | 1.93 | 1.93 | 1.93 | 1.93 | 1.93 | 1.93 | 1.92 | 1.92 | 1.92 | | BIN | Binbane | 0.995 | 7.04 | 7.04 | 7.03 | 7.03 | 7.03 | 7.02 | 7.02 | 7.02 | 7.02 | 7.02 | | BRK | Blackrock | 0.954 | 20.13 | 20.12 | 20.11 | 20.11 | 20.1 | 20.09 | 20.08 | 20.07 | 20.07 | 20.07 | | BLK | Blake | 1 | 7.06 | 7.06 | 7.05 | 7.05 | 7.05 | 7.04 | 7.04 | 7.04 | 7.04 | 7.04 | | Blu | Blundelstown | 0.95 | 0 | 0 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | | BRI | Brinny | 0.971 | 3.95 | 3.95 | 3.95 | 3.95 |
3.95 | 3.95 | 3.95 | 3.95 | 3.95 | 3.95 | | BUT | Butlerstown | 1 | 14.83 | 14.83 | 14.82 | 14.81 | 14.81 | 14.8 | 14.79 | 14.79 | 14.79 | 14.79 | | САВ | Cabra | 0.954 | 3.87 | 3.87 | 3.87 | 3.87 | 3.86 | 3.86 | 3.86 | 3.86 | 3.86 | 3.86 | | САН | Cahir | 1 | 9.52 | 9.52 | 9.51 | 9.51 | 9.51 | 9.5 | 9.5 | 9.49 | 9.49 | 9.49 | | CLW | Carlow | 0.963 | 22.29 | 22.28 | 22.27 | 22.26 | 22.25 | 22.24 | 22.24 | 22.23 | 22.22 | 22.22 | | CAR | CARNMONEY | 0.99 | 11.31 | 11.2 | 11.27 | 11.69 | 11.86 | 11.89 | 11.98 | 12.04 | 6.2 | 12.4 | | COS | Carrick on
Shannon | 1 | 9.02 | 9.02 | 9.01 | 9.01 | 9.01 | 9 | 9 | 9 | 8.99 | 8.99 | | CKM | Carrickmines | 0.998 | 22.37 | 22.36 | 22.35 | 22.34 | 22.33 | 22.32 | 22.32 | 22.31 | 22.3 | 22.3 | | CBG | Carrowbeg | 0.997 | 9.66 | 9.66 | 9.65 | 9.65 | 9.64 | 9.64 | 9.64 | 9.63 | 9.63 | 9.63 | | CBR | Castlebar | 1 | 9 | 9 | 8.99 | 8.99 | 8.99 | 8.98 | 8.98 | 8.98 | 8.97 | 8.97 | | CFM | Castlefarm | 0.901 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 | | CVI | Castleview | 0.992 | 14.48 | 14.48 | 14.47 | 14.46 | 14.46 | 14.45 | 14.44 | 14.44 | 14.44 | 14.44 | | CF | Cath_Fall | 0.986 | 6 | 6 | 6 | 5.99 | 5.99 | 5.99 | 5.99 | 5.98 | 5.98 | 5.98 | | СРК | Central Park | 0.978 | 4.19 | 4.19 | 4.19 | 4.19 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | 4.18 | | СНА | Charleville | 0.994 | 5.74 | 5.74 | 5.74 | 5.73 | 5.73 | 5.73 | 5.73 | 5.72 | 5.72 | 5.72 | | Table | e C-3: Deman | d Fore | casts c | ıt Time | of Sur | mmer | Valley | | | | | | |------------|--------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | CHE | Cherrywood | 1 | 6 | 6 | 6 | 5.99 | 5.99 | 5.99 | 5.99 | 5.98 | 5.98 | 5.98 | | CTY | City West | 0.95 | 10.87 | 10.87 | 10.86 | 10.86 | 10.85 | 10.85 | 10.84 | 10.84 | 10.84 | 10.84 | | CLG | Cloghran | 0.991 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | | CLE | Clonee | 0.998 | 127.74 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | 134.72 | | CLO | Cloon | 0.996 | 11.89 | 11.89 | 11.88 | 11.88 | 11.87 | 11.86 | 11.86 | 11.86 | 11.85 | 11.85 | | CLU | Clutterland | 0.998 | 37.92 | 47.9 | 57.88 | 67.86 | 77.84 | 87.82 | 97.8 | 106 | 115.77 | 115.77 | | COL
(N) | COLERAINE | 0.99 | 11.5 | 11.52 | 11.67 | 12.15 | 12.43 | 12.56 | 12.8 | 13.04 | 6.8 | 13.43 | | COL | College Park | 0.997 | 21.56 | 21.55 | 21.54 | 21.53 | 21.52 | 21.51 | 21.5 | 21.49 | 21.49 | 21.49 | | COO | Cookstown | 0.998 | 23.29 | 23.29 | 23.27 | 23.26 | 23.25 | 23.24 | 23.23 | 23.23 | 23.22 | 23.22 | | CDG | Coolderrig | 1 | 30 | 36 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | | CPS | COOLKEERAGH | 0.99 | 29.79 | 29.81 | 29.93 | 30.39 | 30.56 | 30.61 | 30.71 | 30.78 | 25.53 | 31.1 | | CLR | Coolroe | 1 | 4.75 | 4.75 | 4.75 | 4.74 | 4.74 | 4.74 | 4.74 | 4.74 | 4.74 | 4.74 | | CDU | Corduff | 0.994 | 11.42 | 11.42 | 11.41 | 11.41 | 11.4 | 11.4 | 11.39 | 11.39 | 11.39 | 11.39 | | CKG | Corkagh | 0.999 | 124.88 | 141.86 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.8 | | COW | Cow Cross | 1 | 4 | 4 | 4 | 4 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | | CRA | Crane | 0.995 | 11.71 | 11.71 | 11.7 | 11.7 | 11.69 | 11.68 | 11.68 | 11.68 | 11.68 | 11.68 | | CRG | CREAGH | 0.99 | 16.26 | 16.58 | 17.13 | 18.2 | 18.89 | 19.33 | 19.87 | 20.36 | 10.67 | 20.97 | | CRE | CREGAGH | 0.99 | 17.98 | 18.03 | 18.97 | 19.65 | 19.04 | 19.55 | 20.46 | 20.61 | 10.2 | 21.22 | | CRH | CRUISERATH | 0.999 | 66.93 | 81.92 | 96.9 | 111.89 | 126.87 | 141.86 | 156.84 | 171.83 | 171.83 | 171.8 | | DAL | Dallow | 0.973 | 4.66 | 4.66 | 4.66 | 4.65 | 4.65 | 4.65 | 4.65 | 4.65 | 4.65 | 4.65 | | DLT | Dalton_A1 | 0.991 | 10.91 | 10.91 | 10.9 | 10.9 | 10.89 | 10.89 | 10.88 | 10.88 | 10.88 | 10.88 | | DTN | Dardistown | 0.95 | 7 | 7 | 6.99 | 6.99 | 6.99 | 6.98 | 6.98 | 6.98 | 6.98 | 6.98 | | DND | Darndale | 0.994 | 117.29 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | | DON | DONEGALL | 0.99 | 25.92 | 25.82 | 25.7 | 26.59 | 26.91 | 26.84 | 26.98 | 27.04 | 14.01 | 27.85 | | DRE | Donore | 0.981 | 0 | 11.15 | 11.15 | 11.15 | 11.15 | 11.15 | 11.15 | 11.15 | 11.15 | 11.15 | | DOO | Doon | 1 | 10.27 | 10.27 | 10.26 | 10.26 | 10.25 | 10.25 | 10.24 | 10.24 | 10.24 | 10.24 | | DRU | Drumline | 1 | 9.27 | 9.27 | 9.26 | 9.26 | 9.26 | 9.25 | 9.25 | 9.24 | 9.24 | 9.24 | | DRU
(N) | DRUMNAKELLY | 0.99 | 24.06 | 23.94 | 24.15 | 25.13 | 25.61 | 25.89 | 26.38 | 26.91 | 14.06 | 27.7 | | DRY | Drybridge | 0.967 | 29.61 | 27.94 | 27.93 | 27.92 | 27.91 | 27.89 | 27.88 | 27.87 | 27.87 | 27.87 | | DDK | Dundalk | 1 | 18.93 | 18.92 | 18.91 | 18.91 | 18.9 | 18.89 | 18.88 | 18.88 | 18.87 | 18.8 | | DFR | Dunfirth | 1 | 3.12 | 3.12 | 3.12 | 3.12 | 3.12 | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 | | DUN | DUNGANNON | 0.99 | 27.85 | 27.72 | 27.95 | 29.04 | 29.53 | 29.65 | 29.94 | 30.13 | 15.53 | 31.03 | | DGN | Dungarvan | 0.989 | 14.88 | 14.88 | 14.87 | 14.86 | 14.86 | 14.85 | 14.84 | 14.84 | 14.84 | 14.8 | | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |------------|----------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------| | DMY | Dunmanway | 0.991 | 12.93 | 12.93 | 12.92 | 12.91 | 12.91 | 12.9 | 12.9 | 12.89 | 12.89 | 12.89 | | EDE | EDEN | 0.99 | 10.11 | 10.03 | 10.2 | 10.69 | 10.96 | 11.1 | 11.32 | 11.55 | 6.04 | 11.89 | | ENN | Ennis | 1 | 16.59 | 16.59 | 16.58 | 16.58 | 16.56 | 16.55 | 16.55 | 16.55 | 16.54 | 16.54 | | ENN
(N) | Enniskillen | 0.99 | 15.63 | 15.76 | 16.11 | 16.9 | 17.35 | 17.59 | 17.95 | 18.32 | 9.56 | 18.87 | | FAS | Fass East | 1 | 19.69 | 19.68 | 19.67 | 19.67 | 19.66 | 19.65 | 19.64 | 19.64 | 19.63 | 19.63 | | FIN (N) | FINAGHY | 0.99 | 9.17 | 9.28 | 8.91 | 9.33 | 9.69 | 9.87 | 10.08 | 9.72 | 5.06 | 10.01 | | F_M | Finglas | 0.997 | 65.04 | 65.01 | 64.98 | 64.96 | 58.34 | 58.3 | 58.29 | 58.27 | 58.26 | 58.26 | | FTT | Fortunestown | 0.999 | 6.09 | 6.09 | 6.08 | 6.08 | 6.08 | 6.08 | 6.08 | 6.07 | 6.07 | 6.07 | | GAL | Galway | 1 | 27.03 | 27.02 | 27.01 | 27 | 26.98 | 26.97 | 26.96 | 26.96 | 26.95 | 26.95 | | GIL | Gilra | 0.971 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | 11.42 | | GLS | Glasmore | 0.952 | 27.85 | 27.83 | 27.82 | 27.81 | 27.8 | 27.78 | 27.77 | 27.76 | 27.76 | 27.76 | | GLE
(N) | GLENGORMLEY | 0.99 | 5.3 | 5.37 | 5.42 | 5.65 | 5.63 | 5.66 | 5.87 | 5.95 | 3.11 | 6.13 | | GLE | Glenlara | 0.997 | 8.06 | 8.06 | 8.05 | 8.05 | 8.05 | 8.04 | 8.04 | 8.04 | 8.04 | 8.04 | | GWE | Gortawee | 0.988 | 29.37 | 29.37 | 29.36 | 29.36 | 29.36 | 29.36 | 29.35 | 29.35 | 29.35 | 29.35 | | GRA | Grange | 0.994 | 22.59 | 22.58 | 22.57 | 22.56 | 22.55 | 22.54 | 22.53 | 22.53 | 22.52 | 22.52 | | GCA | Grange Castle | 1 | 31.88 | 31.87 | 31.86 | 31.84 | 31.83 | 31.81 | 31.8 | 31.79 | 31.79 | 31.78 | | GI | Great Island | 1 | 6.87 | 6.87 | 6.86 | 6.86 | 6.86 | 6.86 | 6.85 | 6.85 | 6.85 | 6.85 | | GRI | Griffinrath | 0.997 | 24.15 | 24.13 | 24.12 | 24.11 | 18.17 | 18.16 | 18.16 | 18.15 | 18.15 | 18.15 | | HX2 | Harolds Cross | 0.951 | 6.27 | 6.27 | 6.26 | 6.26 | 6.26 | 6.26 | 6.25 | 6.25 | 6.25 | 6.25 | | HEU | Heuston Square | 0.989 | 6.3 | 6.3 | 6.29 | 6.29 | 6.29 | 6.29 | 6.28 | 6.28 | 6.28 | 6.28 | | IKE | Ikerrin | 0.958 | 10.06 | 10.06 | 10.05 | 10.05 | 10.04 | 10.04 | 10.04 | 10.03 | 10.03 | 10.03 | | F_I | Inchicore | 1 | 56.55 | 56.52 | 56.51 | 56.49 | 56.46 | 56.43 | 56.42 | 56.39 | 56.39 | 56.39 | | KYT | Kellystown | 0.95 | 114 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.85 | 116.8 | | KBY | Kilbarry | 1 | 25.59 | 25.58 | 23.92 | 23.91 | 23.9 | 23.89 | 23.88 | 23.88 | 23.87 | 23.87 | | KCY | Kilcarbery | 0.99 | 0 | 3.96 | 7.92 | 11.88 | 15.84 | 19.8 | 23.76 | 27.72 | 31.68 | 35.64 | | KKY | Kilkenny | 0.998 | 15.23 | 15.22 | 15.22 | 15.21 | 15.21 | 15.2 | 15.19 | 15.19 | 15.18 | 15.18 | | KTN | Killoteran | 0.996 | 5.7 | 5.7 | 5.7 | 5.69 | 5.69 | 5.69 | 5.69 | 5.68 | 5.68 | 5.68 | | KUD | Kilmahud | 0.987 | 29.61 | 33.56 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | KLP | Kilnap | 0.981 | 0 | 0 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | | KIL | Kilteel | 0.99 | 9.66 | 9.66 | 9.65 | 9.65 | 9.64 | 9.64 | 9.64 | 9.63 | 9.63 | 9.63 | | KIN | Kinnegad | 0.973 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | 10.19 | | KGE | Kishoge | 0.99 | 0 | 2.97 | 4.95 | 7.92 | 9.9 | 12.87 | 14.85 | 17.82 | 19.8 | 21.78 | | KNO | KNOCK | 0.99 | 13.35 | 13.09 | 13.06 | 13.34 | 13.45 | 13.42 | 13.49 | 13.6 | 7.04 | 14 | | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | KER | Knockearagh | 0.971 | 15.7 | 15.7 | 15.69 | 15.68 | 15.68 | 15.67 | 15.66 | 15.66 | 15.65 | 15.65 | | KUR | Knockumber | 0.907 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | 23.66 | | LAZ | Lanesboro_A1 | 1 | 5.13 | 5.13 | 5.13 | 5.12 | 5.12 | 5.12 | 5.12 | 5.12 | 5.11 | 5.11 | | LAR | LARNE | 0.99 | 12.66 | 12.49 | 12.73 | 13.39 | 13.84 | 14.22 | 14.42 | 14.83 | 7.8 | 15.27 | | LET | Letterkenny | 0.988 | 17.68 | 17.67 | 17.67 | 17.66 | 17.65 | 17.64 | 17.64 | 17.63 | 17.63 | 17.63 | | LIB | Liberty St | 0.991 | 8.47 | 8.47 | 8.46 | 8.46 | 8.46 | 8.45 | 8.45 | 8.45 | 8.44 | 8.44 | | LIM (N) | LIMAVADY | 0.99 | 6.46 | 6.48 | 6.65 | 6.84 | 6.88 | 7.03 | 7.28 | 7.25 | 3.73 | 7.47 | | LIM | Limerick | 1 | 33.84 | 33.82 | 45.48 | 45.47 | 45.46 | 45.44 | 45.43 | 45.42 | 45.41 | 45.41 | | LMR | LISAGHMORE | 0.98 | 11.17 | 11.01 | 11.04 | 11.43 | 11.59 | 0 | 11.73 | 11.85 | 6.13 | 12.2 | | LIS (N) | LISBURN | 0.99 | 18.85 | 18.92 | 19.29 | 20.22 | 20.74 | 21 | 21.38 | 21.81 | 11.39 | 22.45 | | LIS | Lisdrum | 0.967 | 11 | 11 | 10.99 | 10.99 | 10.98 | 10.98 | 10.97 | 10.97 | 10.97
 10.97 | | LOG | LOGUESTOWN | 0.98 | 11.13 | 11.1 | 11.27 | 11.8 | 12.09 | 0 | 12.46 | 12.69 | 6.62 | 13.07 | | MCE | Macetown | 0.997 | 14.91 | 14.91 | 14.9 | 14.9 | 14.9 | 14.89 | 14.89 | 14.88 | 14.88 | 14.88 | | MAC | Macroom | 0.896 | 9.66 | 9.66 | 9.65 | 9.65 | 9.64 | 9.64 | 9.64 | 9.63 | 9.63 | 9.63 | | MAL | Mallow | 1 | 8.11 | 8.11 | 8.1 | 8.1 | 8.1 | 8.09 | 8.09 | 8.09 | 8.09 | 8.09 | | MR | Marina | 1 | 4.34 | 4.34 | 4.34 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | | MTH | Meath Hill | 0.988 | 17.36 | 17.35 | 17.35 | 17.34 | 17.33 | 17.32 | 17.32 | 17.31 | 17.31 | 17.31 | | MTA | Metro Airport | 0.95 | 0 | 0 | 0 | 0 | 0 | 23.75 | 23.75 | 23.75 | 23.75 | 23.75 | | MTN | Metro North | 0.95 | 0 | 0 | 0 | 0 | 0 | 29.45 | 29.45 | 29.45 | 29.45 | 29.45 | | MID | Midleton | 0.995 | 24.19 | 24.19 | 24.17 | 24.16 | 24.16 | 24.14 | 24.13 | 24.13 | 24.11 | 24.11 | | MIL | Milltown | 0.981 | 6.08 | 6.08 | 6.08 | 6.08 | 6.07 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | | MHL | Misery Hill | 0.993 | 7.1 | 7.1 | 7.09 | 7.09 | 7.09 | 7.08 | 7.08 | 7.08 | 7.08 | 7.08 | | MON | Monread | 0.996 | 7.33 | 7.33 | 7.32 | 7.32 | 7.32 | 7.31 | 7.31 | 7.31 | 7.31 | 7.31 | | MTN | Mooretown | 0.99 | 0 | 0 | 10.89 | 18.8 | 26.73 | 35 | 43 | 51 | 58.41 | 58.41 | | MOY | Moy | 0.999 | 13.53 | 13.53 | 13.52 | 13.51 | 13.51 | 13.5 | 13.5 | 13.49 | 13.49 | 13.49 | | MLN | Mullagharlin | 0.978 | 6.75 | 6.75 | 6.75 | 6.75 | 6.75 | 6.75 | 6.74 | 6.74 | 6.74 | 6.74 | | MUL | Mullingar | 0.995 | 17.45 | 17.45 | 17.44 | 17.43 | 17.42 | 17.41 | 17.41 | 17.41 | 17.39 | 17.39 | | MUN | Mungret A | 0.871 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | 21.5 | | NAN | Nangor | 0.973 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | 11.11 | | NAV | Navan | 0.992 | 17.77 | 17.76 | 17.76 | 17.75 | 17.74 | 17.73 | 17.73 | 17.72 | 17.72 | 17.72 | | NNA | Nenagh | 0.985 | 11.41 | 11.41 | 11.4 | 11.4 | 11.39 | 11.39 | 11.38 | 11.38 | 11.38 | 11.38 | | NEW | Newbridge | 0.996 | 15.04 | 15.04 | 15.03 | 15.02 | 15.02 | 15.01 | 15 | 15 | 15 | 14.99 | | NBY | Newbury | 0.982 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | NEW
(N) | NEWRY | 0.99 | 21.64 | 21.48 | 21.52 | 22.37 | 0 | 0 | 23.5 | 23.66 | 12.29 | 24.36 | | Table | : C-3: Deman | d Fore | casts c | ıt Time | of Sur | nmer | Valley | | | | | | |---------|-----------------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | NAR | NEWTOWNARDS | 0.99 | 12.03 | 12.03 | 12.2 | 12.76 | 0 | 0 | 13.36 | 13.57 | 7.06 | 13.97 | | NQS | North Quays | 0.996 | 10.79 | 10.79 | 10.78 | 10.78 | 10.77 | 10.77 | 10.76 | 10.76 | 10.76 | 10.76 | | ODE | Oldbridge | 0.985 | 12.8 | 19.7 | 26.6 | 34 | 41 | 48 | 48 | 48 | 47.28 | 47.28 | | OLD | Oldcourt | 0.949 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | OMA | OMAGH | 0.99 | 16.6 | 16.69 | 0 | 0 | 0 | 0 | 18.5 | 18.73 | 9.72 | 19.29 | | OUG | Oughtragh | 0.987 | 10.57 | 10.57 | 10.56 | 10.56 | 10.55 | 10.55 | 10.54 | 10.54 | 10.54 | 10.54 | | PTN | Pelletstown | 0.975 | 3.5 | 3.5 | 3.5 | 3.5 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | | PLA | Platin | 0.95 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | POP | Poppintree | 0.998 | 7.79 | 7.79 | 7.78 | 7.78 | 7.78 | 7.77 | 7.77 | 7.77 | 7.77 | 7.77 | | PLS | Portlaoise | 0.972 | 15.61 | 15.6 | 15.6 | 15.59 | 15.58 | 15.58 | 15.57 | 15.57 | 15.56 | 15.56 | | POT | Pottery Road | 1 | 7.29 | 7.29 | 7.28 | 7.28 | 7.28 | 7.27 | 7.27 | 7.27 | 7.27 | 7.27 | | BNM | Power Station
West | 0.99 | 13.52 | 13.52 | 13.66 | 14.25 | 14.51 | 14.62 | 14.86 | 15 | 7.83 | 15.45 | | RAT (N) | RATHGAEL | 0.99 | 15.3 | 15.23 | 0 | 0 | 0 | 0 | 16.95 | 17.45 | 9.16 | 17.97 | | RAT | Rathkeale | 0.997 | 19 | 18.99 | 18.98 | 18.98 | 18.97 | 18.96 | 18.95 | 18.95 | 18.94 | 18.94 | | RIC | Richmond | 0.999 | 10 | 10 | 9.99 | 9.99 | 9.98 | 9.98 | 9.98 | 9.97 | 9.97 | 9.97 | | RNW | Rinawade | 0.988 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | 9.13 | | BR | Ringsend | 1 | 45.86 | 45.85 | 45.82 | 45.8 | 45.79 | 45.76 | 45.74 | 45.74 | 45.72 | 45.72 | | ROS | ROSEBANK | 0.99 | 9.92 | 9.96 | 0 | 0 | 0 | 0 | 11.39 | 11.64 | 6.1 | 11.99 | | RYB | Ryebrook | 0.928 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | | SHL | Salthill | 0.978 | 13.61 | 13.61 | 13.6 | 13.59 | 13.59 | 13.58 | 13.58 | 13.57 | 13.57 | 13.57 | | SCR | Screeb | 0.926 | 7 | 7 | 6.99 | 6.99 | 6.99 | 6.98 | 6.98 | 6.98 | 6.98 | 6.98 | | SKL | Shankill | 1 | 19.48 | 19.47 | 19.46 | 19.46 | 19.45 | 19.44 | 19.43 | 19.43 | 19.42 | 19.42 | | SHE | Shelton Abbey | 0.956 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | 2.29 | | SNG | Singland | 0.999 | 4.84 | 4.84 | 4.84 | 4.83 | 4.83 | 4.83 | 4.83 | 4.83 | 4.83 | 4.83 | | SLI | Sligo | 0.998 | 19.66 | 19.65 | 19.64 | 19.64 | 19.63 | 19.62 | 19.61 | 19.61 | 19.6 | 19.6 | | Snu | Snugborough | 0.998 | 35.93 | 40.92 | 45.9 | 49.9 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | 52.89 | | SOM | Somerset | 1 | 11 | 11 | 10.99 | 10.99 | 10.98 | 10.98 | 10.97 | 10.97 | 10.97 | 10.97 | | SPR | SPRINGTOWN | 0.99 | 9.65 | 9.59 | 0 | 0 | 0 | 0 | 10.4 | 10.5 | 5.43 | 10.81 | | SVN | Stephenstown | 0.979 | 3.5 | 3.5 | 3.5 | 3.5 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | | STR (N) | STRABANE | 0.99 | 11.85 | 11.86 | 0 | 0 | 0 | 0 | 13.15 | 13.31 | 6.89 | 13.7 | | STR | Stratford | 1 | 5.93 | 5.93 | 5.93 | 5.92 | 5.92 | 5.92 | 5.92 | 5.91 | 5.91 | 5.91 | | TNY | Taney | 0.994 | 3.5 | 3.5 | 3.5 | 3.5 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | | TNB | Thornsberry | 0.974 | 11.53 | 11.53 | 11.52 | 11.52 | 11.51 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | | THU | Thurles | 0.978 | 10.42 | 10.42 | 10.41 | 10.41 | 10.4 | 10.4 | 10.39 | 10.39 | 10.39 | 10.39 | | Table C-3: Demand Forecasts at Time of Summer Valley | | | | | | | | | | | | | |--|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | TIP | Tipperary | 0.993 | 10.53 | 10.53 | 10.52 | 10.52 | 10.51 | 10.51 | 10.5 | 10.5 | 10.5 | 10.5 | | TON | Tonroe | 0.994 | 7.09 | 7.09 | 7.08 | 7.08 | 7.08 | 7.07 | 7.07 | 7.07 | 7.07 | 7.07 | | TBG | Trabeg | 1 | 26.91 | 26.9 | 32.46 | 32.46 | 32.45 | 32.44 | 32.42 | 32.41 | 32.41 | 32.41 | | TRL | Tralee | 0.977 | 15.1 | 15.1 | 15.09 | 15.08 | 15.08 | 15.07 | 15.06 | 15.06 | 15.06 | 15.05 | | TRI | Trien | 0.991 | 6.38 | 6.38 | 6.37 | 6.37 | 6.37 | 6.37 | 6.36 | 6.36 | 6.36 | 6.36 | | TLK | Trillick | 0.984 | 6.29 | 6.29 | 6.28 | 6.28 | 6.28 | 6.28 | 6.27 | 6.27 | 6.27 | 6.27 | | TRN | Trinity | 0.984 | 5.49 | 5.49 | 5.49 | 5.48 | 5.48 | 5.48 | 5.48 | 5.47 | 5.47 | 5.47 | | TBR | Tullabrack | 0.921 | 3.8 | 3.8 | 3.8 | 3.8 | 3.79 | 3.79 | 3.79 | 3.79 | 3.79 | 3.79 | | WLN | Walterstown | 0.973 | 0 | 0 | 0 | 0 | 22.02 | 22.01 | 22.01 | 22.01 | 22 | 22 | | WAR | WARINGSTOWN | 0.99 | 19.03 | 19.02 | 0 | 0 | 0 | 0 | 20.79 | 20.98 | 10.84 | 21.6 | | WAT | Waterford | 0.999 | 21 | 20.99 | 20.98 | 20.98 | 20.97 | 20.95 | 20.95 | 20.94 | 20.94 | 20.94 | | WEX | Wexford | 0.999 | 20.07 | 20.06 | 20.06 | 20.05 | 20.04 | 20.02 | 20.02 | 20.01 | 20.01 | 20.01 | | WHI | Whitegate | 0.87 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | WLT | Wolfe Tone | 0.927 | 9 | 9 | 8.99 | 8.99 | 8.99 | 8.98 | 8.98 | 8.98 | 8.97 | 8.97 | | YMD | YellowMeadows | 0.99 | 3.96 | 6.93 | 9.9 | 12.87 | 15.84 | 18.8 | 21.78 | 24.75 | 27.72 | 27.72 | ## Demand Forecasts at Time of Autumn Peak – Northern Ireland only | Table C-4: Demand Forecasts at Time of Autumn Peak – Northern Ireland only | | | | | | | | | | | | | |--|-----------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | AGH (N) | AGHYOULE | 0.99 | 18.02 | 17.81 | 17.85 | 18.45 | 18.64 | 18.59 | 18.63 | 18.57 | 18.97 | 19.2 | | AIR | Airport Road | 0.99 | 0 | 0 | 20.74 | 22.16 | 23.13 | 24.6 | 25.36 | 25.97 | 26.42 | 26.74 | | ANT | Antrim | 0.98 | 0 | 39.09 | 39.64 | 41.4 | 42.09 | 42.41 | 42.93 | 43.42 | 44.99 | 45.54 | | ВМА | BALLYMENA | 0.99 | 55.56 | 54.28 | 52.81 | 53.84 | 52.85 | 53.64 | 56.06 | 54.88 | 56.69 | 57.38 | | BNH | BALLYNAHINCH | 0.99 | 49.29 | 49.36 | 50.21 | 52.63 | 54.03 | 54.77 | 55.97 | 57.22 | 59.89 | 60.62 | | BAN (N) | BANBRIDGE | 0.99 | 34.62 | 34.68 | 35.21 | 36.82 | 37.72 | 38.18 | 38.92 | 39.73 | 41.52 | 42.03 | | CEN | BELFAST CENTRAL | 0.99 | 42.05 | 41.22 | 40.86 | 42.2 | 42.61 | 42.43 | 42.41 | 42.34 | 43.38 | 43.91 | | BNM | Belfast North | 0.99 | 40.1 | 40.13 | 40.54 | 42.28 | 43.04 | 43.38 | 44.08 | 44.51 | 46.45 | 47.02 | | CAR | CARNMONEY | 0.99 | 33.55 | 33.23 | 33.43 | 34.67 | 35.19 | 35.27 | 35.55 | 35.72 | 36.81 | 37.26 | | COL (N) | COLERAINE | 0.99 | 34.13 | 34.17 | 34.61 | 36.05 | 36.88 | 37.28 | 37.98 | 38.7 | 40.37 | 40.86 | | CPS | COOLKEERAGH | 0.99 | 29.21 | 29.25 | 29.62 | 30.96 | 31.47 | 31.63 | 31.94 | 32.13 | 33.1 | 33.5 | | CRG | CREAGH | 0.99 | 48.24 | 49.19 | 50.81 | 53.99 | 56.05 | 57.36 | 58.96 | 60.41 | 63.3 | 64.07 | | CRE | CREGAGH | 0.99 | 53.34 | 53.49 | 56.29 | 58.3 | 56.5 | 58 | 60.69 | 61.15 | 60.49 | 61.23 | | DON | DONEGALL | 0.99 | 76.91 | 76.59 | 76.25 | 78.86 | 79.83 | 79.63 | 80.04 | 80.22 | 83.11 | 84.11 | | Table (| C-4: Demand Fo | recasts | at Tir | ne of | Autu | mn Pe | ak – N | orther | n Irelo | and on | ly | | |---------|----------------|---------|--------|-------|-------|-------|--------|--------|---------|--------|-------|-------| | Code | Station | PF | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | DRU (N) | DRUMNAKELLY | 0.99 | 71.39
 71.04 | 71.66 | 74.57 | 75.98 | 76.81 | 78.26 | 79.85 | 83.39 | 84.41 | | DUN | DUNGANNON | 0.99 | 82.64 | 82.24 | 82.92 | 86.15 | 87.61 | 87.96 | 88.83 | 89.39 | 92.12 | 93.24 | | EDE | EDEN | 0.99 | 29.99 | 29.76 | 30.26 | 31.71 | 32.52 | 32.94 | 33.6 | 34.27 | 35.85 | 36.29 | | ENN (N) | Enniskillen | 0.99 | 46.38 | 46.76 | 47.78 | 50.12 | 51.48 | 52.19 | 53.27 | 54.36 | 56.74 | 57.43 | | FIN (N) | FINAGHY | 0.99 | 27.21 | 27.52 | 26.44 | 27.67 | 28.75 | 29.29 | 29.9 | 28.84 | 30.03 | 30.4 | | GLE (N) | GLENGORMLEY | 0.99 | 15.72 | 15.94 | 16.07 | 16.77 | 16.72 | 16.81 | 17.41 | 17.66 | 18.43 | 18.65 | | KNO | KNOCK | 0.99 | 39.61 | 38.85 | 38.74 | 39.59 | 39.92 | 39.81 | 40.03 | 40.34 | 41.78 | 42.29 | | LAR | LARNE | 0.99 | 37.55 | 37.05 | 37.77 | 39.73 | 41.05 | 42.18 | 42.79 | 43.98 | 46.31 | 46.87 | | LIM (N) | LIMAVADY | 0.99 | 19.18 | 19.23 | 19.74 | 20.28 | 20.41 | 20.87 | 21.59 | 21.52 | 22.16 | 22.42 | | LMR | LISAGHMORE | 0.98 | 33.13 | 32.67 | 32.75 | 33.91 | 34.39 | 34.45 | 34.8 | 35.14 | 36.4 | 36.84 | | LIS (N) | LISBURN | 0.99 | 55.93 | 56.13 | 57.22 | 60 | 61.53 | 62.32 | 63.43 | 64.7 | 67.56 | 68.38 | | LOG | LOGUESTOWN | 0.98 | 33.01 | 32.92 | 33.43 | 35.01 | 35.87 | 36.28 | 36.97 | 37.65 | 39.28 | 39.76 | | NEW (N) | NEWRY | 0.99 | 64.22 | 63.73 | 63.83 | 66.37 | 67.49 | 69.57 | 69.71 | 70.18 | 72.9 | 73.78 | | NAR | NEWTOWNARDS | 0.99 | 35.68 | 35.68 | 36.21 | 37.85 | 38.69 | 39.05 | 39.63 | 40.26 | 41.91 | 42.42 | | OMA | OMAGH | 0.99 | 49.24 | 49.53 | 50.16 | 52.35 | 53.64 | 54.14 | 54.9 | 55.58 | 57.67 | 58.37 | | RAT (N) | RATHGAEL | 0.99 | 45.39 | 45.18 | 45.74 | 47.73 | 48.78 | 49.27 | 50.3 | 51.77 | 54.35 | 55.01 | | ROS | ROSEBANK | 0.99 | 29.43 | 29.54 | 30.15 | 31.68 | 32.59 | 33.09 | 33.8 | 34.55 | 36.18 | 36.62 | | SPR | SPRINGTOWN | 0.99 | 28.64 | 28.44 | 28.55 | 29.81 | 30.35 | 30.52 | 30.86 | 31.14 | 32.23 | 32.62 | | STR (N) | STRABANE | 0.99 | 35.17 | 35.19 | 35.69 | 37.29 | 38.12 | 38.46 | 39.01 | 39.48 | 40.9 | 41.4 | | WAR | WARINGSTOWN | 0.99 | 56.47 | 56.42 | 57.04 | 59.45 | 60.57 | 60.95 | 61.67 | 62.23 | 64.32 | 65.1 | # Appendix D: Generation Capacity Details #### **D.1 Generation Capacity Details** Table D-1 lists existing and committed future transmission connected generation, their connection details and the Registered Capacity¹ of each unit as at the data freeze date. All generation capacity figures in Table D-1 are expressed in exported terms. Exported terms are given by the generation unit output less than the unit's own auxiliary load. The units are grouped in these tables on a geographical basis. Table D-2 lists the existing and committed future wind generation. The wind generation included in this table is wind generation that feeds into each 110 kV transmission station, from the distribution system. The respective MW capacity over the period of the statement is included. Table D-2 is based on the wind farms that had connection agreements with the DSO at the data freeze date. Table D-3 lists the existing and committed distribution connected generation, excluding wind generation, as at the data freeze date. Their respective MW capacity over the period of the statement is included. ## MEC of Existing and Committed Transmission-Connected Generation | Area | Generation station | Unit ID | Connecte | d at | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |-------|---|---------|-------------|--------|-----------|-----------------------------------|---------------------------------------| | | Croaghonagh Phase 1 | 1 | Croaghonagh | 110 kV | Wind | 2024 | 91.2 | | | Croaghonagh Phase 2 | 1 | Croaghonagh | 110 kV | Wind | 2024 | 48 | | | Erne Cathleens Fall
Hydro (3) | 3 | Cath_Fall | 110 kV | Hydro | | 22.5 | | | Erne Cathleens Fall
Hydro (4) | 4 | Cath_Fall | 110 kV | Hydro | | 23 | | | Erne Cliff Hydro (1) | 1 | Cliff | 110 kV | Hydro | | 10 | | | Erne Cliff Hydro (2) | 2 | Cliff | 110 kV | Hydro | | 10 | | | Garvagh - Glebe (1a) | 1 | Garvagh | 110 kV | Wind | | 26 | | | Garvagh - Tullynahaw
(1c) | 1 | Garvagh | 110 kV | Wind | | 22 | | | Glen Solar | 1 | Aghaleague | 110 kV | solar | 2025 | 40 | | | Golagh (1) 12 MW wind | 1 | Golagh | 110 kV | Wind | | 12 | | | Golagh repower 60 MW wind | 3 | Golagh | 110 kV | Wind | 2026 | 60 | | | Lenalea | 1 | Lenalea | 110 kV | Wind | 2024 | 30.5 | | order | Meentycat (1) | 1 | Meentycat | 110 kV | Wind | | 52.9 | | order | Meentycat (1) | 2 | Meentycat | 110 kV | Wind | | 18.06 | | | Meentycat (2) | 3 | Meentycat | 110 kV | Wind | | 14 | | | Mully Graffy | 1 | Tievebrack | 110 kV | Wind | 2025 | 29.9 | | | Mulreavy (1) | 1 | Mulreavy | 110 kV | wind | | 82 | | | Spaddan (1) | 1 | Cath_Fall | 110 kV | Wind | | 17.5 | | | Firlough WF | 1 | Firlough | 110 kV | Wind | 2027 | 48.3 | | | Firlough Windfarm | 2 | Firlough | 110 kV | Wind | 2027 | 27.3 | | | Kingsmountain (1) | 1 | Cunghill | 110 kV | Wind | | 23.75 | | | Kingsmountain (2) | 2 | Cunghill | 110 kV | Wind | | 11.05 | | | Ardagh South Energy
Storage Facility | 1 | Meath Hill | 110 kV | Battery | 2025 | 60 | | | Bellewstown (Platin
OCGT) | 1 | Bellewstown | 110 kV | Gas | 2026 | 57 | | | Monvallet Battery | 1 | Louth | 220 kV | Battery | 2026 | 133.5 | | | Monvallet Solar | 1 | Louth | 220 kV | Solar | 2026 | 50 | | | Mountain Lodge (1) | 2 | Ratrussan | 110 kV | Wind | | 24.8 | | Table E | 0-1: MEC of Existing | and Co | mmitted Trar | nsmissio | n-Connect | ed Generati | on | |---------|----------------------|---------|--------------|----------|-----------|-----------------------------------|---------------------------------------| | Area | Generation station | Unit ID | Connected | lat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | | | Mountain Lodge (3) | 3 | Ratrussan | 110 kV | Wind | | 5.82 | | | Oriel (1) offshore | OS | Oriel | 220 kV | Wind | 2027 | 210 | | Border | Oriel (2) offshore | 2 | Oriel | 220 kV | Wind | 2029 | 160 | | | Ratrussan (1a) | 1 | Ratrussan | 110 kV | Wind | | 48 | | | Border Area Total | | | | | | 1469.08 | | | Nangor | 1 | Nangor | 110 kV | CHP | | 5.4 | |--------|-------------------------------|---|---------------------------|--------|------------|------|--------| | | Nangor | 1 | Nangor | 110 kV | СНР | | 8 | | | Poolbeg (1) | 1 | Poolbeg North | 220 kV | Gas/Oil | | 115 | | | Poolbeg (2) | 2 | Poolbeg North | 220 kV | Gas/Oil | | 115 | | | Poolbeg (3) | 3 | Poolbeg North | 220 kV | Gas/Oil | | 255 | | | Dublin Array offshore | 1 | Dublin Array
Jamestown | 220 kV | Wind | 2027 | 824 | | | Kish Battery (Crag) | 1 | Oaklands | 110 kV | Battery | 2026 | 114 | | | North Arklow Battery
30 MW | 2 | Killinskyduff | 110 kV | Battery | 2026 | 30 | | | North Arklow Solar 47
MW | 1 | Killinskyduff | 110 kV | Solar | 2026 | 47.11 | | | Ballymakaily | 1 | Grange Castle | 110 kV | Gas | 2024 | 57.6 | | | Blundelstown | 1 | Blundelstown | 110 kV | Solar | | 60 | | Dublin | Cloncreen Battery | 2 | Kilcumber | 110 kV | Battery | | 25 | | | Cloncreen Wind farm | 1 | Kilcumber | 110 kV | Wind | | 75 | | | Clonfad Solar | 1 | Clonfad | 110 kV | solar | 2025 | 100 | | | Clonin North Solar Farm | 1 | Derryiron | 110 kV | Solar | 2026 | 47 | | | Codling 1 offshore | 1 | Codling 1 | 220 kV | Wind | 2027 | 483 | | | Codling 2 offshore | 1 | Codling 1 | 220 kV | Wind | 2027 | 483 | | | Codling 3 offshore | 1 | Codling 1 | 220 kV | Wind | 2027 | 483 | | | Corduff Flex | 1 | Corduff | 220 kV | distillate | 2024 | 63.5 | | | Cushaling ESPS | 2 | Philipstown | 110 kV | Battery | 2024 | 20 | | | Cushaling Wind Farm | 1 | Philipstown | 110 kV | Wind | 2024 | 50 | | | Derrygreenagh 100 MW | 1 | Derrygreenagh | 220 kV | Gas | 2029 | 100 | | | Dooray Wind Farm | 1 | Portlaoise | 110 kV | Wind | 2025 | 45.001 | | | Dublin Bay Power | 1 | Irishtown | 220 kV | Gas | | 422.1 | | Area | Generation station | Unit ID | Connected | dat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |--------|---------------------------------------|---------|--------------|--------|---------------------------------------|-----------------------------------|---------------------------------------| | | East Laois Solar extension | 2 | Coolnabacky | 380 kV | solar | 2025 | 25 | | | East West
Interconnector | 1 | Woodland | 380 kV | interconnector | | 500 | | | Edenderry Peaking | 3 | Cushaling | 110 kV | distillate | | 58.274 | | | Edenderry Peaking | 5 | Cushaling | 110 kV | distillate | | 58.274 | | | Edenderry Power | 1 | Cushaling | 110 kV | Peat | | 133.5 | | | Fieldstown Solar | 1 | Finglas | 220 kV | Solar | 2026 | 75 | | | Fieldstown Solar extension 1 | 2 | Finglas | 220 kV | solar | 2026 | 18.27 | | | Gallanstown Solar | 1 | Gallanstown | 110 kV | Solar | | 119 | | | Garr Battery | 1 | Derryiron | 110 kV | Battery | 2026 | 50 | | | Garr Solar | 1 | Derryiron | 110 kV | Solar | 2026 | 85 | | | Glanbia Ballyraggett
CHP (1) | 1 | Ballyragget | 110 kV | CHP | | 7.5 | | | Greener Ideas | 1 | Baldonnell | 110 kV | Gas Fired
Reciprocating
Engines | 2025 | 100 | | Dublin | Harlockstown Solar | 1 | Gallanstown | 110 kV | Solar | 2025 | 31.6 | | | Harristown Solar PV | 1 | Harristown | 110 kV | Solar | 2025 | 42.3 | | | Huntstown (1) | СТ | Huntstown | 220 kV | Gas | | 236.2 | | | Huntstown (1) | ST | Huntstown | 220 kV | Gas | | 123 | | | Huntstown (2) | 2 | Huntstown | 220 kV | Gas | | 412 | | | Huntstown BES | B1 | Huntstown | 220 kV | Battery | 2026 | 10 | | | Huntstown TEG - 110 tail from Finglas | 1 | Finglas | 220 kV | Gas | | 50 | | | Kilshane | 1 | CRUISERATH | 220 kV | Gas | 2024 | 293 | | | Liffey Hydro (1) | 1 | Pollaphuca | 110 kV | Hydro | | 15 | | | Liffey Hydro (2) | 2 | Pollaphuca | 110 kV | Hydro | | 15 | | | Loughteague | 1 | Coolnabacky | 380 kV | solar | 2025 | 55 | | | Moanvane | 1 | Bogtown | 110 kV | Wind | 2024 | 56.4 | | | Mountlucas (1) | 1 | Mount Lucas | 110 kV |
Wind | | 79.2 | | | NISA Belcamp offshore | 1 | NISA Belcamp | 220 kV | Wind | 2027 | 500 | | | North Wall TEG | 1 | North Wall | 220 kV | Gas | | 32.24 | | | North Wall TEG | 2 | North Wall | 220 kV | Gas | | 32.24 | | Area | Generation station | Unit ID | Connected | dat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |--------|---|---------|---------------|--------|------------|-----------------------------------|---------------------------------------| | | North Wall TEG | 3 | North Wall | 220 kV | Gas | | 32.24 | | | North Wall TEG | 4 | North Wall | 220 kV | Gas | | 32.24 | | | North Wall TEG | 5 | North Wall | 220 kV | Gas | | 32.24 | | | North Wall TEG | 6 | North Wall | 220 kV | Gas | | 32.24 | | | PBEGG_BESS | 1 | Poolbeg North | 220 kV | Battery | | 75 | | | PBEGG_FLEX | 1 | Poolbeg North | 220 kV | distillate | | 63.5 | | | Porterstown Battery
Storage Facility | 1 | Kilteel | 110 kV | Battery | | 30 | | | Porterstown BS Facility
Ph.2 | 2 | Kilteel | 110 kV | Battery | 2025 | 60 | | | Rathlockstown Solar will
be TG553 | 1 | Gallanstown | 110 kV | Solar | 2025 | 18.9 | | | Rhode PCP (1) | 1 | Derryiron | 110 kV | Distillate | | 52.1 | | | Rhode PCP (2) | 2 | Derryiron | 110 kV | Distillate | | 52.1 | | Dublin | Ringsend Flex at
Irishtown | 1 | Irishtown | 220 kV | distillate | | 63.5 | | | Shellybanks Combined Cycle | 14 | Shellybanks | 220 kV | Gas/DO | | 150 | | | Shellybanks Combined
Cycle | 15 | Shellybanks | 220 kV | Gas/DO | | 150 | | | Shellybanks Combined
Cycle | 16 | Shellybanks | 220 kV | Gas/DO | | 173.1875 | | | Southbank Pbeg OCGT
T-4 2026-27 | 1 | SOUTHBANK | 220 kV | Gas | 2026 | 300 | | | SouthWall BESS at
Irishtown | 1 | Irishtown | 220 kV | Battery | | 30 | | | Timahoe North | 1 | Timahoe | 110 kV | solar | 2024 | 70 | | | Yellow River Wind Farm | 1 | Derryiron | 110 kV | Wind | 2026 | 110.2 | | | Timahoe North | 1 | Timahoe | 110 kV | solar | 2024 | 70 | | | Yellow River Wind Farm | 1 | Derryiron | 110 kV | Wind | 2026 | 110.2 | | | Dublin Area Total | 1 | 1 | | | 1 | 8883.1565 | | Area | Generation station | Unit ID | Connecte | d at | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |----------|---|---------|---------------|--------|-------------------------|-----------------------------------|---------------------------------------| | | Garballagh 2 Solar | 1 | Garballagh | 110 kV | Solar | 2026 | 48 | | | Gaskinstown | 1 | Deenes | 110 kV | Solar | 2024 | 85 | | | Gillinstown Solar | 1 | Garballagh | 110 kV | Solar | | 95 | | | Gorman Battery Energy
Storage | 1 | Gorman | 110 kV | Battery | | 50 | | | Lisdrumdoagh Energy
Storage Facility | 1 | Lisdrum | 110 kV | Battery | | 60 | | | Manusmore Solar | 1 | Drumline | 110 kV | Solar | 2026 | 60 | | | Milltown Solar | 1 | Balruntagh | 110 kV | solar | 2026 | 115 | | Mid-East | Arklow Banks 2 offshore
Glenart | 1 | Glenart | 220 kV | Wind | 2027 | 800 | | | Raheenleagh (1) | 1 | Arklow | 220 kV | Wind | | 35.2 | | | Turlough Hill (1) | 1 | Turlough Hill | 220 kV | Pumped
Storage Hydro | | 73 | | | Turlough Hill (2) | 2 | Turlough Hill | 220 kV | Pumped
Storage Hydro | | 73 | | | Turlough Hill (3) | 3 | Turlough Hill | 220 kV | Pumped
Storage Hydro | | 73 | | | Turlough Hill (4) | 4 | Turlough Hill | 220 kV | Pumped
Storage Hydro | | 73 | | | Mid-East Area Total | 1 | 1 | | 1 | | 1640.2 | | Area | Generation station | Unit ID | Connected | lat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |----------|---------------------------|---------|---------------|--------|---------------------------------------|-----------------------------------|---------------------------------------| | | Lanesboro (2) | 2 | Lanesboro_A1 | 110 kV | Peat | | 40 | | | Lanesboro (3) | 3 | Lanesboro_A1 | 110 kV | Peat | | 45 | | | Blackwater Bog Solar 1 | 1 | Derrylahan | 110 kV | solar | 2025 | 65 | | | Cloghan Wind Farm | 1 | Derrycarney | 110 kV | Wind | 2024 | 34 | | | Clondardis Solar | 1 | Shanonagh | 110 kV | Solar | 2026 | 58.6 | | | Coole Wind Farm | 1 | Lickny | 110 kV | Wind | 2024 | 88 | | | Coole Wind Farm extension | 2 | Lickny | 110 kV | Wind | 2024 | 9.5 | | | Cuilleen OCGT | 1 | Cuilleen | 110 kV | Gas Fired
Reciprocating
Engines | 2025 | 100 | | | Derryadd Battery | 1 | Rappareehill | 110 kV | Battery | 2026 | 16 | | | Derryadd Wind Farm | 1 | Rappareehill | 110 kV | Wind | 2026 | 90 | | | Drehid | 1 | Mulgeeth | 110 kV | Wind | 2026 | 60 | | | Lumcloon Batt | 1 | Derrycarney | 110 kV | Battery | | 100 | | | Pinewoods Wind Farm | 1 | Garrintaggart | 110 kV | Wind | 2026 | 49.5 | | Midlands | Shannonbridge 1 TEG | 1 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 2 TEG | 2 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 3 TEG | 3 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 4 TEG | 4 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 5 TEG | 5 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 6 TEG | 6 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 7 TEG | 7 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge 8 TEG | 8 | Shannonbridge | 220 kV | Gas | 2024 | 38.75 | | | Shannonbridge ESS | 1 | Shannonbridge | 220 kV | Battery | | 100 | | | Shannonbridge ESS | 1 | Shannonbridge | 220 kV | Battery | 2024 | 63.2 | | | Sliabh Bawn (1) | 1 | Sliabh Bawn | 110 kV | Wind | | 58 | | | Stonestown | 1 | Stonestown | 110 kV | Wind | 2026 | 105 | | | Tynagh | СТ | Tynagh | 220 kV | Gas | | 268 | | | Tynagh | ST | Tynagh | 220 kV | Gas | | 142 | | | Castlelost | 1 | Castlelost | 220 kV | Gas | 2025 | 55 | | | Castlelost | 2 | Castlelost | 220 kV | Gas | 2025 | 55 | | Area | Generation station | Unit ID | Connecte | ed at | Fuel type | Connection
year
(if future) | Maximum export capacity (MW) | |-----------|-------------------------|---------|------------|--------|-----------|-----------------------------------|------------------------------| | | Castlelost | 3 | Castlelost | 220 kV | Gas | 2025 | 55 | | Midle ede | Drumlins Park Wind Farm | 1 | Lislea | 110 kV | Wind | 2024 | 48.9 | | Midlands | Meenwaun | 1 | Dallow | 110 kV | Wind | | 9.99 | | | Midlands Area Total | | | | | | 2025.69 | | | Bruckana (1) | 1 | Lisheen | 110 kV | Wind | | 39.6 | |----------|--------------------------------------|---|------------|--------|-------|------|--------| | | Cappagh White B - TG41
- 13.18 MW | 1 | Cauteen | 110 kV | Wind | | 13.18 | | | Erkina Solar | 1 | Timoney | 110 kV | Solar | 2025 | 66.56 | | | Erkina Solar | 2 | Timoney | 110 kV | solar | 2025 | 90 | | | Kill Hill (1) | 1 | Kill Hill | 110 kV | Wind | | 36 | | Mid-West | Lisheen (1) | 1 | Lisheen | 110 kV | Wind | | 36 | | | Lisheen (1a) | 2 | Lisheen | 110 kV | Wind | | 19 | | | Lisheen 3 | 1 | Lisheen | 110 kV | Wind | | 28.8 | | | Ballywater (1) | 1 | Ballywater | 110 kV | Wind | | 31.5 | | | Ballywater (2) | 2 | Ballywater | 110 kV | Wind | | 10.5 | | | Mid-West Area Total | | | | | | 371.14 | | | Ballylumford | С | Ballylumford | 275 kV | Gas | | 178 | |----------|-------------------------------|----|--------------|--------|----------------------------|------|-----| | | Ballylumford 10 | D | Ballylumford | 275 kV | Gas | | 100 | | | Ballylumford 31 | А | Ballylumford | 275 kV | Gas | | 161 | | | Ballylumford 32 | В | Ballylumford | 275 kV | Gas | | 161 | | | Ballylumford GT1 | 7 | Ballylumford | 275 kV | Gas | | 58 | | Northern | Ballylumford GT2 | 8 | Ballylumford | 275 kV | Gas | | 58 | | Ireland | Castlereagh BS
Lisnabreeny | СВ | CASTLEREAGH | 275 kV | Battery | | 50 | | | ColinGlen_BES | 1 | | 275 kV | battery | 2027 | 75 | | | Coolkeeragh GT | GT | COOLKEERAGH | 275 kV | Gas | | 260 | | | Coolkeeragh GT8 | 8 | COOLKEERAGH | 275 kV | synchronous
compensator | | 53 | | | Coolkeeragh ST | ST | COOLKEERAGH | 275 kV | Gas | | 170 | | Table D | -1: MEC of Existing o | ınd Coı | mmitted Tran | smissio | n-Connect | ed Generati | on | |---------------------|---------------------------|---------|----------------|---------|------------|-----------------------------------|---------------------------------------| | Area | Generation station | Unit ID | Connected | at | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | | | GEN_KILR_G3 | 3 | KILROOT | 275 kV | Distillate | | 42 | | | GEN_KILR_G4 | 4 | KILROOT | 275 kV | Distillate | | 42 | | | HERON_BES | 1 | | 110 kV | battery | 2026 | 100 | | | KELLS_BES Connor | KL | KELLS | 275 kV | Battery | | 50 | | | KIL_OCGT6 | 6 | KILROOT | 275 kV | Gas | 2024 | 350 | | | KIL_OCGT7 | 7 | KILROOT | 275 kV | Gas | 2024 | 350 | | | RENEW_COLE 33.000 | DB | COLERAINE | 110 kV | Wind | | 42 | | Northern
Ireland | RENEW_DRUMQ 33.000 | PT | Curraghamulkin | 110 kV | Wind | 2026 | 51.6 | | | TAMN_BES Drumkee | DK | TAMNAMORE | 275 kV | Battery | | 50 | | | TAND_BES Mulavilly | MV | TANDRAGEE | 275 kV | Battery | | 50 | | | TBESS | 1 | | 110 kV | battery | 2027 | 50 | | | WIND_BROCK | BR | BROCKAGHBOY | 110 kV | Wind | | 47.5 | | | WIND_CORLACKY | СН | GARVAGH NI | 110 kV | Wind | 2025 | 47.3 | | | WIND_CURR 33.00 | СМ | Curraghamulkin | 110 kV | Wind | 2026 | 42 | | | Northern Ireland Area Tot | al | | | | ' | 2638.4 | | | Castlebanny | 1 | Kilvinoge | 110 kV | Wind | 2026 | 136.8 | |----------------|-----------------------|---|----------------|--------|----------------|------|--------| | | Garreenleen Solar | 1 | Kellis | 220 kV | Solar | 2026 | 81 | | | Grahormick Solar Farm | 1 | Grahomick | 110 kV | Solar | 2026 | 54.8 | | | Great Island CCGT | 1 | Great Island | 220 kV | Gas | | 464 | | | GreenLink | 1 | Loughtown | 220 kV | interconnector | 2024 | 504 | | | Kilmannock 2 Battery | 1 | Great Island | 220 kV | Battery | 2026 | 90 | | South-
East |
Rosspile Battery | 1 | Rosspile | 110 kV | Battery | 2024 | 100 | | South-
East | Rosspile Solar Farm | 1 | Rosspile | 110 kV | Solar | | 95 | | | Tomsallagh | 1 | Effernoge | 110 kV | Solar | 2026 | 50 | | | Tracystown Solar Park | 1 | Dennistown | 110 kV | Solar | 2026 | 101.1 | | | Tullabeg Phase 2 | 1 | Tullabeg | 110 kV | Solar | 2026 | 105 | | | Tullabeg Solar Park | 1 | Tullabeg | 110 kV | Solar | | 50 | | | Rathnaskilloge | 1 | Rathnaskilloge | 110 kV | solar | 2024 | 95 | | | South-East Area Total | | | | | | 1926.7 | | Area | Generation station | Unit ID | Connected | at | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |-------|---------------------------------|---------|----------------|--------|------------|-----------------------------------|---------------------------------------| | | Aghada Peaking | 5 | Aghada | 220 kV | Distillate | | 52.1 | | | Tarbert G5 OCGT T-4
2026-27 | 1 | Tarbert | 220 kV | Gas | 2026 | 300 | | | Alumina CHP (1) | 3 | Aughinish | 110 kV | CHP | | 86 | | | Alumina CHP (1) | 4 | Aughinish | 110 kV | CHP | | 86 | | | Athea (1) - a | 1 | Athea | 110 kV | Wind | | 34.35 | | | Ballinknockane Solar
Farm | 1 | Ballinknockane | 110 kV | Solar | 2025 | 50 | | | Ballyroe Solar | 1 | Charleville | 110 kV | Solar | 2026 | 120 | | | Banemore Solar Farm | 1 | Clahane | 110 kV | Solar | 2024 | 34 | | | Boggeragh (1) | 1 | Boggeragh | 110 kV | Wind | | 57 | | | Boggeragh (2) | 1 | Boggeragh | 110 kV | Wind | | 65.7 | | | Castlepook (1) | 1 | Charleville | 110 kV | Wind | | 10 | | | Castlepook (2) | 2 | Charleville | 110 kV | Wind | | 24 | | | Clahane (1) | 1 | Clahane | 110 kV | Wind | | 37.8 | | | Clahane (2) | 1 | Clahane | 110 kV | Wind | | 13.8 | | South | Coomacheo (1) | 1 | Garrow | 110 kV | Wind | | 41.225 | | -West | Coomagearlahy (1) | 1 | Coomagearlahy | 110 kV | Wind | | 42.5 | | | Coomagearlahy (2) | TW | Coomagearlahy | 110 kV | Wind | | 8.5 | | | Coomagearlahy (3) | TW | Coomagearlahy | 110 kV | Wind | | 30 | | | Coumaclovane Solar
Extension | 1 | Glanlee | 110 kV | Solar | 2025 | 7 | | | Drombeg Solar Park | 1 | Drombeg | 110 kV | Solar | 2025 | 50 | | | Glanlee (1) | 1 | Glanlee | 110 kV | Wind | | 12.8 | | | Glanlee (1) | 2 | Glanlee | 110 kV | Wind | | 17 | | | Grousemount | 1 | Coomataggart | 110 kV | Wind | | 114.2 | | | Kelwin Battery | 1 | Kilpaddoge | 220 kV | Battery | | 27 | | | Kelwin Wind | 1 | Kilpaddoge | 220 kV | Wind | | 37 | | | Knockacummer (1) | TW | Knockacummer | 110 kV | Wind | | 105 | | | Knockfinglas | 1 | Glansillagh | 220 kV | Gas | 2028 | 600 | | | Moneypoint (1) | 1 | Moneypoint | 380 kV | Coal | | 307.9 | | | Moneypoint (2) | 2 | Moneypoint | 380 kV | Coal | | 307.9 | | | Moneypoint (3) | 3 | Moneypoint | 380 kV | Coal | | 307.9 | | Area | Generation station | Unit ID | Connected | at | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |------|--|---------|-----------------|--------|----------------|-----------------------------------|---------------------------------------| | | Moneypoint WF | 4 | Moneypoint | 380 kV | Wind | | 17.25 | | | Tarbert 5 TEG | 1 | Oldpier | 220 kV | Distillate | 2024 | 50 | | | Tarbert 6 TEG | 1 | Oldpier | 220 kV | Distillate | 2024 | 50 | | | Tarbert 7 TEG | 1 | Oldpier | 220 kV | Distillate | 2024 | 50 | | | Tobertoreen Battery 11
MW | 1 | Tobertoreen | 110 kV | Battery | | 11 | | | Tobertoreen Wind 23.15
MW TG319a and TG319b | 1 | Tobertoreen | 110 kV | Wind | | 23.15 | | | Ballinrea Solar Park | 1 | Castletreasure | 110 kV | Solar | 2025 | 55 | | | Ballyvouskill Battery
Storage | 1 | Ballyvouskill | 220 kV | battery | 2027 | 80 | | | Carbery Milk Products
CHP (1) | 5 | Dunmanway | 110 kV | Biogas | | 6 | | | Carrigdangan phase 1
54.3 MW | 1 | Carrigdangan | 110 kV | Wind | | 54.3 | | | Carrigdangan phase 2
13.5 MW | 2 | Carrigdangan | 110 kV | Wind | 2024 | 13.6 | | | Knocknamork Solar | 2 | Coomnaclohy | 110 kV | Solar | 2026 | 12 | | outh | Knocknamork Wind | 1 | Coomnaclohy | 110 kV | Wind | 2026 | 42 | | West | Lee Carrigadrohid Hydro (1) | 3 | Carrigadrohid | 110 kV | Hydro | | 8 | | | Lee Inniscarra Hydro (1) | 1 | Iniscarra | 110 kV | Hydro | | 15 | | | AD2 | 1 | Aghada | 220 kV | Gas | | 442.06 | | | Aghada (11) | 11 | Aghada | 220 kV | Gas/DO | | 90 | | | Aghada (12) | 12 | Aghada | 220 kV | Gas/DO | | 90 | | | Aghada (14) | 14 | Aghada | 220 kV | Gas/DO | | 90 | | | Aghada BESS 1 | 1 | Aghada | 220 kV | Battery | | 19 | | | Aghada BESS 2 | 1 | Aghada | 220 kV | Battery | | 159 | | | Ballyvatta Solar extension | 1 | Ballynabrannagh | 110 kV | Solar | 2026 | 16.3 | | | Celtic Interconnector | 1 | Celtic | 380 kV | Interconnector | 2026 | 700 | | | Lysaghtstown PH2 | 1 | Lysaghtstown | 110 kV | Solar | 2026 | 60 | | | Lysaghtstown Solar | 1 | Lysaghtstown | 110 kV | Solar | 2024 | 87 | | | Monatooreen Solar | 1 | Ballynabrannagh | 110 kV | Solar | 2026 | 25.7 | | | Whitegen | 1 | Glanagow | 220 kV | Gas | | 449 | | Area | Generation station | Unit ID | Connected | lat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | |------|-----------------------------------|---------|-------------|--------|-----------|-----------------------------------|---------------------------------------| | | Ardderoo Extension | 2 | Buffy | 110 kV | Wind | 2024 | 18 | | | Ardderoo Wind Farm | 1 | Buffy | 110 kV | Wind | | 91.2 | | | Ballymoneen Solar | 1 | Cashla | 220 kV | Solar | 2026 | 100 | | | Barnacurragh Solar | 1 | Cloon | 110 kV | Solar | 2026 | 50 | | | Killala (1) | 1 | Tawnaghmore | 110 kV | Wind | | 19.2 | | | Killala (2) | 2 | Tawnaghmore | 110 kV | Battery | | 10.8 | | | Knockranny (Ferry View) | 1 | Ferry View | 110 kV | Wind | 2026 | 47.3 | | | Laghtanvack Bellacorick
OCGT 1 | 1 | Laghtanvack | 110 kV | Gas | 2026 | 57 | | | Laghtanvack Bellacorick
OCGT 1 | 2 | Laghtanvack | 110 kV | Gas | 2026 | 57 | | | Oweninney (1) | 1 | Bellacorick | 110 kV | Wind | | 89 | | | Oweninney (2) | 2 | Bellacorick | 110 kV | Wind | | 83 | | | Oweninney (3) | 5 | Bellacorick | 110 kV | Wind | 2024 | 50 | | ., . | Seecon (1) | 1 | Knockranny | 110 kV | Wind | | 108 | | Vest | Sheskin 33 MW TG33 and DG186 | 1 | Bellacorick | 110 kV | Wind | 2025 | 32.9 | | | Tawnaghmore Peaking
Plant | 1 | Tawnaghmore | 110 kV | Diesel | | 52.3 | | | Tawnaghmore Peaking
Plant | 1 | Tawnaghmore | 110 kV | Diesel | | 52.3 | | | Ardnacrusha Hydro (1) | 1 | Ardnacrusha | 110 kV | Hydro | | 21 | | | Ardnacrusha Hydro (2) | 2 | Ardnacrusha | 110 kV | Hydro | | 22 | | | Ardnacrusha Hydro (3) | 3 | Ardnacrusha | 110 kV | Hydro | | 19 | | | Ardnacrusha Hydro (4) | 4 | Ardnacrusha | 110 kV | Hydro | | 24 | | | Booltiagh (1) | 1 | Booltiagh | 110 kV | Wind | | 19.45 | | | Booltiagh (2) | 1 | Booltiagh | 110 kV | Wind | | 12 | | | Boolynagleragh (1) | 1 | Booltiagh | 110 kV | Wind | | 36.98 | | | Carrownagowan Wind
Farm | 1 | Caherhurly | 110 kV | Wind | 2026 | 91.2 | | | Derrybrien (1) | 1 | Derrybrien | 110 kV | Wind | | 59.5 | | Table D-1: MEC of Existing and Committed Transmission-Connected Generation | | | | | | | | | | | | |--|----------------------|---------|------------|--------|-----------|-----------------------------------|---------------------------------------|--|--|--|--| | Area | Generation station | Unit ID | Connected | lat | Fuel type | Connection
year
(if future) | Maximum
export
capacity
(MW) | | | | | | | Knockalassa | TW | Ennis | 110 kV | Wind | | 26.875 | | | | | | M | Skerd Rocks offshore | 1 | Moneypoint | 380 kV | Wind | 2027 | 450 | | | | | | West | Sorrell Island | 1 | Booltiagh | 110 kV | Wind | | 24 | | | | | | | West Area Total | | | | | | 1724.005 | | | | | ## **Existing and Committed Distribution-Connected Wind Farm Capacity** | Area | 110 kV Station | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |----------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | Ardnagappary | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 | | | Arigna | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | 15.6 | | | Binbane | 58.9 | 70.2 | 77.4 | 77.4 | 77.4 | 77.4 | 77.4 | 77.4 | 77.4 | 77.4 | | | Cath_Fall | 29.4 | 29.4 | 66.9 | 66.9 | 66.9 | 66.9 | 66.9 | 66.9 | 66.9 | 66.9 | | | Corderry | 63.253 | 63.253 | 79.603 | 79.603 | 79.603 | 79.603 | 79.603 | 79.603 | 79.603 | 79.603 | | | Garvagh | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | | | Gortawee | 3 | 3 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | Letterkenny | 40.27 | 60.27 | 60.27 | 60.27 | 60.27 | 60.27 | 60.27 | 60.27 | 60.27 | 60.27 | | | Sorne Hill | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | 63.25 | | | Trillick | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | 44.69 | | Border | Bellacorick | 42.9 | 75.8 | 80.79 | 80.79 | 80.79 | 80.79 | 80.79 | 80.79 | 80.79 | 80.79 | | | Castlebar | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | 50.44 | | | Cloon | 4.25 | 4.25 | 14.23 | 14.23 | 14.23 | 14.23 | 14.23 | 14.23 | 14.23 | 14.23 | | | Dalton_A1 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | 43.35 | | | Glenree | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | 77.3 | | | Moy | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | Salthill | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | 46.1 | | | Screeb | 3 | 3 | 7.99 | 7.99 | 7.99 | 7.99 | 7.99 | 7.99 | 7.99 | 7.99 | | | Sligo | 13.65 | 13.65 | 17.73 | 17.73 | 17.73 | 17.73 | 17.73 | 17.73 | 17.73 | 17.73 | | | Tawnaghmore | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | | | Tonroe | 12.04 | 12.04 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 | | G |
Drybridge | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | 5.95 | | G | Dundalk | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | 16.6 | | G | Lisdrum | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | 33.1 | | G | Meath Hill | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | 68.698 | | G | Shankill | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | 28.017 | | | Athlone | | | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 | | Midles d | Lanesboro_A1 | 4.6 | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 | 9.55 | | Midlands | Richmond | | | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | | | Somerset | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | 7.65 | | | Ardnacrusha | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | 8.16 | | West | Booltiagh | 93.369 | 122.77 | 122.77 | 122.77 | 122.77 | 122.77 | 122.77 | 122.77 | 122.77 | 122.77 | | | Tullabrack | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | | Table I | D-2: Existing o | and Comi | mitted [| Distribu | ution-C | onnect | ed Win | d Farn | η Сαρα | acity | | |----------------|-----------------|----------|----------|----------|---------|--------|--------|--------|--------|--------|--------| | Area | 110 kV Station | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | | Boggeragh | 43.35 | 46.35 | 46.35 | 46.35 | 46.35 | 46.35 | 46.35 | 46.35 | 46.35 | 46.35 | | | Charleville | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | 70.699 | | | Cloghboola | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | 54.549 | | | Coomataggart | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | 42.64 | | | Cordal | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | 57.75 | | | Drombeg | | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | | | Garrow | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | 14.99 | | | Glenlara | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | 66.8 | | | Kilpaddoge | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | South-
West | Knockearagh | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | 13.85 | | | Oughtragh | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | Rathkeale | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 | | | Reamore | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | 83.15 | | | Tralee | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | 47.56 | | | Trien | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | 72.8 | | | Ballylickey | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | 59.77 | | | Bandon | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 | | | Dunmanway | 56.06 | 56.06 | 57.06 | 57.06 | 57.06 | 57.06 | 57.06 | 57.06 | 57.06 | 57.06 | | | Macroom | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | | Barrymore | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | 32.4 | | | Cauteen | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | 174.16 | | | Dallow | 21.04 | 21.04 | 26.03 | 26.03 | 26.03 | 26.03 | 26.03 | 26.03 | 26.03 | 26.03 | | | Ikerrin | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | 35.95 | | Midlands | Lisheen | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | 39.6 | | | Nenagh | 13.99 | 13.99 | 14.69 | 14.69 | 14.69 | 14.69 | 14.69 | 14.69 | 14.69 | 14.69 | | | Thurles | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | 41.8 | | | Tipperary | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | | | Upperchurch | | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | | Table [| D-2: Existing o | and Com | mitted [| Distribu | rtion-C | onnect | ed Win | d Farn | n Capo | acity | | |---------|-----------------|---------|----------|----------|---------|--------|--------|--------|--------|--------|--------| | Area | 110 kV Station | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | | Arklow | 53.2 | 53.2 | 93.19 | 93.19 | 93.19 | 93.19 | 93.19 | 93.19 | 93.19 | 93.19 | | | Ballyragget | | | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | | | Carlow | 34.74 | 34.74 | 55.74 | 55.74 | 55.74 | 55.74 | 55.74 | 55.74 | 55.74 | 55.74 | | East | Crane | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | 7.49 | | | Lodgewood | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | 60.162 | | | Waterford | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 | | | Wexford | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | 38.9 | | | Barnahely | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Kilbarry | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | | South | Midleton | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | | Butlerstown | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | | Dungarvan | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | | Dublin | Glasmore | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Dublin | Portlaoise | 9.2 | 54.201 | 54.201 | 54.201 | 54.201 | 54.201 | 54.201 | 54.201 | 54.201 | 54.20 | | Area | 110 kV Station | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |---------------------|----------------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------| | | AGHYOULE | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | 82.5 | | | Antrim | 1.7 | 26.7 | 26.7 | 26.7 | 26.7 | 26.7 | 26.7 | 26.7 | 26.7 | 26.7 | | | BALLYMENA | 53.75 | 53.75 | 53.8 | 53.75 | 64.35 | 64.35 | 64.35 | 64.35 | 64.35 | 64.35 | | | BROCKAGHBOY | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | 47.5 | | | Cam | | | | | | | | 81.1 | 81.1 | 81.1 | | | CARNMONEY | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | 13.8 | | | COLERAINE | 108 | 108 | 108 | 108 | 108 | 108 | 108 | 108 | 108 | 108 | | | COOLKEERAGH | 12 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | | | CREAGH | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | | | Curraghamulkin | 67.9 | 67.9 | 67.9 | 161.5 | 161.5 | 161.5 | 161.5 | 161.5 | 161.5 | 161.5 | | | DRUMNAKELLY | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | | | DUNGANNON | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | 17.5 | | | EDEN | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | | | Enniskillen | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | | Northern
Ireland | GARVAGH NI | 73.9 | 90 | 137 | 137.3 | 137.3 | 137.3 | 137.3 | 137.3 | 137.3 | 137.3 | | | GORT | 67.5 | 119.1 | 119 | 119.1 | 119.1 | 119.1 | 119.1 | 119.1 | 119.1 | 119.1 | | | KELLS | | | | 23.1 | 23.1 | 23.1 | 23.1 | 23.1 | 23.1 | 23.1 | | | KILLYMALLAGHT | 35.7 | 35.7 | 35.7 | 35.7 | 88.7 | 88.7 | 88.7 | 88.7 | 88.7 | 88.7 | | | LARNE | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | 31.1 | | | LIMAVADY | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | 37.7 | | | LISAGHMORE | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | LOGUESTOWN | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | | | MAGHERAKEEL | 119.2 | 138 | 138 | 138 | 138 | 138 | 138 | 138 | 138 | 138 | | | NEWRY | | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | | OMAGH | 125.7 | 125.7 | 126 | 125.7 | 125.7 | 125.7 | 125.7 | 125.7 | 125.7 | 126 | | | RASHARKIN | 54.8 | 54.8 | 54.8 | 54.8 | 76.3 | 76.3 | 76.3 | 76.3 | 76.3 | 76.3 | | | SLIEVE KIRK | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | 73.6 | | | STRABANE | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | 28.1 | | | TREMOGUE | 77.15 | 77.15 | 77.2 | 77.15 | 77.15 | 77.15 | 77.15 | 77.15 | 77.15 | 77.15 | ## Existing and Committed Distribution-Connected Generation (excluding wind) | Station | type | area | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |-----------------------|-------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Binbane | Hydro | Border | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | | Bellacorick | Wave | | | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | Cloon | Solar | | | 24 | 28.99 | 28.99 | 28.99 | 28.99 | 28.99 | 28.99 | 28.99 | 28.99 | | Dalton_A1 | Battery | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Dalton_A1 | Solar | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Tawnaghmore | Battery | | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | 10.8 | | Tawnaghmore | Biomass | | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | | Tonroe | Biogas / AD | | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | Drybridge | Biomass | | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | | Drybridge | LFG | | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | 6.224 | | Drybridge | Solar | | | 15.98 | 15.98 | 15.98 | 15.98 | 15.98 | 15.98 | 15.98 | 15.98 | 15.98 | | Dundalk | Solar | | | | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | | Meath Hill | Biogas | | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | | Meath Hill | CHP | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Navan | Biomass | | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Navan | Solar | | 4 | 13 | 16.45 | 16.45 | 16.45 | 16.45 | 16.45 | 16.45 | 16.45 | 16.45 | | Shankill | LFG | | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | Shankill | Solar | | | 4 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | Drybridge | Biomass | | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | 20.22 | | Athlone | LFG | Midalnds
| 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | | Athlone | Solar | | | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Carrick on
Shannon | Solar | | | 4 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | | Lanesboro_A1 | Solar | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Mullingar | Solar | | 4 | 12 | 33.84 | 33.84 | 33.84 | 33.84 | 33.84 | 33.84 | 33.84 | 33.84 | | Richmond | Solar | | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Somerset | Solar | | | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Baltrasna | Solar | | 10 | 10 | 17.14 | 17.14 | 17.14 | 17.14 | 17.14 | 17.14 | 17.14 | 17.14 | | Ardnacrusha | Solar | West | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Drumline | Solar | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Ennis | Solar | | | | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | | Glenlara | Solar | South-
West | | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | | Knockearagh | Biomass | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Station | type | area | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |------------------------|---------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Knockearagh | Solar | area | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | 8.99 | | Limerick | Solar | | 0.55 | 4 | 8.95 | 8.95 | 8.95 | 8.95 | 8.95 | 8.95 | 8.95 | 8.95 | | Mallow | Solar | | | - | 9.94 | 9.94 | 9.94 | 9.94 | 9.94 | 9.94 | 9.94 | 9.94 | | | Solar | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 9.94 | | Oughtragh
Rathkeale | | | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.4 | | Rathkeale | Biogas | | 6.5 | 6.5 | | 6.5 | 6.5 | | 6.5 | | 6.5 | | | Rathkeale | LFG | | | | 6.5 | | | 6.5 | | 6.5 | | 6.5 | | | | | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | | Tralee | Solar | | | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | | Trien | Solar | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Bandon | Solar | | | 20.8 | 32.8 | 32.8 | 32.8 | 32.8 | 32.8 | 32.8 | 32.8 | 32.8 | | Dunmanway | Biogas | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Macroom | Solar | | 4 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | | Ahane | Solar | | | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Ballydine | Solar | | | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | | Barrymore | Solar | | | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | Cahir
- | Solar | | | 31 | 34.3 | 34.3 | 34.3 | 34.3 | 34.3 | 34.3 | 34.3 | 34.3 | | Doon | Hydro | | | 0.865 | 0.865 | 0.865 | 0.865 | 0.865 | 0.865 | 0.865 | 0.865 | 0.86 | | Doon | Solar | | 8 | 8 | 12.99 | 12.99 | 12.99 | 12.99 | 12.99 | 12.99 | 12.99 | 12.9 | | Nenagh | Solar | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Tipperary | Solar | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Arklow | Biomass | East | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Arklow | Offshore Wind | | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.2 | 25.7 | | Arklow | Solar | | 10 | 10 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | | Ballybeg | LFG | | 4.25 | 4.25 | 4.25 | 4.25 | 4.25 | 4.25 | 4.25 | 4.25 | 4.25 | 4.2 | | Ballybeg | Solar | | 8 | 8 | 17.9 | 17.9 | 17.9 | 17.9 | 17.9 | 17.9 | 17.9 | 17. | | Ballyragget | Solar | | | | 39.99 | 39.99 | 39.99 | 39.99 | 39.99 | 39.99 | 39.99 | 39.9 | | Banoge | Battery | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | Banoge | Solar | | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Carlow | Solar | | | | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13. | | Crane | Battery | | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Crane | Solar | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Great Island | Battery | | | | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | | Great Island | Solar | | 4.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.99 | 16.9 | | Kilkenny | Solar | | | 8 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | | Table D-3 (excluding | : Existing ar
g wind) | nd Comi | mitted | Distrib | oution | -Conr | ected | Gene | ration | | | | |----------------------|--------------------------|---------|--------|---------|--------|-------|-------|-------|--------|-------|-------|-------| | Station | type | area | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | | Lodgewood | Solar | | | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | | Waterford | Solar | | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | 9.99 | | Wexford | Biogas / AD | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Wexford | Solar | | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | 12.93 | | Barnahely | Solar | South | | | 7.45 | 7.45 | 7.45 | 7.45 | 7.45 | 7.45 | 7.45 | 7.45 | | Castleview | Biogas / AD | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Castleview | СНР | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Coolroe | Solar | | | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | Cow Cross | Solar | | | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | | Kilbarry | Solar | | 4.95 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | | Midleton | Solar | | 3.94 | 3.94 | 14.89 | 14.89 | 14.89 | 14.89 | 14.89 | 14.89 | 14.89 | 14.89 | | Trabeg | Solar | | | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | | Athy | Solar | Dublin | | | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | | Ballyragget | CHP | | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | | Blackrock | CHP | | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | 0.554 | | Blake | LFG | | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | 4.999 | | Derryiron | Battery | | | | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | | Dunfirth | Solar | | 14 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | | Fin_rural | CHP | | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | Finglas | Gas Engines +
Battery | | | | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | | Finglas | Solar | | | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | | Glasmore | СНР | | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | Glasmore | Solar | | | 4 | 43.99 | 43.99 | 43.99 | 43.99 | 43.99 | 43.99 | 43.99 | 43.99 | | Grange Castle | OCGT | | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | 115.2 | | Griffinrath | Hydro | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Griffinrath | Solar | | | 34.5 | 59.8 | 59.8 | 59.8 | 59.8 | 59.8 | 59.8 | 59.8 | 59.8 | | Inchicore | Battery | | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | | Kilteel | LFG + Diesel | | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | 9.77 | | Kilteel | Solar | | | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | Monread | Solar | | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Newbridge | Solar | | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Poppintree | Biogas | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Portlaoise | Biogas | | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | 1.065 | | Portlaoise | Solar | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Station | type | area | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | |--------------|-------------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Ringsend | CHP | | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | 74.5 | | Stephenstown | Battery | | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | | Thornsberry | Biomass | | | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | 9.9 | | Thornsberry | Solar | | | 5.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | 23.8 | | Butlerstown | Solar | South-
East | | 3.95 | 36.65 | 36.65 | 36.65 | 36.65 | 36.65 | 36.65 | 36.65 | 36.65 | | Dungarvan | Solar | | | 3.99 | 51.93 | 51.93 | 51.93 | 51.93 | 51.93 | 51.93 | 51.93 | 51.93 | | Antrim | solar | Northern
Ireland | 12.615 | 12.615 | 32.615 | 27.62 | 34.672 | 34.672 | 34.672 | 34.672 | 34.672 | 12.615 | | Ballylumford | Gas | | 716 | 716 | 716 | 716 | 716 | 716 | 716 | 716 | 716 | 716 | | BALLYMENA | Solar | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | BALLYNAHINCH | Battery | | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | BALLYVALLAGH | battery | | | | | | 50 | 50 | 50 | 50 | 50 | | | BANBRIDGE | Battery | | | 12.224 | 12.224 | 12.224 | 12.224 | 12.224 | 12.224 | 12.224 | 12.224 | | | CASTLEREAGH | Battery | | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | COLERAINE | synchronous compensator | | | | | | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | | | COOLKEERAGH | Bio | | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6 | | COOLKEERAGH | Gas | | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | | COOLKEERAGH | synchronous compensator | | 53 | 53 | 53 | 53 | 49.75 | 49.75 | 49.75 | 49.75 | 49.75 | 53 | | GARVAGH NI | CHP | | | | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | | | HANNAHSTOWN | battery | | | | | | 75 | 75 | 75 | 75 | 75 | | | KELLS | Battery | | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | KILROOT | Distillate | | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | | KILROOT | Gas | | 58 | 758 | 758 | 758 | 758 | 758 | 758 | 758 | 758 | 58 | | LISBURN | Solar | | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | 58.85 | | NEWTOWNARDS | Solar | | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 | | RASHARKIN | Solar | | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | 35.019 | | Rosebank | Bio | | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | 9.98 | | SCOTLAND | interconnector | | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | TAMNAMORE | Battery | | 50 | 50 | 50 | 150 | 150 | 150 | 150 | 150 | 150 | 50 | | TANDRAGEE | Battery | | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | TREMOGUE | Solar | | | | 12.85 | 12.85 | 12.85 | 12.85 |
12.85 | 12.85 | 12.85 | | | Waringstown | Solar | | 9 | 9 | 9 | 9 | 9 | 9 | | 9 | 9 | | # Appendix E: Short Circuit Currents # E.1 Background of Short Circuit Currents The main driver for calculating short circuit current levels is safety. All transmission system equipment must be capable of carrying very high currents. These high currents typically occur in the event of a short circuit fault. In particular, circuit breakers must be capable of closing onto a fault and opening to isolate a fault. Their correct operation minimises risk to human life and prevents damage to transmission system equipment. It is also crucial for maintaining transmission system stability, security and quality of supply. Short circuit current levels also give an indication of the electrical strength of the transmission system at each station. This provides an indication of the suitability of a station for connection of 'voltage sensitive' equipment. A station with a high short circuit current level will be more attractive to these types of load. This is due to strong generation infeeds minimising distortions in voltage and frequency caused by transmission system disturbances. Similarly, generators will have less difficulty to ride through faults and maintain stability when connected to stations with high short circuit current levels. Short circuit current levels vary across the transmission system. They are affected by the transmission system topology, system impedance and the available short circuit contribution from rotating machines (i.e. generators and large motors). Changes in the transmission system topology or the addition/retirement of generation units can bring about an increase/reduction in the short circuit current levels on the transmission system. Similarly, seasonal variations in generation dispatches and demand levels combined with possible transmission system sectionalising or plant outages will result in variations of short circuit current levels at different locations. To ensure safe and reliable operation of the transmission system and customer's equipment at all times, two types of short circuit current level calculations are carried out: - Maximum short circuit current levels are required for the specification of transmission system equipment and for connections to the transmission system. Plant in substations is typically subjected to the most onerous short circuit currents. The high capital costs of HV equipment means that it is important to predict the maximum short circuit current the equipment may see in its lifetime, and this must be specified to a rating above the maximum expected short circuit current level. Also, for customers, the design and specification of equipment at lower voltage levels will depend on the short circuit level at the transmission connection point. - Minimum short circuit current levels are required to guarantee reliable and coordinated operation of protection systems or to assess the suitability of a station for the connection of 'voltage sensitive' equipment. Minimum short circuit current levels are also required at the design stage of generation plants to ensure fault ride through capabilities are in accordance with Grid Code requirements. #### The Nature of Short Circuit Currents The plot in Figure E-1 shows a typical short circuit current waveform. Short circuit current is normally made up of a symmetrical AC component, with a decay rate, and a DC offset component, which has a much faster decay rate. The combination of AC and DC components results in an asymmetrical current waveform. While the AC component is always present in the short circuit current, the DC offset is dependent on the instant that the fault occurs within the voltage waveform. For the purposes of this document, it is assumed that the fault occurs at the instant of maximum DC offset in the short circuit current. The DC component of a short circuit current decays exponentially. Its rate of decay is influenced by the individual ratios of the reactance (X) to the resistance (R) of the paths back to the generators feeding power to the fault (the X/R ratio). Transmission nodes where large generators can have high X/R ratios, may have a slower decay time for the DC component of the short circuit current. The AC component of a short circuit current also decays with time. This is due to the changes in the synchronous generators internal reactance and, thus, the AC reduction effect is more pronounced in the vicinity of large generation plants. Figure E-1: Typical Short Circuit Current The internal impedance of a synchronous generator is not constant after the start of the fault. It increases progressively and the short circuit current contribution becomes weaker, passing through three characteristic stages: - Subtransient: (approx. 0.01 to 0.1 sec). Short-circuit current (RMS value of the AC component) is high: 5 to 10 times permanent rated current. This is called sub-transient short-circuit current, lk". - Transient: (between 0.1 and 1 sec). Short-circuit current (RMS value of the AC component) drops to between 2 and 6 times rated current. This is called transient short-circuit current, lk'. - Continuous: Short-circuit current (RMS value of the AC component) drops to between 0.5 and 2 times rated current. This is called steady-state short-circuit current, Ik. #### **Duty of Circuit Breakers** Over the duration of a fault the switchgear has to be able to withstand two events, namely the fault initiation and then the fault clearance. The short circuit currents at these two instances are referred to as the make current and the break current respectively. (i) The make current (Ip) is the maximum instantaneous current that the circuit breaker is called to withstand. The initiation of a fault causes an instantaneous peak current which results in the generation of electromechanical forces along the busbars and transmission lines. An example of such a fault initiation would be a circuit breaker energising a line that is still earthed following maintenance, hence the term make current. - Make current is expressed in peak values and is comprised of an AC and a DC component. Essentially, the make current is the maximum instantaneous peak of the short circuit current waveform. This will occur at approximately 10 milliseconds (ms) after the instant of fault (see Figure E-1), whether the fault is energised through a circuit breaker or it spontaneously occurs on the transmission system. Circuit breakers are typically rated approximately 2.5 times higher for make duty than for break duty, as per IEC 62271-100 standard. - (ii) After the fault initiation, there is a time period during which the protection scheme will identify the fault, make a decision and then instruct the relevant circuit breaker to open to interrupt the fault. This could take anything from 10 ms in modern fast protection systems to 60 ms in older systems. At this point the circuit breaker begins to open and it takes a certain time period before the contacts actually separate, normally around two cycles or 40 ms in modern switchgear equipment. The total time from the start of the fault until the breaker opening or fault clearance time can vary from 50 ms to 120 ms, depending on the protection system. In some cases, if main protection fails and back-up main protection is not installed, clearance times can be considerably longer than 120 ms. At the point of physical separation, the short circuit current forms an arc and the thermal energy generated by this arc has to be dissipated as the short circuit current is interrupted. The short circuit current when this interruption occurs is referred to as the break current, lb. This value is expressed in RMS (root mean square) terms and is comprised of an AC component and a DC component. Circuit breakers designed and tested in accordance with the IEC 62271-100 standard can interrupt any short circuit current up to its rated breaking current containing any AC component up to the rated value and, associated with it, any percentage DC component up to that specified (typically 30%). The duty of the circuit breaker is calculated from the make and break current as a percentage of the circuit breaker rating. # **E.2 Short Circuit Current Calculation Methodology** Engineering Recommendation G74 has been applied to all short circuit studies reported in this document. Some of the general assumptions applied include: - Short circuit level contribution from loads has been considered following G74 recommendations. The demand at each node is assumed to contribute 1 MVA of induction motor fault infeed per MW of load. A constant X/R ratio of 2.76 is assumed for all of the loads; and - A break time of 50 ms is assumed typical for the circuit breakers at 110 kV, 220 kV, 275 kV and 400 kV. A break time of 80 ms is used for the circuit breakers at 110 kV stations in Ireland. Winter Peak study results give an indication of the maximum prospective short circuit current levels on the transmission system. For winter peak studies, all generators have been included in the calculations. A merit order economic dispatch has been initially used, and to enable maximum short circuit current level to be calculated, any generators that were not dispatched have been switched in with 0 MW output, thus contributing to short circuit current levels. Summer Night Valley study results give an indication of the minimum short circuit current levels to be expected on the transmission system under normal transmission system operating conditions (i.e. maintenance outages are not considered in this section¹). For summer night valley studies, only generators dispatched on a merit order are considered in the model. **E.3 Short Circuit Currents in Ireland**Methodology used in Ireland Short circuit current levels are calculated in accordance with the UK Engineering Recommendation G74, which is a computer based analysis, based on the International Standard IEC60909. Compliance
with G74 includes: - Short circuit contributions from rotating plant, including induction motors embedded in the general load; - Comprehensive plant parameters including impedances, transformer winding and earthing configurations; - Pre-fault voltage levels at each node which should be obtained from a credible, prefault load flow study; and - Pre-fault transformer tap settings should also be obtained from the load flow study. The short circuit current level network model includes the following component parameters: - Transformer impedance variation with tap position; - Zero sequence mutual coupling effect; - Saturated generator reactance values; and - Power station auxiliaries short circuit current level contributions. The calculation of the X/R ratios, used by EirGrid, is undertaken in accordance with IEC60909-0 Method B. Method B is currently considered to be the most appropriate general purpose method for calculating DC short circuit currents in the transmission system of Ireland. The transmission system of Ireland is designed and operated to maintain RMS break short circuit levels in accordance with EirGrid Grid Code CC.8.6. A summary of these requirements is set out in Table E-1. In designing the system, a 10% safety margin is applied. It should be noted that the EirGrid Grid Code stipulates that short circuit current levels at designated stations in Ireland may be allowed to increase to 31.5 kA. If necessary, the equipment at these stations is to be modified or replaced in order to comply with this new rating. Circuit breakers with a higher rating than the current levels may be necessary for a number of reasons, including, but not limited to the need to provide an adequate safety margin or to cater for a high DC component in the short circuit current. ¹ Minimum fault levels including maintenance outages are currently provided to generator applicants wishing to connect to the transmission system as part of the connection offer process to allow developers to design the plant in accordance with the Grid Code requirements. | Table E-1: Ireland Short Circuit Current | |--| | Levels Specified in the Grid Code | | Voltag | e Level | Short Circuit Current
Levels (kA) | |--------|------------------|--------------------------------------| | | 400 | 50 | | | 220 | 40 | | | Countrywide | 25 | | 110 | Designated sites | 31.5 | #### **Analysis** The total RMS break current at a busbar is an indication of the short circuit current level that one could expect at that point in the transmission system. However, they do not necessarily represent the short circuit current that could flow through each individual breaker, which may be lower. #### Ireland Short Circuit Current Level Tables E-2 to E-4 list subtransient (lk"), transient (lk') currents and X/R ratios for single-phase to earth and balanced three-phase faults for transmission system busbars of Ireland. These are presented for maximum winter peak and minimum summer valley intact system demand conditions for 2024, 2027 and 2030. From these values, the relevant currents required to assess circuit breaker duty can be derived using the following equations: Peak make current (lp) $$I_p = \sqrt{2} \cdot \left[1.02 + 0.98 \cdot e^{-3 \cdot \frac{R}{X}} \right] \cdot I_k''$$ AC component (IRMS_AC_b) of short-circuit current at a selected time of break (tb) $$I_{RMS_AC_b} = I_{k}^{'} + \left(I_{k}^{"} - I_{k}^{'}\right) \cdot e^{-\frac{t_{b}}{40ms}}$$ DC component (IDC_b) of short-circuit current at a selected time of break (tb) $$I_{DC_b} = \sqrt{2} \cdot I_k'' \cdot e^{-2 \cdot \pi \cdot 50 \cdot t_b \cdot \frac{R}{X}}$$ Break current (lb) at a selected time of break (tb) $$I_b = \sqrt{I_{DC_b}^2 + I_{RMS_AC_b}^2}$$ ### Ireland Short Circuit Currents for Maximum and Minimum Demand in 2024 | | | | Sum | mer | | | | | Wi | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Tł | ree pha | se | Si | ngle pha | se | Tł | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Adamstown 110 kV | 13.96 | 12.49 | 11.34 | 10.49 | 16.45 | 15.76 | 14.26 | 17.08 | 15.27 | 9.94 | 21.67 | 20.63 | | Agannygal 110 kV | 3.03 | 5.69 | 5.09 | 4.26 | 4.52 | 4.39 | 2.93 | 6.29 | 5.70 | 4.20 | 4.90 | 4.77 | | Aghada 110 kV | 4.81 | 8.53 | 8.02 | 5.78 | 9.98 | 9.74 | 4.75 | 9.97 | 9.46 | 5.79 | 11.34 | 11.12 | | Aghada A 220 kV | 10.67 | 12.34 | 11.01 | 11.82 | 16.63 | 15.76 | 14.77 | 20.23 | 17.89 | 16.02 | 24.86 | 23.56 | | Aghada B 220 kV | 10.67 | 12.34 | 11.01 | 11.82 | 16.63 | 15.76 | 14.77 | 20.23 | 17.89 | 16.02 | 24.86 | 23.56 | | Aghada C 220 kV | 10.44 | 12.02 | 10.75 | 10.66 | 16.17 | 15.34 | 13.88 | 19.42 | 17.24 | 12.97 | 23.88 | 22.67 | | Aghada D 220 kV | 10.67 | 12.34 | 11.01 | 11.82 | 16.63 | 15.76 | 14.77 | 20.23 | 17.89 | 16.02 | 24.86 | 23.56 | | Ahane 110 kV | 4.99 | 12.61 | 11.40 | 5.81 | 10.07 | 9.80 | 4.93 | 14.60 | 13.43 | 5.81 | 11.05 | 10.82 | | Anner 110 kV | 3.99 | 6.51 | 6.05 | 4.54 | 4.70 | 4.62 | 3.91 | 7.17 | 6.65 | 4.50 | 4.95 | 4.87 | | Ardnacrusha 110 kV | 5.46 | 14.24 | 12.54 | 6.75 | 15.16 | 14.46 | 6.02 | 18.10 | 16.04 | 7.59 | 17.85 | 17.13 | | Ardnagappary 110 kV | 3.04 | 2.25 | 2.13 | 4.30 | 1.31 | 1.30 | 3.02 | 2.41 | 2.26 | 4.29 | 1.37 | 1.35 | | Arigna 110 kV | 4.67 | 7.66 | 7.00 | 5.79 | 5.89 | 5.76 | 4.54 | 8.33 | 7.66 | 5.72 | 6.27 | 6.14 | | Arklow 110 kV | 10.92 | 8.71 | 8.17 | 11.60 | 10.54 | 10.27 | 11.04 | 9.79 | 9.20 | 11.84 | 11.74 | 11.45 | | Arklow 220 kV | 9.24 | 7.55 | 7.16 | 10.47 | 6.94 | 6.83 | 9.09 | 8.77 | 8.43 | 10.57 | 7.80 | 7.71 | | Artane 110 kV | 13.57 | 10.82 | 10.12 | 6.05 | 12.91 | 12.57 | 13.22 | 13.53 | 12.41 | 5.56 | 15.79 | 15.25 | | Arva 110 kV | 4.04 | 9.69 | 8.80 | 5.21 | 7.23 | 7.07 | 3.94 | 10.41 | 9.52 | 5.15 | 7.61 | 7.45 | | Athea 110 kV | 12.23 | 8.97 | 7.80 | 12.42 | 8.58 | 8.19 | 12.36 | 9.74 | 8.66 | 12.48 | 9.06 | 8.72 | | Athlone 110 kV | 3.92 | 6.90 | 6.54 | 5.33 | 5.27 | 5.21 | 4.12 | 8.27 | 7.71 | 5.53 | 5.90 | 5.80 | | Athy 110 kV | 3.31 | 5.94 | 5.69 | 4.51 | 4.82 | 4.77 | 3.14 | 6.38 | 6.05 | 4.39 | 5.03 | 4.96 | | Aughinish 110 kV | 8.25 | 10.19 | 9.05 | 10.21 | 10.88 | 10.41 | 8.07 | 10.72 | 9.69 | 10.06 | 11.14 | 10.74 | | Aungierstown 110 kV | 15.14 | 18.25 | 16.22 | 13.53 | 25.30 | 23.92 | 15.59 | 20.93 | 19.14 | 12.92 | 28.75 | 27.56 | | Ballyadam 110 kV | 3.67 | 8.98 | 8.38 | 4.68 | 9.01 | 8.80 | 3.51 | 10.39 | 9.76 | 4.58 | 10.04 | 9.84 | | Ballybeg 110 kV | 9.79 | 6.39 | 6.13 | 9.94 | 7.50 | 7.39 | 9.99 | 7.19 | 6.87 | 10.13 | 8.32 | 8.17 | | Ballydine 110 kV | 4.01 | 7.13 | 6.67 | 3.77 | 5.58 | 5.49 | 3.90 | 7.93 | 7.42 | 3.69 | 5.96 | 5.86 | | Ballylickey 110 kV | 3.07 | 3.71 | 3.37 | 4.12 | 2.13 | 2.09 | 3.01 | 3.98 | 3.63 | 4.10 | 2.24 | 2.20 | | Ballynahulla 110 kV | 15.99 | 10.88 | 9.33 | 15.49 | 12.47 | 11.72 | 17.19 | 12.30 | 10.92 | 16.14 | 13.73 | 13.10 | | Ballynahulla 220 kV | 9.57 | 9.80 | 8.67 | 10.20 | 10.78 | 10.28 | 9.51 | 11.55 | 10.58 | 10.17 | 12.20 | 11.81 | | Ballyragget 110 kV | 4.42 | 3.03 | 2.92 | 5.87 | 2.14 | 2.13 | 4.63 | 3.54 | 3.31 | 6.13 | 2.33 | 2.29 | | | | | Sum | mer | | | Winter | | | | | | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--|--| | | TI | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | ngle phas | se | | | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | | | Ballyvouskill 110 kV | 14.02 | 11.41 | 9.82 | 14.62 | 13.49 | 12.68 | 15.03 | 12.99 | 11.53 | 15.37 | 15.02 | 14.31 | | | | Ballyvouskill 220 kV | 9.44 | 9.91 | 8.74 | 10.41 | 11.95 | 11.32 | 9.39 | 11.73 | 10.70 | 10.43 | 13.70 | 13.19 | | | | Ballywater 110 kV | 5.55 | 6.34 | 6.07 | 3.12 | 6.20 | 6.11 | 5.67 | 6.97 | 6.66 | 3.09 | 6.78 | 6.67 | | | | Baltrasna 110 kV | 6.19 | 10.55 | 10.02 | 7.20 | 8.77 | 8.65 | 6.01 | 11.63 | 11.09 | 7.12 | 9.39 | 9.27 | | | | Bancroft 110 kV | 12.24 | 11.66 | 10.84 | 6.82 | 13.56 | 13.18 | 12.38 | 13.41 | 12.53 | 6.63 | 15.31 | 14.91 | | | | Bandon 110 kV | 3.17 | 6.59 | 6.03 | 4.30 | 6.28 | 6.10 | 3.05 | 7.43 | 6.79 | 4.21 | 6.81 | 6.62 | | | | Banoge 110 kV | 6.52 | 6.24 | 5.99 | 7.18 | 6.06 | 5.98 | 6.54 | 6.81 | 6.54 | 7.23 | 6.48 | 6.40 | | | | Barnageeragh 110 kV | 8.71 | 19.23 | 17.32 | 8.62 | 24.88 | 23.77 | 8.78 | 23.24 | 21.04 | 8.74 | 29.36 | 28.12 | | | | Barnahealy A 110 kV | 4.62 | 11.47 | 10.49 | 5.34 | 11.98 | 11.60 | 4.53 | 13.91 | 12.83 | 5.31 | 13.84 | 13.47 | | | | Barnahealy B 110 kV | 6.17 | 11.31 | 10.37 | 6.84 | 11.63 | 11.28 | 6.25 | 13.59 | 12.56 | 6.94 | 13.35 | 13.00 | | | | Barnakyle 110 kV | 14.64 | 18.00 | 16.02 | 13.45 | 24.43 | 23.14 | 15.24 | 20.72 | 18.96 | 13.88 | 28.03 | 26.90 | | | | Baroda 110 kV | 4.11 | 8.62 | 8.16 | 4.94 | 9.80 | 9.60 | 3.96 | 10.00 | 9.35 | 4.83 | 10.94 | 10.67 | | | | Barrymore 110 kV | 3.78 | 7.62 | 7.06 | 4.89 | 4.47 | 4.41 | 3.67 | 8.50 | 7.93 | 4.84 | 4.78 | 4.72 | | | | Belcamp 110 kV | 36.16 | 7.30 | 6.64 | 28.89 | 9.18 | 8.82 | 39.57 | 7.99 | 7.36 | 31.07 | 10.50 | 10.12 | | | | Belcamp 220 kV | 12.40 | 19.05 | 16.74 | 9.96 | 22.69 | 21.49 | 11.89 | 26.33 | 23.49 | 9.32 | 30.13 | 28.77 | | | | Belgard 110 kV | 11.77 | 12.25 | 11.28 | 6.56 | 15.09 | 14.58 | 11.86 | 14.17 | 13.07 | 6.36 | 17.19 | 16.62 | | | | Bellacorick 110 kV | 4.09 | 4.48 | 4.23 | 5.11 | 6.49 | 6.32 | 5.16 | 6.01 | 5.66 | 6.28 | 8.61 | 8.37 | | | | Binbane 110 kV | 4.95 | 5.03 | 4.56 | 6.81 | 4.43 | 4.31 | 5.11 | 5.57 | 5.05 | 7.05 | 4.69 | 4.56 | | | | Blackrock 110 kV | 9.94 | 12.38 | 11.41 | 2.45 | 11.81 | 11.51 | 9.82 | 14.44 | 13.08 | 2.34 | 13.10 | 12.72 | | | | Blake 110 kV | 4.04 | 7.92 | 7.53 | 5.05 | 5.32 | 5.26 | 3.88 | 8.96 | 8.46 | 4.98 | 5.75 | 5.68 | | | | Blundelstown 110 kV | 4.14 |
8.13 | 7.83 | 5.20 | 8.63 | 8.53 | 3.99 | 8.97 | 8.68 | 5.10 | 9.25 | 9.15 | | | | Boggeragh 110 kV | 6.85 | 8.64 | 7.36 | 8.07 | 8.31 | 7.86 | 6.68 | 9.41 | 8.17 | 7.95 | 8.86 | 8.45 | | | | Bogtown 110 kV | 3.99 | 6.10 | 5.87 | 4.37 | 7.11 | 7.00 | 3.85 | 7.08 | 6.75 | 4.27 | 8.02 | 7.87 | | | | Booltiagh 110 kV | 6.76 | 8.08 | 7.18 | 8.55 | 6.44 | 6.24 | 6.60 | 8.73 | 7.90 | 8.46 | 6.72 | 6.55 | | | | Bracetown 220 kV | 12.78 | 18.71 | 16.58 | 8.85 | 19.67 | 18.81 | 12.20 | 24.71 | 22.41 | 8.17 | 24.49 | 23.67 | | | | Brinny A 110 kV | 3.04 | 5.87 | 5.42 | 4.15 | 5.14 | 5.02 | 2.94 | 6.57 | 6.06 | 4.08 | 5.54 | 5.42 | | | | Brinny B 110 kV | 3.04 | 5.89 | 5.45 | 4.15 | 5.17 | 5.05 | 2.94 | 6.60 | 6.09 | 4.08 | 5.58 | 5.46 | | | | Butlerstown 110 kV | 6.28 | 10.34 | 9.65 | 6.44 | 10.29 | 10.05 | 6.43 | 12.43 | 11.56 | 6.64 | 11.95 | 11.67 | | | | Cabra 110 kV | 12.52 | 10.45 | 9.79 | 4.91 | 11.59 | 11.31 | 12.08 | 13.00 | 11.94 | 4.51 | 13.94 | 13.51 | | | | | | | Sum | mer | | | | | Wi | nter | | | |------------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Cahir 110 kV | 4.39 | 8.94 | 8.03 | 5.63 | 7.01 | 6.82 | 4.30 | 9.77 | 8.81 | 5.58 | 7.20 | 7.01 | | Carlow 110 kV | 5.60 | 7.99 | 7.47 | 6.30 | 8.44 | 8.24 | 5.70 | 9.44 | 8.69 | 6.46 | 9.58 | 9.31 | | Carrickalangan 110 kV | 4.91 | 8.18 | 6.99 | 5.80 | 9.68 | 9.07 | 5.12 | 9.17 | 7.89 | 6.10 | 10.60 | 9.98 | | Carrickmines 220 kV | 13.60 | 17.87 | 15.86 | 7.93 | 21.82 | 20.73 | 14.76 | 24.51 | 22.12 | 7.33 | 28.52 | 27.35 | | Carrickmines A 110 kV | 29.07 | 11.38 | 10.69 | 21.20 | 12.48 | 12.20 | 34.28 | 13.31 | 12.41 | 22.74 | 14.16 | 13.80 | | Carrickmines B 110 kV | 23.67 | 12.94 | 11.98 | 18.86 | 15.45 | 14.99 | 27.01 | 15.03 | 13.99 | 20.22 | 17.64 | 17.14 | | Carrick-on-Shannon
110 kV | 4.35 | 11.37 | 10.38 | 5.12 | 12.13 | 11.75 | 4.20 | 12.65 | 11.59 | 5.01 | 13.21 | 12.81 | | Carrigadrohid 110 kV | 6.75 | 13.32 | 11.76 | 6.97 | 12.30 | 11.81 | 6.62 | 15.57 | 14.00 | 6.88 | 13.71 | 13.27 | | Carrigdangan 110 kV | 3.65 | 5.44 | 5.04 | 5.04 | 6.01 | 5.84 | 3.54 | 5.91 | 5.52 | 4.94 | 6.38 | 6.23 | | Carrowbeg 110 kV | 2.77 | 2.87 | 2.70 | 3.78 | 2.57 | 2.52 | 2.74 | 3.19 | 2.98 | 3.76 | 2.73 | 2.68 | | Cashla 110 kV | 7.48 | 16.19 | 14.45 | 7.63 | 20.60 | 19.61 | 7.38 | 19.54 | 17.52 | 7.61 | 24.02 | 22.93 | | Cashla 220 kV | 8.76 | 9.48 | 8.80 | 9.68 | 9.88 | 9.62 | 8.54 | 12.26 | 11.50 | 9.71 | 11.80 | 11.56 | | Castlebagot 110 kV | 15.44 | 18.35 | 16.30 | 15.09 | 25.66 | 24.24 | 16.25 | 21.16 | 19.33 | 15.91 | 29.56 | 28.31 | | Castlebagot 220 kV | 8.60 | 18.44 | 16.25 | 8.58 | 21.66 | 20.56 | 8.06 | 24.05 | 21.83 | 8.16 | 27.09 | 26.08 | | Castlebar 110 kV | 3.43 | 5.13 | 4.68 | 4.03 | 5.09 | 4.94 | 3.42 | 5.99 | 5.46 | 3.99 | 5.50 | 5.34 | | Castledockrill 110 kV | 7.65 | 7.77 | 7.38 | 4.20 | 8.51 | 8.35 | 7.95 | 8.61 | 8.20 | 4.18 | 9.35 | 9.18 | | Castlefarm A 110 kV | 7.43 | 9.80 | 8.74 | 8.89 | 10.10 | 9.70 | 7.26 | 10.31 | 9.34 | 8.76 | 10.37 | 10.02 | | Castlefarm B 110 kV | 7.44 | 9.78 | 8.73 | 8.90 | 10.09 | 9.69 | 7.27 | 10.29 | 9.33 | 8.77 | 10.35 | 10.01 | | Castleview 110 kV | 3.92 | 11.51 | 10.55 | 4.51 | 8.62 | 8.43 | 3.75 | 13.77 | 12.74 | 4.43 | 9.65 | 9.47 | | Cathaleen's Fall 110 kV | 4.84 | 9.74 | 8.47 | 5.72 | 9.93 | 9.46 | 5.56 | 12.13 | 10.38 | 6.42 | 11.35 | 10.78 | | Cauteen 110 kV | 5.87 | 8.39 | 7.28 | 6.74 | 4.77 | 4.63 | 5.79 | 9.13 | 8.00 | 6.71 | 5.03 | 4.91 | | Central Park 110 kV | 14.26 | 10.42 | 9.83 | 7.48 | 11.20 | 10.97 | 14.61 | 12.08 | 11.32 | 7.33 | 12.60 | 12.31 | | Charleville 110 kV | 4.81 | 6.80 | 6.19 | 6.52 | 5.97 | 5.81 | 4.72 | 7.40 | 6.75 | 6.47 | 6.26 | 6.10 | | Cherrywood 110 kV | 10.28 | 9.63 | 9.12 | 7.34 | 9.83 | 9.65 | 10.22 | 11.10 | 10.44 | 7.21 | 10.97 | 10.75 | | City West 110 kV | 5.93 | 7.63 | 7.11 | 6.38 | 6.49 | 6.36 | 5.28 | 9.53 | 8.70 | 5.99 | 7.51 | 7.32 | | CKM Country 110 kV | 23.67 | 12.94 | 11.98 | 18.86 | 15.45 | 14.99 | 27.01 | 15.03 | 13.99 | 20.22 | 17.64 | 17.14 | | Clahane 110 kV | 4.21 | 7.70 | 7.07 | 5.23 | 6.74 | 6.58 | 4.20 | 8.66 | 8.04 | 4.17 | 8.96 | 8.73 | | Clashavoon 220 kV | 9.33 | 10.18 | 9.03 | 10.08 | 11.54 | 11.00 | 9.24 | 12.30 | 11.25 | 10.05 | 13.40 | 12.95 | | Clashavoon A 110 kV | 8.13 | 16.24 | 13.90 | 8.44 | 19.94 | 18.65 | 7.96 | 19.12 | 16.76 | 8.28 | 22.98 | 21.74 | | | | | Sum | mer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sin | igle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Clashavoon B 110 kV | 8.13 | 16.24 | 13.90 | 8.44 | 19.94 | 18.65 | 7.96 | 19.12 | 16.76 | 8.28 | 22.98 | 21.74 | | Cliff 110 kV | 4.27 | 7.18 | 6.47 | 5.52 | 6.61 | 6.41 | 4.76 | 8.80 | 7.82 | 6.06 | 7.37 | 7.12 | | Cloghboola 110 kV | 7.31 | 7.38 | 6.81 | 10.56 | 7.82 | 7.60 | 7.22 | 7.95 | 7.47 | 10.53 | 8.01 | 7.84 | | Cloghboola 110 kV | 7.31 | 7.38 | 6.81 | 10.56 | 7.82 | 7.60 | 7.22 | 7.95 | 7.47 | 10.53 | 8.01 | 7.84 | | Clogher 110 kV | 4.86 | 9.24 | 7.72 | 5.65 | 9.95 | 9.30 | 5.06 | 10.41 | 8.77 | 5.89 | 10.73 | 10.08 | | Cloghran 110 kV | 8.94 | 19.97 | 17.93 | 8.84 | 25.77 | 24.58 | 9.06 | 24.28 | 21.90 | 9.02 | 30.55 | 29.22 | | Cloncreen 110 kV | 6.06 | 10.09 | 9.31 | 6.99 | 12.31 | 11.91 | 6.79 | 12.93 | 11.66 | 7.89 | 14.69 | 14.11 | | Clonee 220 kV | 13.17 | 18.98 | 16.80 | 9.67 | 20.12 | 19.22 | 12.66 | 25.17 | 22.79 | 9.02 | 25.15 | 24.29 | | Clonkeen A 110 kV | 5.64 | 6.11 | 5.72 | 6.78 | 4.29 | 4.23 | 5.58 | 6.67 | 6.30 | 6.75 | 4.58 | 4.52 | | Clonkeen B 110 kV | 4.86 | 9.63 | 8.23 | 3.60 | 10.79 | 10.14 | 4.61 | 10.76 | 9.45 | 3.44 | 11.82 | 11.24 | | Cloon 110 kV | 4.32 | 7.47 | 7.00 | 5.74 | 6.39 | 6.28 | 4.19 | 8.45 | 7.92 | 5.68 | 6.97 | 6.85 | | Clutterland 110 kV | 14.90 | 18.23 | 16.20 | 13.02 | 25.14 | 23.78 | 15.58 | 21.01 | 19.20 | 13.36 | 28.91 | 27.71 | | College Park 110 kV | 8.61 | 18.80 | 17.02 | 5.47 | 23.53 | 22.55 | 8.65 | 22.67 | 20.62 | 5.22 | 27.74 | 26.66 | | Cookstown 110 kV | 7.22 | 8.23 | 7.80 | 5.87 | 6.96 | 6.86 | 7.06 | 9.24 | 8.78 | 5.77 | 7.61 | 7.50 | | Cookstown A 110 kV | 4.88 | 6.50 | 6.10 | 5.40 | 5.09 | 5.01 | 4.39 | 7.99 | 7.32 | 5.12 | 5.79 | 5.67 | | Coolderrig 110 kV | 17.61 | 12.20 | 11.08 | 12.66 | 15.18 | 14.58 | 20.74 | 16.77 | 14.99 | 12.84 | 19.77 | 18.88 | | Coolnabacky 110 kV | | | | | | | 3.26 | 7.45 | 7.10 | 4.50 | 5.23 | 5.17 | | Coolnanoonag 110 kV | 11.29 | 16.95 | 15.12 | 11.03 | 21.02 | 20.02 | 12.00 | 19.89 | 18.20 | 11.43 | 24.15 | 23.27 | | Coolroe 110 kV | 3.52 | 9.49 | 8.76 | 4.77 | 8.98 | 8.75 | 3.50 | 11.22 | 10.37 | 4.87 | 10.04 | 9.80 | | Coomagearlahy 110 kV | 5.37 | 7.77 | 6.50 | 5.69 | 8.52 | 7.94 | 5.16 | 8.54 | 7.32 | 5.53 | 9.23 | 8.70 | | Coomataggart 110 kV | 9.60 | 6.84 | 6.28 | 9.47 | 5.48 | 5.35 | 9.61 | 7.47 | 7.00 | 9.45 | 5.81 | 5.71 | | Cordal 110 kV | 12.40 | 9.12 | 8.00 | 7.75 | 10.39 | 9.87 | 12.66 | 10.15 | 9.18 | 7.64 | 11.30 | 10.87 | | Corderry 110 kV | 4.36 | 8.50 | 7.50 | 5.57 | 8.30 | 7.96 | 4.20 | 9.27 | 8.25 | 5.46 | 8.79 | 8.47 | | Corduff 110 kV | 9.93 | 22.28 | 19.85 | 9.87 | 28.57 | 27.17 | 10.35 | 27.65 | 24.70 | 10.37 | 34.57 | 32.93 | | Corduff 220 kV | 16.33 | 22.18 | 19.25 | 14.94 | 27.56 | 25.89 | 17.63 | 31.69 | 27.93 | 16.01 | 38.24 | 36.23 | | Corkagh 110 kV | 14.93 | 18.08 | 16.08 | 13.82 | 24.68 | 23.36 | 15.61 | 20.82 | 19.03 | 14.31 | 28.32 | 27.16 | | Corraclassy 110 kV | 4.33 | 6.92 | 6.39 | 5.55 | 5.13 | 5.04 | 4.32 | 7.32 | 6.78 | 5.54 | 5.35 | 5.25 | | Cow Cross 110 kV | 4.27 | 11.51 | 10.57 | 4.74 | 9.88 | 9.63 | 4.12 | 13.94 | 12.88 | 4.67 | 11.22 | 10.98 | | Crane 110 kV | 8.09 | 8.81 | 8.28 | 7.52 | 9.36 | 9.16 | 8.78 | 9.89 | 9.25 | 8.04 | 10.43 | 10.18 | | | | | Sum | mer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Croaghaun 110 kV | | | | | | | 5.22 | 5.42 | 5.14 | 6.48 | 7.27 | 7.10 | | Cromcastle A 110 kV | 12.00 | 10.66 | 9.80 | 7.27 | 11.73 | 11.37 | 11.76 | 12.58 | 11.32 | 7.00 | 13.38 | 12.8 | | Cromcastle B 110 kV | 12.00 | 10.66 | 9.80 | 7.27 | 11.73 | 11.37 | 11.76 | 12.58 | 11.32 | 7.00 | 13.38 | 12.8 | | Crory 110 kV | 9.83 | 8.91 | 8.40 | 9.69 | 10.62 | 10.38 | 10.65 | 9.98 | 9.42 | 10.53 | 11.85 | 11.5 | | Cruiserath 220 kV | 15.73 | 21.60 | 18.80 | 13.92 | 26.88 | 25.28 | 16.87 | 30.74 | 27.18 | 14.73 | 37.20 | 35.2 | | Cullenagh 110 kV | 7.50 | 12.41 | 11.47 | 7.83 | 14.01 | 13.60 | 8.01 | 15.23 | 14.15 | 8.47 | 17.00 | 16.5 | | Cullenagh 220 kV | 8.26 | 8.14 | 7.70 | 8.23 | 8.13 | 7.98 | 8.57 | 10.66 | 10.24 | 8.71 | 10.12 | 9.99 | | Cunghill 110 kV | 3.27 | 5.52 | 5.09 | 3.84 | 5.09 | 4.96 | 3.21 | 6.48 | 6.01 | 3.81 | 5.57 | 5.45 | | Cushaling 110 kV | 6.11 | 10.22 | 9.42 | 7.14 | 12.69 | 12.27 | 6.90 | 13.14 | 11.83 | 8.18 | 15.23 | 14.6 | | Dallow 110 kV | 3.51 | 5.10 | 4.85 | 4.49 | 3.54 | 3.50 | 3.50 | 5.83 | 5.55 | 4.49 | 3.86 | 3.82 | | Dalton 110 kV | 3.35 | 4.53 | 4.10 | 4.57 | 3.63 | 3.54 | 3.32 | 5.13 | 4.62 | 4.58 | 3.90 | 3.79 | | Dardistown 110 kV | 15.46 | 10.81 | 9.93 | 11.98 | 12.19 | 11.80 | 15.46 | 12.78 | 11.50 | 11.81 | 13.96 | 13.4 | | Darndale 110 kV | 33.91 | 7.21 | 6.56 | 28.56 | 9.19 | 8.83 | 36.72 | 7.89 | 7.26 | 32.17 | 10.62 | 10.2 | | Deenes 110 kV | 5.90 | 10.91 | 10.36 | 7.09 | 10.73 | 10.56 | 5.70 |
11.89 | 11.33 | 6.97 | 11.45 | 11.2 | | Derrybrien 110 kV | 3.02 | 4.59 | 4.05 | 4.45 | 4.15 | 3.99 | 2.94 | 5.02 | 4.48 | 4.38 | 4.49 | 4.34 | | Derryiron 110 kV | 4.68 | 7.74 | 7.45 | 5.81 | 7.92 | 7.82 | 5.54 | 10.51 | 9.90 | 6.76 | 9.83 | 9.64 | | Doon 110 kV | 4.31 | 7.16 | 6.61 | 4.73 | 5.31 | 5.20 | 4.23 | 7.92 | 7.30 | 4.67 | 5.58 | 5.47 | | Dromada 110 kV | 10.90 | 8.24 | 7.21 | 6.52 | 7.78 | 7.44 | 10.93 | 8.92 | 7.97 | 6.45 | 8.20 | 7.91 | | Drumkeen 110 kV | 4.13 | 8.18 | 7.06 | 5.09 | 6.93 | 6.64 | 4.04 | 8.72 | 7.56 | 5.04 | 7.16 | 6.87 | | Drumline 110 kV | 3.35 | 8.30 | 7.59 | 4.60 | 6.79 | 6.63 | 3.26 | 9.47 | 8.71 | 4.60 | 7.28 | 7.13 | | Drybridge 110 kV | 5.48 | 14.22 | 13.20 | 6.09 | 14.47 | 14.12 | 5.25 | 15.82 | 14.72 | 5.93 | 15.63 | 15.2 | | Dundalk 110 kV | 3.50 | 8.82 | 8.26 | 4.49 | 8.03 | 7.88 | 3.41 | 9.59 | 8.97 | 4.42 | 8.47 | 8.31 | | Dunfirth 110 kV | 4.81 | 6.23 | 6.05 | 6.31 | 4.87 | 4.83 | 4.77 | 6.96 | 6.75 | 6.34 | 5.24 | 5.20 | | Dungarvan 110 kV | 5.98 | 6.24 | 5.75 | 7.48 | 5.56 | 5.43 | 6.22 | 7.32 | 6.77 | 6.62 | 7.86 | 7.64 | | Dunmanway 110 kV | 4.39 | 8.90 | 7.83 | 5.54 | 8.42 | 8.08 | 4.22 | 9.97 | 8.87 | 5.42 | 9.10 | 8.77 | | Dunstown 220 kV | 11.48 | 18.39 | 16.57 | 11.21 | 19.04 | 18.34 | 10.55 | 22.79 | 21.24 | 10.59 | 22.49 | 21.9 | | Dunstown 400 kV | 16.40 | 6.92 | 6.48 | 16.54 | 6.76 | 6.62 | 16.02 | 8.19 | 7.89 | 16.35 | 7.68 | 7.59 | | Ennis 110 kV | 4.65 | 11.87 | 10.23 | 5.98 | 10.50 | 10.03 | 4.41 | 13.61 | 11.86 | 5.83 | 11.49 | 11.0 | | Fassaroe East 110 kV | 5.18 | 7.69 | 7.32 | 5.31 | 5.88 | 5.81 | 5.01 | 8.63 | 8.21 | 5.22 | 6.39 | 6.33 | | | | | Sum | mer | | | | | Wi | nter | | | |-------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Fassaroe West 110 kV | 5.32 | 7.85 | 7.47 | 5.40 | 6.07 | 6.00 | 5.15 | 8.82 | 8.38 | 5.31 | 6.61 | 6.53 | | Finglas 220 kV | 16.75 | 21.37 | 18.55 | 15.11 | 26.29 | 24.72 | 18.35 | 30.71 | 26.99 | 16.12 | 36.32 | 34.4 | | Finglas A 110 kV | 32.21 | 12.49 | 11.37 | 29.00 | 13.83 | 13.35 | 36.57 | 15.05 | 13.38 | 31.71 | 16.05 | 15.3 | | Finglas B 110 kV | 33.24 | 12.15 | 11.29 | 29.61 | 15.14 | 14.68 | 41.13 | 15.49 | 14.11 | 35.87 | 19.05 | 18.3 | | Flagford 110 kV | 4.62 | 11.85 | 10.80 | 5.46 | 14.13 | 13.62 | 4.46 | 13.22 | 12.11 | 5.33 | 15.49 | 14.9 | | Flagford 220 kV | 7.51 | 7.18 | 6.76 | 9.70 | 6.61 | 6.49 | 7.28 | 8.03 | 7.66 | 9.58 | 7.17 | 7.08 | | Fortunestown 110 kV | 5.55 | 7.52 | 7.01 | 5.97 | 6.41 | 6.28 | 4.94 | 9.37 | 8.55 | 5.60 | 7.41 | 7.23 | | Francis Street A 110 kV | 10.42 | 12.38 | 11.41 | 5.11 | 14.67 | 14.20 | 10.31 | 14.42 | 13.07 | 4.93 | 16.65 | 16.0 | | Francis Street B 110 kV | 12.38 | 12.24 | 11.31 | 6.41 | 15.03 | 14.55 | 12.55 | 14.20 | 13.12 | 6.20 | 17.15 | 16.6 | | Galway 110 kV | 5.54 | 12.93 | 11.55 | 4.69 | 15.68 | 14.97 | 5.27 | 15.24 | 13.54 | 4.51 | 17.80 | 16.9 | | Garballagh 110 kV | 4.27 | 11.30 | 10.70 | 5.15 | 11.24 | 11.05 | 4.08 | 12.26 | 11.65 | 5.01 | 11.90 | 11.7 | | Garrow 110 kV | 10.52 | 11.07 | 9.49 | 10.18 | 13.03 | 12.23 | 10.61 | 12.54 | 11.08 | 10.18 | 14.46 | 13.7 | | Garvagh 110 kV | 4.71 | 6.83 | 6.02 | 6.12 | 6.25 | 6.01 | 4.57 | 7.37 | 6.56 | 6.02 | 6.57 | 6.34 | | Gilra 110 kV | 3.10 | 6.32 | 5.98 | 3.99 | 4.80 | 4.74 | 3.03 | 6.83 | 6.48 | 3.95 | 5.13 | 5.07 | | Glanagow 220 kV | 10.47 | 11.88 | 10.63 | 10.96 | 15.97 | 15.16 | 14.51 | 19.57 | 17.35 | 14.10 | 23.99 | 22.7 | | Glanlee 110 kV | 5.18 | 7.66 | 6.42 | 5.19 | 8.36 | 7.81 | 4.98 | 8.41 | 7.22 | 5.05 | 9.05 | 8.54 | | Glasmore A 110 kV | 4.78 | 6.67 | 6.24 | 5.25 | 4.69 | 4.62 | 4.63 | 7.67 | 6.99 | 5.18 | 5.08 | 4.97 | | Glenlara A 110 kV | 3.32 | 3.21 | 3.01 | 4.81 | 2.60 | 2.55 | 3.28 | 3.38 | 3.17 | 4.78 | 2.73 | 2.68 | | Glenlara B 110 kV | 9.65 | 8.42 | 7.05 | 5.60 | 9.47 | 8.82 | 9.51 | 9.19 | 7.93 | 5.47 | 10.16 | 9.60 | | Glenree 110 kV | 3.52 | 4.45 | 4.21 | 4.59 | 4.25 | 4.18 | 3.86 | 6.01 | 5.66 | 4.88 | 5.05 | 4.97 | | Golagh 110 kV | 4.01 | 7.41 | 6.39 | 4.71 | 6.47 | 6.19 | 4.04 | 8.19 | 7.12 | 4.77 | 6.88 | 6.61 | | Gorman 110 kV | 6.40 | 15.25 | 14.15 | 7.30 | 18.42 | 17.88 | 6.12 | 17.08 | 15.89 | 7.05 | 20.21 | 19.6 | | Gorman 220 kV | 8.91 | 11.37 | 10.68 | 10.05 | 9.61 | 9.45 | 8.50 | 12.87 | 12.34 | 9.80 | 10.47 | 10.3 | | Gorman ESS 110 kV | 6.30 | 14.99 | 13.93 | 7.06 | 18.01 | 17.49 | 6.02 | 16.76 | 15.62 | 6.82 | 19.72 | 19.1 | | Gortawee 110 kV | 4.49 | 6.56 | 6.05 | 6.11 | 5.20 | 5.10 | 4.46 | 6.94 | 6.42 | 6.10 | 5.37 | 5.20 | | Grange 110 kV | 12.96 | 10.92 | 10.01 | 4.37 | 11.18 | 10.85 | 12.75 | 12.96 | 11.61 | 4.16 | 12.69 | 12.2 | | Grange Castle 110 kV | 18.95 | 12.54 | 11.37 | 13.73 | 16.35 | 15.66 | 23.50 | 17.39 | 15.49 | 14.32 | 21.68 | 20.6 | | Great Island 110 kV | 7.92 | 12.45 | 11.59 | 8.37 | 15.10 | 14.67 | 8.75 | 15.27 | 14.21 | 9.55 | 18.35 | 17.8 | | Great Island 220 kV | 9.56 | 9.53 | 9.00 | 9.30 | 11.27 | 11.02 | 12.39 | 14.47 | 13.80 | 12.69 | 16.54 | 16.2 | | | | | Sum | mer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | Tł | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Greenlink 150 kV | 10.84 | 12.68 | 11.95 | 33.45 | 4.82 | 4.78 | 14.58 | 18.88 | 18.03 | 62.30 | 5.36 | 5.33 | | Griffinrath A 110 kV | 6.84 | 10.09 | 9.63 | 7.23 | 10.12 | 9.97 | 6.59 | 11.74 | 11.17 | 7.03 | 11.41 | 11.2 | | Griffinrath B 110 kV | 7.36 | 10.44 | 9.95 | 7.38 | 10.11 | 9.96 | 7.10 | 12.18 | 11.58 | 7.18 | 11.40 | 11.2 | | Harolds Cross 110 kV | 10.60 | 12.42 | 11.45 | 4.83 | 14.63 | 14.16 | 10.50 | 14.47 | 13.11 | 4.65 | 16.58 | 15.9 | | Heuston 110 kV | 13.36 | 12.49 | 11.52 | 7.69 | 15.51 | 15.00 | 13.67 | 14.51 | 13.39 | 7.51 | 17.74 | 17.1 | | Huntstown A 220 kV | 16.28 | 20.73 | 18.06 | 13.19 | 25.44 | 23.96 | 17.10 | 29.25 | 25.84 | 13.06 | 34.62 | 32.8 | | Huntstown B 220 kV | 16.42 | 20.50 | 17.99 | 11.10 | 25.37 | 23.96 | 17.34 | 28.14 | 25.15 | 10.44 | 33.95 | 32.3 | | lkerrin 110 kV | 5.19 | 5.20 | 4.61 | 6.27 | 3.65 | 3.55 | 5.33 | 5.70 | 5.08 | 6.35 | 3.92 | 3.8 | | Inchicore 220 kV | 12.42 | 21.96 | 18.99 | 9.81 | 27.34 | 25.63 | 13.26 | 31.79 | 28.04 | 9.53 | 37.49 | 35.5 | | Inchicore A 110 kV | 26.71 | 13.79 | 12.64 | 24.58 | 17.60 | 16.95 | 31.70 | 16.18 | 14.83 | 28.10 | 20.36 | 19.6 | | Inchicore B 110 kV | 38.58 | 13.54 | 12.25 | 30.26 | 18.06 | 17.26 | 49.62 | 18.63 | 16.58 | 33.66 | 24.03 | 22.8 | | Inniscarra 110 kV | 3.49 | 9.27 | 8.56 | 4.66 | 8.55 | 8.34 | 3.52 | 11.00 | 10.16 | 4.81 | 9.53 | 9.3 | | Irishtown 220 kV | 13.84 | 19.81 | 17.35 | 10.36 | 25.01 | 23.57 | 15.67 | 28.92 | 25.68 | 10.17 | 34.55 | 32.8 | | Kellis 110 kV | 6.75 | 8.51 | 7.98 | 7.67 | 9.92 | 9.68 | 6.87 | 10.04 | 9.30 | 7.94 | 11.40 | 11.0 | | Kellis 220 kV | 7.86 | 7.44 | 7.10 | 9.43 | 6.35 | 6.27 | 7.86 | 8.75 | 8.44 | 9.68 | 7.13 | 7.0 | | Kellystown 220 kV | 9.81 | 17.31 | 15.57 | 9.15 | 17.71 | 17.05 | 8.73 | 21.38 | 19.87 | 8.15 | 21.33 | 20.8 | | Kilbarry 110 kV | 6.33 | 17.73 | 15.49 | 7.13 | 18.57 | 17.68 | 6.29 | 22.72 | 19.87 | 7.16 | 22.18 | 21.1 | | Kildonan 110 kV | 6.20 | 12.76 | 11.91 | 4.12 | 11.34 | 11.12 | 6.02 | 14.68 | 13.79 | 3.98 | 12.56 | 12.3 | | Kilgarvan 110 kV | 9.60 | 6.84 | 6.28 | 9.47 | 5.48 | 5.35 | 9.61 | 7.47 | 7.00 | 9.45 | 5.81 | 5.7 | | Kilkenny 110 kV | 4.04 | 5.09 | 4.84 | 5.48 | 4.57 | 4.51 | 4.10 | 5.95 | 5.50 | 5.67 | 4.99 | 4.8 | | Kill Hill 110 kV | 4.84 | 6.44 | 5.78 | 6.41 | 5.56 | 5.39 | 4.85 | 6.94 | 6.27 | 6.42 | 5.85 | 5.68 | | Killonan 110 kV | 6.57 | 18.15 | 15.76 | 7.95 | 19.33 | 18.35 | 6.75 | 22.07 | 19.54 | 8.30 | 22.33 | 21.3 | | Killonan 220 kV | 7.74 | 10.21 | 9.33 | 9.92 | 9.55 | 9.28 | 7.73 | 12.15 | 11.44 | 10.08 | 10.77 | 10.5 | | Killoteran 110 kV | 6.96 | 11.26 | 10.47 | 7.06 | 12.17 | 11.85 | 7.30 | 13.69 | 12.68 | 7.44 | 14.38 | 13.9 | | Kilmahud 110 kV | 14.70 | 18.02 | 16.04 | 13.20 | 24.38 | 23.09 | 15.32 | 20.75 | 18.98 | 13.57 | 27.96 | 26.8 | | Kilmore 110 kV | 14.93 | 11.16 | 10.21 | 9.43 | 12.34 | 11.94 | 14.89 | 13.26 | 11.87 | 9.17 | 14.15 | 13.5 | | Kilpaddoge 110 kV | 11.54 | 17.16 | 15.29 | 11.95 | 21.73 | 20.67 | 12.33 | 20.17 | 18.44 | 12.56 | 25.08 | 24.1 | | Kilpaddoge 220 kV | 12.48 | 15.64 | 13.81 | 11.85 | 19.32 | 18.30 | 14.91 | 22.28 | 20.24 | 13.55 | 26.18 | 25.1 | | Kilpaddoge 400 kV | 12.48 | 15.64 | 13.81 | 11.85 | 19.32 | 18.30 | 14.91 | 22.28 | 20.24 | 13.55 | 26.18 | 25.1 | | | | | Sum | nmer | | | | | Wi | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | Tł | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Kilteel 110 kV | 4.43 | 7.67 | 7.34 | 5.51 | 8.00 | 7.88 | 4.36 | 8.90 | 8.39 | 5.51 | 8.84 | 8.67 | | Kinnegad 110 kV | 4.46 | 7.76 | 7.45 | 5.02 | 7.10 | 7.02 | 4.63 | 9.31 | 8.88 | 5.18 | 8.01 | 7.90 | | Kishoge 110 kV | | | | | | | 14.74 | 20.31 | 18.61 | 12.35 | 26.72 | 25.6 | | Knockacummer 110 kV | 8.60 | 7.40 | 6.15 | 6.67 | 7.16 | 6.72 | 8.42 | 7.96 | 6.82 | 6.56 | 7.46 | 7.08 | | Knockalough 110 kV | 4.57 | 4.81 | 4.62 | 4.40 | 6.24 | 6.14 | 4.46 | 5.32 | 5.08 | 4.32 | 6.57 | 6.44 | | Knockanure 220 kV | 12.04 | 13.53 | 12.01 | 8.30 | 16.49 | 15.67 | 13.19 | 17.73 | 16.25 | 7.96 | 20.77 | 20.0 | | Knockanure A 110 kV | 22.81 | 12.23 | 10.75 | 17.03 | 13.45 | 12.81 | 26.38 | 13.63 | 12.31 | 17.91 | 14.69 | 14.1 | | Knockanure B 110 kV | 4.80 | 8.53 |
7.86 | 5.83 | 6.84 | 6.69 | 4.72 | 9.54 | 8.90 | 5.47 | 7.63 | 7.49 | | Knockearagh 110 kV | 5.48 | 5.71 | 5.29 | 7.34 | 4.69 | 4.59 | 5.46 | 6.34 | 5.86 | 7.34 | 5.09 | 4.99 | | Knocknamona 110 kV | | | | | | | 5.97 | 7.13 | 6.59 | 5.82 | 10.61 | 10.1 | | Knockraha A 110 kV | 7.62 | 18.80 | 16.49 | 8.29 | 19.31 | 18.42 | 7.91 | 24.18 | 21.45 | 8.51 | 23.24 | 22.3 | | Knockraha A 220 kV | 9.73 | 13.18 | 11.69 | 9.98 | 14.88 | 14.19 | 10.96 | 19.43 | 17.41 | 10.70 | 19.75 | 18.9 | | Knockraha B 110 kV | 7.62 | 18.80 | 16.49 | 8.29 | 19.31 | 18.42 | 7.91 | 24.18 | 21.45 | 8.51 | 23.24 | 22.3 | | Knockraha B 220 kV | 9.73 | 13.18 | 11.69 | 9.98 | 14.88 | 14.19 | 10.96 | 19.43 | 17.41 | 10.70 | 19.75 | 18.9 | | Knockranny 110 kV | 6.58 | 8.42 | 7.47 | 5.40 | 10.64 | 10.11 | 6.38 | 9.40 | 8.37 | 5.27 | 11.65 | 11.0 | | Knockranny A 110 kV | 4.41 | 5.51 | 5.26 | 5.14 | 7.21 | 7.07 | 4.29 | 6.13 | 5.81 | 5.04 | 7.57 | 7.40 | | Knockranny B 110 kV | 6.58 | 8.42 | 7.47 | 5.40 | 10.64 | 10.11 | 6.38 | 9.40 | 8.37 | 5.27 | 11.65 | 11.0 | | Knockumber 110 kV | 3.64 | 8.58 | 8.14 | 4.45 | 6.47 | 6.39 | 3.59 | 9.30 | 8.83 | 4.46 | 6.85 | 6.76 | | Lanesboro 110 kV | 3.06 | 8.61 | 8.17 | 4.20 | 7.34 | 7.24 | 2.99 | 9.83 | 9.22 | 4.20 | 8.01 | 7.8 | | Lenalea 110 kV | 4.19 | 6.42 | 5.75 | 5.17 | 6.94 | 6.67 | 4.12 | 6.88 | 6.17 | 5.13 | 7.28 | 7.00 | | Letterkenny110 kV | 4.59 | 9.73 | 8.22 | 5.44 | 9.15 | 8.66 | 4.47 | 10.51 | 8.88 | 5.37 | 9.65 | 9.13 | | Liberty A 110 kV | 5.26 | 14.96 | 13.31 | 4.72 | 16.36 | 15.65 | 5.11 | 18.71 | 16.66 | 4.55 | 19.29 | 18.5 | | Liberty B 110 kV | 5.18 | 14.95 | 13.31 | 4.58 | 16.32 | 15.62 | 5.03 | 18.68 | 16.65 | 4.41 | 19.23 | 18.4 | | Lickny 110 kV | 3.16 | 4.81 | 4.70 | 3.27 | 5.53 | 5.48 | 3.12 | 5.21 | 5.04 | 3.24 | 5.89 | 5.8 | | Limerick 110 kV | 5.03 | 15.54 | 13.64 | 5.94 | 14.21 | 13.64 | 5.06 | 18.63 | 16.57 | 6.04 | 16.00 | 15.4 | | Lisdrum 110 kV | 3.04 | 5.49 | 5.24 | 3.52 | 7.76 | 7.60 | 3.05 | 6.01 | 5.68 | 3.53 | 8.49 | 8.2 | | Lisdrumdoagh 110 kV | 3.04 | 5.48 | 5.23 | 3.54 | 7.78 | 7.62 | 3.05 | 5.99 | 5.67 | 3.56 | 8.51 | 8.2 | | Lisheen 110 kV | 3.86 | 4.95 | 4.08 | 4.53 | 7.89 | 7.08 | 3.88 | 5.24 | 4.37 | 4.52 | 8.31 | 7.5 | | Lislea 110 kV | 3.15 | 6.07 | 5.69 | 4.01 | 4.70 | 4.63 | 3.11 | 6.46 | 6.05 | 3.99 | 4.94 | 4.8 | | | | | Sum | mer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | ТІ | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | igle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Lodgewood 110 kV | 9.83 | 8.91 | 8.40 | 9.69 | 10.62 | 10.38 | 10.65 | 9.98 | 9.42 | 10.53 | 11.85 | 11.58 | | Lodgewood 220 kV | 9.09 | 7.12 | 6.78 | 9.85 | 6.76 | 6.66 | 9.21 | 8.51 | 8.20 | 10.27 | 7.80 | 7.71 | | Longpoint 220 kV | 10.64 | 12.25 | 10.93 | 10.47 | 16.29 | 15.44 | 14.18 | 19.85 | 17.59 | 12.35 | 23.99 | 22.77 | | Loughtown 220 kV | 9.42 | 9.48 | 8.96 | 8.93 | 11.17 | 10.92 | 11.91 | 14.35 | 13.69 | 11.66 | 16.31 | 16.02 | | Louth 220 kV | 9.45 | 16.52 | 15.01 | 10.61 | 18.61 | 17.94 | 9.23 | 19.77 | 18.46 | 10.43 | 21.23 | 20.72 | | Louth A 110 kV | 6.60 | 12.96 | 12.05 | 7.54 | 15.50 | 15.06 | 6.45 | 14.17 | 13.32 | 7.42 | 16.73 | 16.34 | | Louth A 275 kV | 11.11 | 9.69 | 8.96 | 11.03 | 11.43 | 11.08 | 11.07 | 11.75 | 11.12 | 10.79 | 13.32 | 13.05 | | Louth B 110 kV | 6.97 | 14.05 | 13.10 | 7.74 | 17.36 | 16.88 | 6.85 | 15.54 | 14.62 | 7.63 | 18.92 | 18.47 | | Louth B 275 kV | 10.46 | 9.69 | 8.96 | 9.74 | 11.54 | 11.19 | 10.40 | 11.76 | 11.13 | 9.45 | 13.52 | 13.25 | | Lysaghtstown 110 kV | 4.03 | 11.14 | 10.25 | 4.95 | 11.58 | 11.25 | 3.82 | 13.10 | 12.17 | 4.81 | 12.97 | 12.65 | | Macetown 110 kV | 7.42 | 17.44 | 15.88 | 6.68 | 18.35 | 17.75 | 7.28 | 20.83 | 19.06 | 6.56 | 21.02 | 20.38 | | Macroom 110 kV | 7.08 | 15.32 | 13.25 | 6.98 | 16.03 | 15.20 | 6.90 | 18.09 | 15.97 | 6.83 | 18.20 | 17.42 | | Mallow 110 kV | 5.22 | 6.66 | 6.22 | 7.02 | 5.65 | 5.55 | 5.14 | 7.37 | 6.88 | 6.99 | 6.06 | 5.94 | | Marina 110 kV | 6.04 | 16.52 | 14.54 | 6.94 | 18.17 | 17.30 | 6.00 | 21.06 | 18.53 | 6.99 | 21.73 | 20.74 | | Maynooth A 110 kV | 10.57 | 12.67 | 11.98 | 11.19 | 15.42 | 15.08 | 10.43 | 15.06 | 14.22 | 11.01 | 18.00 | 17.59 | | Maynooth A 220 kV | 9.04 | 19.60 | 17.41 | 7.42 | 19.66 | 18.85 | 7.92 | 24.88 | 22.90 | 6.67 | 23.58 | 22.95 | | Maynooth B 110 kV | 7.96 | 16.80 | 15.52 | 9.30 | 16.12 | 15.72 | 7.49 | 19.24 | 18.14 | 9.01 | 17.88 | 17.55 | | Maynooth B 220 kV | 10.01 | 17.14 | 15.50 | 9.70 | 16.04 | 15.53 | 9.30 | 21.21 | 19.75 | 9.23 | 18.71 | 18.32 | | McDermott 110 kV | 16.22 | 11.14 | 10.39 | 6.14 | 12.98 | 12.63 | 16.21 | 14.02 | 12.80 | 5.64 | 15.90 | 15.35 | | Meath Hill 110 kV | 3.93 | 9.24 | 8.72 | 5.20 | 7.37 | 7.27 | 3.83 | 10.01 | 9.45 | 5.13 | 7.77 | 7.66 | | Meentycat 110 kV | 3.84 | 6.78 | 5.95 | 5.10 | 5.71 | 5.50 | 3.74 | 7.11 | 6.29 | 5.05 | 5.75 | 5.56 | | Midleton 110 kV | 3.76 | 9.91 | 9.17 | 4.71 | 10.13 | 9.86 | 3.58 | 11.55 | 10.77 | 4.59 | 11.31 | 11.04 | | Milltown A 110 kV | 14.53 | 13.46 | 12.35 | 6.66 | 16.17 | 15.61 | 14.82 | 15.80 | 14.24 | 6.45 | 18.49 | 17.73 | | Milltown B 110 kV | 8.67 | 11.02 | 10.25 | 3.99 | 13.26 | 12.88 | 8.52 | 12.70 | 11.78 | 3.81 | 15.01 | 14.56 | | Misery Hill 110 kV | 13.02 | 13.13 | 12.05 | 7.34 | 15.92 | 15.37 | 13.12 | 15.37 | 13.87 | 7.15 | 18.20 | 17.45 | | Moneteen 110 kV | 5.31 | 11.04 | 10.00 | 6.24 | 8.11 | 7.92 | 5.28 | 12.39 | 11.40 | 6.26 | 8.73 | 8.56 | | Moneypoint 110 kV | 14.34 | 9.31 | 8.70 | 17.25 | 9.12 | 8.92 | 15.05 | 10.32 | 9.82 | 18.01 | 9.92 | 9.76 | | Moneypoint 220 kV | 12.68 | 15.57 | 13.78 | 12.68 | 19.29 | 18.29 | 15.26 | 22.18 | 20.20 | 14.19 | 26.12 | 25.13 | | Moneypoint G1 400 kV | 15.75 | 8.78 | 7.97 | 16.96 | 10.49 | 10.08 | 20.99 | 13.97 | 12.95 | 21.56 | 15.09 | 14.67 | | | | | Sum | mer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | igle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Moneypoint G2 400 kV | 15.75 | 8.78 | 7.97 | 16.96 | 10.49 | 10.08 | 20.99 | 13.97 | 12.95 | 21.56 | 15.09 | 14.67 | | Moneypoint G3 400 kV | 15.75 | 8.78 | 7.97 | 16.96 | 10.49 | 10.08 | 20.99 | 13.97 | 12.95 | 21.56 | 15.09 | 14.6 | | Monread 110 kV | 4.13 | 7.66 | 7.31 | 4.97 | 7.81 | 7.69 | 4.01 | 8.84 | 8.32 | 4.91 | 8.60 | 8.43 | | Mount Lucas 110 kV | 4.71 | 7.37 | 7.03 | 4.88 | 8.19 | 8.05 | 4.61 | 8.77 | 8.27 | 4.81 | 9.37 | 9.17 | | Moy 110 kV | 3.75 | 4.27 | 4.03 | 5.01 | 5.20 | 5.09 | 5.46 | 6.76 | 6.25 | 6.93 | 7.26 | 7.06 | | Mullagharlin 110 kV | 3.56 | 8.90 | 8.38 | 4.60 | 9.06 | 8.89 | 3.47 | 9.62 | 9.09 | 4.53 | 9.54 | 9.36 | | Mullingar 110 kV | 3.64 | 7.15 | 6.87 | 3.83 | 7.67 | 7.57 | 3.64 | 8.06 | 7.65 | 3.83 | 8.40 | 8.25 | | Mulreavy 110 kV | 4.98 | 8.29 | 6.92 | 5.72 | 9.14 | 8.52 | 5.15 | 9.19 | 7.76 | 5.92 | 9.73 | 9.13 | | Mungret A 110 kV | 4.98 | 10.46 | 9.52 | 5.93 | 7.53 | 7.36 | 4.94 | 11.69 | 10.80 | 5.94 | 8.08 | 7.93 | | Mungret B 110 kV | 4.97 | 10.48 | 9.53 | 5.93 | 7.54 | 7.37 | 4.93 | 11.72 | 10.82 | 5.93 | 8.09 | 7.94 | | Nangor 110 kV | 16.29 | 12.24 | 11.12 | 10.27 | 15.85 | 15.20 | 18.37 | 16.85 | 15.06 | 9.84 | 20.86 | 19.8 | | Navan 110 kV | 5.47 | 13.36 | 12.45 | 6.15 | 13.73 | 13.41 | 5.50 | 14.97 | 13.94 | 6.32 | 15.06 | 14.7 | | Nenagh 110 kV | 2.68 | 3.63 | 3.40 | 3.87 | 2.02 | 2.00 | 2.64 | 3.92 | 3.67 | 3.86 | 2.12 | 2.09 | | Newbridge 110 kV | 4.33 | 9.89 | 9.28 | 5.06 | 9.47 | 9.28 | 4.15 | 11.66 | 10.78 | 4.96 | 10.64 | 10.3 | | Newbury 110 kV | 14.02 | 11.06 | 10.13 | 7.03 | 11.96 | 11.59 | 13.90 | 13.13 | 11.76 | 6.76 | 13.67 | 13.1 | | North Quays 110 kV | 17.85 | 13.75 | 12.59 | 6.20 | 16.19 | 15.64 | 18.70 | 16.17 | 14.55 | 6.00 | 18.50 | 17.7 | | North Wall 220 kV | 14.59 | 18.84 | 16.63 | 8.40 | 20.78 | 19.80 | 15.76 | 27.02 | 24.13 | 7.61 | 27.58 | 26.4 | | Oldbridge 110 kV | 4.95 | 13.27 | 12.37 | 5.76 | 14.91 | 14.54 | 4.74 | 14.63 | 13.69 | 5.60 | 16.06 | 15.6 | | Oldcourt A 110 kV | 3.78 | 9.71 | 9.03 | 4.41 | 7.56 | 7.42 | 3.64 | 11.49 | 10.76 | 4.35 | 8.44 | 8.30 | | Oldcourt B 110 kV | 3.82 | 9.77 | 9.08 | 4.44 | 7.63 | 7.49 | 3.67 | 11.57 | 10.83 | 4.37 | 8.52 | 8.38 | | Oldstreet 220 kV | 12.91 | 7.82 | 7.46 | 11.67 | 9.20 | 9.03 | 15.51 | 12.01 | 11.34 | 12.84 | 12.71 | 12.4 | | Oldstreet 400 kV | 12.09 | 6.87 | 6.44 | 9.91 | 6.70 | 6.56 | 13.02 | 9.23 | 8.84 | 9.96 | 8.19 | 8.08 | | Oughtragh 110 kV | 3.70 | 4.67 | 4.33 | 4.82 | 2.94 | 2.90 | 3.65 | 5.09 | 4.71 | 4.73 | 3.14 | 3.09 | | Pelletstown 110 kV | 14.05 | 10.55 | 9.88 | 7.91 | 11.36 | 11.10 | 13.75 | 13.13 | 12.07 | 7.46 | 13.64 | 13.2 | | Philipstown 110 kV | 5.83 | 9.72 | 9.01 | 6.54 | 11.13 | 10.81 | 6.31 | 12.24 | 11.12 | 7.06 | 13.05 | 12.6 | | Platin 110 kV | 4.90 | 13.01 | 12.17 | 5.44 | 12.76 | 12.50 | 4.68 | 14.30 | 13.43 | 5.30 | 13.65 | 13.3 | | Pollaphuca 110 kV | 2.75 | 2.47 | 2.42 | 3.99 | 2.26 | 2.25 | 3.33 | 3.12 | 2.99 | 4.75 | 2.57 | 2.54 | | Poolbeg A 110 kV | 25.99 | 14.37 | 13.14 | 21.35 | 17.86 | 17.20 | 29.36 | 16.96 | 15.26 | 22.97 | 20.64 | 19.7 | | Poolbeg A 220 kV | 15.36 | 18.93 | 16.71 | 7.36 | 19.57 | 18.70 | 16.67 | 27.10 | 24.20 | 6.52 | 25.56 | 24.6 | | | | | Sum | nmer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | nree pha | se | Sin | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Poolbeg B 110 kV | 25.96 | 14.35 | 13.12 | 21.33 | 17.84 | 17.18 | 29.31 | 16.94 | 15.24 | 22.95 |
20.61 | 19.72 | | Poolbeg B 220 kV | 12.48 | 20.54 | 17.93 | 9.97 | 24.06 | 22.74 | 13.10 | 29.21 | 26.04 | 9.70 | 31.95 | 30.56 | | Poppintree 110 kV | 15.87 | 11.48 | 10.51 | 9.62 | 12.67 | 12.26 | 16.00 | 13.69 | 12.25 | 9.37 | 14.58 | 13.99 | | Portan 260 kV | 20.41 | 10.60 | 9.96 | 92.19 | 3.10 | 3.08 | 20.94 | 13.07 | 12.59 | 108.83 | 3.22 | 3.21 | | Portan 400 kV | 16.46 | 8.74 | 8.09 | 24.52 | 7.89 | 7.71 | 16.27 | 11.06 | 10.53 | 26.52 | 9.04 | 8.92 | | Portlaoise 110 kV | 3.98 | 8.19 | 7.79 | 5.37 | 6.70 | 6.61 | 3.83 | 9.26 | 8.72 | 5.32 | 7.18 | 7.07 | | Pottery 110 kV | 17.10 | 10.77 | 10.15 | 5.55 | 10.99 | 10.77 | 17.96 | 12.53 | 11.73 | 5.38 | 12.34 | 12.06 | | Prospect 220 kV | 10.61 | 13.06 | 11.78 | 8.12 | 13.71 | 13.20 | 11.28 | 17.58 | 16.32 | 8.11 | 17.27 | 16.83 | | Raffeen 220 kV | 10.15 | 11.76 | 10.52 | 9.64 | 15.27 | 14.52 | 13.12 | 18.38 | 16.41 | 10.94 | 21.82 | 20.80 | | Raffeen A 110 kV | 5.51 | 13.25 | 12.00 | 6.32 | 15.79 | 15.16 | 5.55 | 16.45 | 15.01 | 6.43 | 18.83 | 18.17 | | Raffeen B 110 kV | 7.42 | 13.10 | 11.86 | 8.28 | 15.54 | 14.92 | 7.83 | 16.06 | 14.65 | 8.71 | 18.32 | 17.67 | | Rathkeale 110 kV | 3.54 | 7.46 | 6.85 | 4.81 | 5.75 | 5.62 | 3.51 | 8.31 | 7.66 | 4.85 | 6.10 | 5.98 | | Rathnaskillo 110 kV | | | | | | | 6.49 | 8.34 | 7.88 | 7.62 | 8.64 | 8.47 | | Ratrussan 110 kV | 3.78 | 7.87 | 6.76 | 4.95 | 8.41 | 7.96 | 3.69 | 8.31 | 7.20 | 4.85 | 8.69 | 8.26 | | Reamore 110 kV | 3.86 | 8.85 | 7.89 | 4.28 | 7.35 | 7.12 | 3.78 | 9.97 | 8.97 | 4.03 | 8.31 | 8.06 | | Richmond A 110 kV | 2.76 | 6.07 | 5.83 | 4.05 | 5.22 | 5.17 | 2.72 | 6.86 | 6.47 | 4.10 | 5.73 | 5.64 | | Richmond B 110 kV | 2.76 | 6.07 | 5.83 | 4.05 | 5.22 | 5.17 | 2.72 | 6.86 | 6.47 | 4.10 | 5.73 | 5.64 | | Rinawade 110 kV | 6.06 | 10.74 | 10.18 | 6.57 | 7.91 | 7.81 | 5.82 | 11.98 | 11.51 | 6.45 | 8.55 | 8.47 | | Ringaskiddy 110 kV | 5.47 | 10.97 | 10.09 | 5.90 | 10.77 | 10.47 | 5.44 | 13.13 | 12.17 | 5.90 | 12.31 | 12.01 | | Ringsend 110 kV | 26.40 | 14.49 | 13.21 | 22.49 | 18.00 | 17.32 | 29.89 | 17.15 | 15.36 | 24.38 | 20.85 | 19.90 | | Ryebrook 110 kV | 5.31 | 14.15 | 12.91 | 6.19 | 12.55 | 12.22 | 5.00 | 15.94 | 14.80 | 6.01 | 13.57 | 13.29 | | Salthill 110 kV | 4.87 | 12.36 | 11.11 | 3.78 | 14.74 | 14.11 | 4.62 | 14.48 | 12.94 | 3.62 | 16.61 | 15.88 | | Screeb 110 kV | 3.88 | 2.60 | 2.52 | 4.95 | 1.82 | 1.81 | 3.83 | 2.89 | 2.76 | 4.93 | 1.96 | 1.94 | | Seal Rock A 110 kV | 7.93 | 10.01 | 8.92 | 9.60 | 10.73 | 10.28 | 7.75 | 10.53 | 9.53 | 9.44 | 10.99 | 10.60 | | Seal Rock B 110 kV | 7.96 | 10.02 | 8.92 | 9.62 | 10.73 | 10.28 | 7.78 | 10.54 | 9.53 | 9.46 | 10.99 | 10.60 | | Shankill 110 kV | 4.02 | 9.11 | 8.06 | 5.13 | 8.04 | 7.76 | 3.92 | 9.80 | 8.69 | 5.05 | 8.48 | 8.18 | | Shannonbridge 110 kV | 4.94 | 12.89 | 11.86 | 6.08 | 14.39 | 13.95 | 6.43 | 18.79 | 17.24 | 7.39 | 23.01 | 22.20 | | Shannonbridge 220 kV | 6.74 | 6.84 | 6.52 | 8.75 | 6.81 | 6.71 | 7.66 | 8.10 | 7.87 | 9.69 | 8.85 | 8.76 | | Shellybanks A 220 kV | 15.05 | 18.89 | 16.68 | 7.22 | 22.35 | 21.22 | 16.24 | 27.04 | 24.15 | 6.27 | 30.41 | 29.06 | | | | | Sum | nmer | | | | | Wi | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | ree pha | se | Si | ngle pha | se | TI | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Shellybanks B 220 kV | 13.15 | 18.95 | 16.68 | 8.98 | 23.52 | 22.24 | 14.85 | 27.63 | 24.62 | 8.54 | 32.27 | 30.7 | | Shelton Abbey 110 kV | 7.58 | 7.69 | 7.26 | 7.54 | 7.99 | 7.84 | 7.49 | 8.56 | 8.10 | 7.49 | 8.76 | 8.59 | | Singland 110 kV | 5.99 | 14.78 | 13.07 | 7.08 | 14.23 | 13.67 | 6.31 | 17.99 | 16.14 | 7.48 | 16.22 | 15.6 | | Sliabh Bawn 110 kV | 3.06 | 8.00 | 7.62 | 4.29 | 7.67 | 7.56 | 2.97 | 8.89 | 8.44 | 4.25 | 8.13 | 8.00 | | Slievecallan 110 kV | 7.71 | 6.69 | 5.68 | 9.95 | 6.71 | 6.34 | 7.58 | 7.22 | 6.23 | 9.89 | 7.01 | 6.66 | | Sligo 110 kV | 3.78 | 9.28 | 8.41 | 4.48 | 8.56 | 8.31 | 3.65 | 10.59 | 9.61 | 4.41 | 9.32 | 9.06 | | Snughborough 110 kV | 10.04 | 20.22 | 18.17 | 8.53 | 21.49 | 20.68 | 10.44 | 24.66 | 22.25 | 8.63 | 24.83 | 23.9 | | Somerset 110 kV | 2.95 | 6.95 | 6.59 | 3.95 | 4.58 | 4.53 | 2.88 | 8.26 | 7.87 | 3.88 | 5.21 | 5.15 | | Sorne Hill 110 kV | 3.57 | 3.72 | 3.10 | 4.57 | 3.49 | 3.29 | 3.52 | 3.85 | 3.22 | 4.53 | 3.59 | 3.39 | | Srahnakilly 110 kV | 4.16 | 4.37 | 4.14 | 5.32 | 6.56 | 6.38 | 5.21 | 5.81 | 5.48 | 6.49 | 8.47 | 8.24 | | Srananagh 110 kV | 4.78 | 10.94 | 9.77 | 5.59 | 11.69 | 11.23 | 4.65 | 12.46 | 11.19 | 5.52 | 12.90 | 12.4 | | Srananagh 220 kV | 7.35 | 4.60 | 4.37 | 9.61 | 3.67 | 3.62 | 7.30 | 5.05 | 4.84 | 9.62 | 3.92 | 3.88 | | Stevenstown 110 kV | 4.64 | 5.58 | 5.30 | 5.10 | 3.70 | 3.66 | 4.49 | 6.25 | 5.83 | 5.03 | 3.96 | 3.90 | | Stratford 110 kV | 3.15 | 3.84 | 3.70 | 4.15 | 3.03 | 3.01 | 3.41 | 4.61 | 4.34 | 4.41 | 3.35 | 3.30 | | Taney 110 kV | 8.80 | 9.33 | 8.85 | 3.22 | 9.22 | 9.07 | 8.66 | 10.70 | 10.09 | 3.10 | 10.23 | 10.0 | | Tarbert 110 kV | 29.60 | 7.30 | 7.03 | 34.29 | 5.36 | 5.32 | 36.07 | 8.16 | 7.98 | 41.79 | 5.85 | 5.82 | | Tarbert 220 kV | 11.90 | 14.93 | 13.26 | 10.74 | 17.42 | 16.59 | 14.07 | 21.22 | 19.35 | 12.55 | 23.74 | 22.90 | | Tawnaghmore A 110 kV | 3.38 | 3.48 | 3.33 | 4.62 | 3.82 | 3.76 | 4.53 | 5.31 | 5.00 | 5.94 | 4.94 | 4.85 | | Tawnaghmore B 110 kV | 3.35 | 3.41 | 3.26 | 4.47 | 3.87 | 3.81 | 5.19 | 5.60 | 5.20 | 6.67 | 5.85 | 5.70 | | Thornsberry 110 kV | 3.97 | 6.34 | 6.09 | 4.95 | 5.97 | 5.90 | 3.86 | 7.67 | 7.24 | 4.93 | 6.91 | 6.79 | | Thurles 110 kV | 4.83 | 6.11 | 5.15 | 5.89 | 7.12 | 6.64 | 4.96 | 6.63 | 5.63 | 6.02 | 7.59 | 7.10 | | Tievebrack 110 kV | 4.24 | 4.53 | 4.16 | 5.47 | 3.24 | 3.18 | 4.25 | 4.92 | 4.51 | 5.50 | 3.41 | 3.34 | | Tipperary 110 kV | 5.21 | 7.50 | 6.74 | 6.31 | 4.61 | 4.51 | 5.13 | 8.18 | 7.38 | 6.28 | 4.85 | 4.75 | | Tonroe 110 kV | 2.75 | 3.39 | 3.18 | 3.85 | 2.01 | 1.99 | 2.72 | 3.65 | 3.42 | 3.84 | 2.12 | 2.10 | | Trabeg 110 kV | 5.96 | 16.44 | 14.48 | 6.85 | 18.10 | 17.24 | 5.92 | 20.97 | 18.46 | 6.90 | 21.66 | 20.6 | | Tralee 110 kV | 5.27 | 9.43 | 8.38 | 6.24 | 7.85 | 7.59 | 5.20 | 10.71 | 9.59 | 5.85 | 8.94 | 8.66 | | Trien A 110 kV | 4.61 | 8.06 | 7.41 | 5.87 | 6.93 | 6.76 | 4.54 | 9.03 | 8.38 | 5.28 | 7.93 | 7.76 | | Trien B 110 kV | 13.32 | 9.77 | 8.76 | 9.35 | 7.73 | 7.51 | 13.70 | 10.68 | 9.80 | 9.36 | 8.01 | 7.84 | | Trillick 110 kV | 3.64 | 4.04 | 3.36 | 4.65 | 3.48 | 3.30 | 3.58 | 4.20 | 3.50 | 4.60 | 3.60 | 3.40 | | | | | Sum | mer | | | | | Wi | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | ТІ | ree pha | se | Sir | ngle phas | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Trinity 110 kV | 11.51 | 12.75 | 11.73 | 6.13 | 15.32 | 14.81 | 11.48 | 14.89 | 13.47 | 5.94 | 17.45 | 16.76 | | Tullabeg 110 kV | 6.59 | 6.77 | 6.48 | 7.25 | 8.21 | 8.07 | 6.70 | 7.41 | 7.09 | 7.41 | 8.88 | 8.72 | | Tullabrack 110 kV | 6.66 | 7.18 | 6.72 | 7.35 | 5.36 | 5.28 | 6.56 | 7.81 | 7.41 | 7.29 | 5.71 | 5.63 | | Turlough 220 kV | 11.02 | 12.17 | 11.16 | 12.36 | 10.81 | 10.53 | 10.27 | 13.58 | 12.74 | 11.86 | 11.53 | 11.32 | | Tynagh 220 kV | 11.12 | 7.56 | 7.21 | 11.98 | 9.40 | 9.22 | 15.89 | 12.90 | 11.98 | 16.99 | 13.99 | 13.61 | | Uggool 110 kV | 6.71 | 8.10 | 7.17 | 5.84 | 10.25 | 9.72 | 6.52 | 8.99 | 8.00 | 5.71 | 11.18 | 10.63 | | Waterford 110 kV | 7.13 | 11.77 | 10.92 | 7.42 | 12.63 | 12.29 | 7.53 | 14.40 | 13.31 | 7.92 | 14.99 | 14.58 | | Wexford 110 kV | 6.07 | 7.20 | 6.66 | 7.22 | 6.81 | 6.64 | 7.06 | 8.01 | 7.35 | 8.16 | 7.47 | 7.27 | | Whitebank 110 kV | 23.51 | 14.44 | 13.17 | 19.52 | 17.91 | 17.23 | 25.81 | 17.08 | 15.30 | 20.62 | 20.72 | 19.79 | | Whitegate 110 kV | 4.48 | 9.16 | 8.55 | 5.21 | 9.56 | 9.33 | 4.38 | 10.75 | 10.14 | 5.16 | 10.77 | 10.56 | | Wolfe Tone 110 kV | 14.40 | 10.91 | 10.18 | 5.61 | 12.57 | 12.24 | 14.14 | 13.68 | 12.51 | 5.15 | 15.32 | 14.80 | | Woodhouse 110 kV | 6.05 | 6.27 | 5.75 | 7.36 | 5.62 | 5.47 | 6.29 | 7.35 | 6.77 | 5.47 | 10.71 | 10.28 | | Woodland 220 kV | 12.89 | 21.33 | 18.92 | 11.79 | 23.73 | 22.65 | 11.84 | 27.73 | 25.40 | 10.91 | 29.83 | 28.87 | | Woodland 400 kV | 17.67 | 8.79 | 8.13 | 17.76 | 8.53 | 8.31 | 17.78 | 11.13 | 10.59 | 17.99 | 10.42 | 10.26 | | Yellowmeadow 110 kV | 25.43 | 12.71 | 11.54 | 21.11 | 16.42 | 15.75 | 30.32 | 17.36 | 15.53 | 22.75 | 21.48 | 20.48 | ## Ireland Short Circuit Currents for Maximum and Minimum Demand in 2027 | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Adamstown 110 kV | 2.35 | 12.22 | 11.10 | 2.11 | 16.10 | 15.28 | 4.74 | 17.60 | 15.83 | 4.00 | 21.83 | 21.07 | | Agannygal 110 kV | 2.22 | 5.73 | 5.15 | 2.86 | 4.56 | 4.43 | 2.65 | 6.40 | 5.83 | 3.70 | 4.97 | 4.85 | | Aghada 110 kV | 3.45 | 8.64 | 8.19 | 3.91 | 10.03 | 9.82 | 4.31 | 10.18 | 9.77 | 5.17 | 11.50 | 11.31 | | Aghada A 220 kV | 6.15 | 13.33 | 12.10 | 6.19 | 17.29 | 16.57 | 12.44 | 21.66 | 19.52 | 12.67 | 25.96 | 24.83 | | Aghada B 220 kV | 6.15 | 13.33 | 12.10 | 6.19 | 17.29 | 16.57 | 12.44 | 21.66 | 19.52 | 12.67 | 25.96 | 24.83 | | Aghada C 220 kV | 6.06 | 12.95 | 11.79 | 5.83 | 16.78 | 16.11 | 11.74 | 20.73 | 18.76 | 10.59 | 24.89 | 23.86 | | Aghada D 220 kV | 6.15 | 13.33 | 12.10 | 6.19 | 17.29 | 16.57 | 12.44 | 21.66 | 19.52 | 12.67 | 25.96 | 24.83 | | Ahane 110 kV | 3.24 | 13.05 | 11.96 | 3.41 | 10.96 | 10.68 | 4.20 | 15.24 | 14.28 | 4.57 | 12.20 | 11.98 | | Anner 110 kV | 2.78 | 6.57
 6.13 | 3.06 | 4.73 | 4.65 | 3.54 | 7.37 | 6.92 | 4.01 | 5.02 | 4.95 | | Ardnacrusha 110 kV | 3.53 | 14.94 | 13.39 | 3.84 | 16.96 | 16.20 | 5.14 | 19.22 | 17.36 | 5.88 | 20.39 | 19.63 | | Ardnagappary 110 kV | 2.65 | 2.31 | 2.19 | 3.60 | 1.33 | 1.32 | 2.92 | 2.46 | 2.31 | 4.11 | 1.39 | 1.37 | | Arigna 110 kV | 3.43 | 7.85 | 7.23 | 3.82 | 6.12 | 5.99 | 4.37 | 8.66 | 8.05 | 5.10 | 6.57 | 6.45 | | Arklow 110 kV | 3.12 | 9.40 | 8.88 | 3.12 | 12.84 | 12.50 | 5.52 | 11.32 | 10.87 | 5.52 | 15.38 | 15.04 | | Arklow 220 kV | 2.63 | 7.66 | 7.33 | 2.54 | 9.25 | 9.08 | 4.39 | 9.43 | 9.20 | 4.35 | 11.17 | 11.05 | | Artane 110 kV | 2.90 | 11.14 | 10.40 | 2.13 | 13.56 | 13.20 | 5.26 | 14.55 | 13.49 | 3.18 | 17.04 | 16.50 | | Arva 110 kV | 3.17 | 9.54 | 8.68 | 3.58 | 7.29 | 7.12 | 4.19 | 10.56 | 9.74 | 4.98 | 7.81 | 7.65 | | Athea 110 kV | 4.52 | 9.07 | 7.94 | 4.48 | 8.63 | 8.24 | 7.08 | 9.98 | 8.96 | 7.05 | 9.13 | 8.81 | | Athlone 110 kV | 2.70 | 7.16 | 6.82 | 2.99 | 8.00 | 7.86 | 4.50 | 10.13 | 9.47 | 5.18 | 9.91 | 9.69 | | Athy 110 kV | 2.05 | 6.94 | 6.74 | 2.43 | 5.64 | 5.59 | 2.68 | 7.95 | 7.67 | 3.43 | 6.19 | 6.14 | | Aughinish 110 kV | 4.66 | 10.31 | 9.22 | 4.88 | 12.04 | 11.50 | 6.40 | 11.10 | 10.12 | 6.91 | 12.71 | 12.25 | | Aungierstown 110 kV | 2.88 | 20.01 | 17.50 | 2.30 | 27.38 | 25.80 | 5.32 | 26.41 | 23.63 | 4.57 | 35.70 | 33.90 | | Baldonnell 110 kV | 2.67 | 18.83 | 16.61 | 2.13 | 24.90 | 23.57 | 4.79 | 24.91 | 22.36 | 3.89 | 32.12 | 30.74 | | Ballinknocka 110 kV | 4.32 | 9.60 | 8.75 | 4.29 | 12.22 | 11.72 | 5.96 | 10.49 | 9.73 | 5.96 | 13.13 | 12.72 | | Ballyadam 110 kV | 2.72 | 8.95 | 8.41 | 3.19 | 9.29 | 9.09 | 3.27 | 10.73 | 10.21 | 4.07 | 10.63 | 10.45 | | Ballybeg 110 kV | 2.62 | 6.45 | 6.22 | 2.64 | 7.76 | 7.64 | 4.43 | 7.61 | 7.35 | 4.39 | 8.89 | 8.76 | | Ballydine 110 kV | 2.72 | 7.22 | 6.79 | 2.60 | 5.63 | 5.54 | 3.46 | 8.17 | 7.74 | 3.30 | 6.06 | 5.97 | | Ballylickey 110 kV | 2.54 | 3.75 | 3.42 | 3.23 | 2.14 | 2.10 | 2.93 | 4.04 | 3.71 | 3.88 | 2.26 | 2.22 | | Ballymoneen 110 kV | 3.22 | 15.55 | 14.19 | 2.96 | 19.70 | 18.96 | 4.34 | 19.18 | 17.63 | 3.94 | 23.40 | 22.57 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | Tł | ree pha | se | Si | ngle pha | ıse | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Ballynadride 110 kV | 3.37 | 6.48 | 5.95 | 3.85 | 7.39 | 7.15 | 4.57 | 7.69 | 7.13 | 5.77 | 8.71 | 8.46 | | Ballynahulla 110 kV | 6.24 | 11.09 | 9.61 | 6.07 | 12.60 | 11.88 | 10.64 | 12.56 | 11.26 | 10.12 | 13.92 | 13.34 | | Ballynahulla 220 kV | 4.88 | 10.13 | 9.08 | 4.55 | 11.05 | 10.60 | 6.73 | 12.10 | 11.25 | 6.86 | 12.58 | 12.28 | | Ballyragget 110 kV | 3.00 | 6.90 | 6.70 | 3.24 | 5.49 | 5.45 | 4.57 | 7.98 | 7.75 | 5.11 | 5.96 | 5.92 | | Ballyvouskill 110 kV | 6.70 | 12.03 | 10.51 | 6.17 | 15.05 | 14.16 | 10.99 | 13.79 | 12.43 | 9.58 | 16.94 | 16.19 | | Ballyvouskill 220 kV | 5.04 | 10.34 | 9.26 | 4.93 | 12.52 | 11.95 | 7.06 | 12.32 | 11.42 | 7.40 | 14.44 | 14.00 | | Ballywater 110 kV | 2.84 | 6.24 | 5.97 | 1.91 | 6.22 | 6.13 | 4.13 | 7.43 | 7.18 | 2.42 | 7.13 | 7.05 | | Balruntagh 110 kV | 2.93 | 4.51 | 4.38 | 3.41 | 4.00 | 3.96 | 4.70 | 5.51 | 5.40 | 6.00 | 4.57 | 4.54 | | Baltrasna 110 kV | 2.59 | 10.16 | 9.57 | 2.77 | 8.57 | 8.43 | 4.25 | 12.48 | 11.96 | 4.74 | 9.77 | 9.65 | | Bancroft 110 kV | 2.28 | 11.58 | 10.84 | 1.90 | 13.21 | 12.98 | 3.93 | 13.98 | 13.22 | 2.95 | 15.73 | 15.38 | | Bandon 110 kV | 2.99 | 6.84 | 6.30 | 3.71 | 6.50 | 6.33 | 5.23 | 8.24 | 7.61 | 6.51 | 7.52 | 7.34 | | Banoge 110 kV | 2.82 | 6.19 | 6.00 | 2.90 | 6.23 | 6.15 | 4.40 | 7.38 | 7.17 | 4.62 | 7.09 | 7.02 | | Barnageeragh 110 kV | 3.01 | 20.43 | 18.21 | 2.74 | 26.60 | 25.40 | 5.28 | 27.51 | 25.06 | 5.18 | 34.13 | 33.00 | | Barnahealy A 110 kV | 3.36 | 11.76 | 10.92 | 3.70 | 12.14 | 11.81 | 4.12 | 14.39 | 13.46 | 4.78 | 14.15 | 13.84 | | Barnahealy B 110 kV | 4.28 | 11.66 | 10.84 | 4.45 | 12.15 | 11.82 | 6.03 | 14.28 | 13.39 | 6.38 | 14.19 | 13.88 | | Barnakyle 110 kV | 2.85 | 19.72 | 17.26 | 2.34 | 26.48 | 25.00 | 5.27 | 26.06 | 23.32 | 4.75 | 34.42 | 32.72 | | Baroda 110 kV | 2.30 | 9.16 | 8.71 | 2.54 | 10.27 | 10.08 | 3.19 | 10.82 | 10.29 | 3.74 | 11.61 | 11.40 | | Barrymore 110 kV | 2.83 | 7.70 | 7.18 | 3.43 | 4.54 | 4.47 | 3.38 | 8.69 | 8.21 | 4.38 | 4.87 | 4.81 | | Belcamp 110 kV | 3.30 | 12.72 | 11.52 | 3.01 | 17.09 | 16.36 | 6.36 | 14.62 | 13.72 | 5.90 | 19.48 | 19.08 | | Belcamp 220 kV | 4.98 | 21.36 | 18.65 | 2.81 | 26.58 | 25.12 | 6.94 | 33.49 | 30.22 | 4.74 | 39.42 | 37.83 | | Belgard 110 kV | 2.28 | 12.18 | 11.24 | 1.87 | 14.99 | 14.36 | 3.98 | 14.64 | 13.61 | 2.96 | 17.29 | 16.99 | | Bellacorick 110 kV | 3.96 | 5.16 | 4.93 | 4.53 | 8.34 | 8.14 | 7.42 | 8.89 | 8.11 | 8.21 | 12.08 | 11.57 | | Bellewstown 110 kV | 2.78 | 12.48 | 11.52 | 2.85 | 14.52 | 14.07 | 5.89 | 20.12 | 18.27 | 5.94 | 20.17 | 19.50 | | Bendinstown 110 kV | 2.77 | 8.61 | 8.19 | 2.75 | 10.42 | 10.21 | 4.24 | 10.54 | 10.03 | 4.31 | 12.65 | 12.40 | | Binbane 110 kV | 4.09 | 5.32 | 4.84 | 5.30 | 4.64 | 4.52 | 4.94 | 5.82 | 5.27 | 6.75 | 4.86 | 4.73 | | Blackrock 110 kV | 2.34 | 12.31 | 11.40 | 1.21 | 11.61 | 11.46 | 3.82 | 14.87 | 13.59 | 1.57 | 13.15 | 12.76 | | Blake 110 kV | 2.17 | 8.05 | 7.79 | 2.48 | 5.41 | 5.36 | 3.02 | 9.37 | 8.96 | 3.67 | 5.89 | 5.83 | | Blundelstown 110 kV | 2.07 | 7.86 | 7.55 | 2.33 | 8.39 | 8.26 | 3.01 | 9.31 | 9.01 | 3.64 | 9.51 | 9.40 | | Boggeragh 110 kV | 4.58 | 8.74 | 7.53 | 5.08 | 8.35 | 7.93 | 5.86 | 9.55 | 8.37 | 6.81 | 8.94 | 8.56 | | | | | Sum | mer | | | | | Wir | nter | | | |------------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Bogtown 110 kV | 2.59 | 6.32 | 6.10 | 2.71 | 7.32 | 7.22 | 3.51 | 7.58 | 7.34 | 3.81 | 8.44 | 8.34 | | Booltiagh 110 kV | 3.77 | 8.23 | 7.41 | 4.26 | 6.54 | 6.35 | 5.14 | 8.91 | 8.17 | 6.19 | 6.83 | 6.67 | | Bracetown 220 kV | 4.22 | 19.75 | 17.48 | 2.33 | 20.62 | 19.80 | 6.11 | 28.26 | 26.05 | 3.79 | 26.96 | 26.38 | | Bracklone 110 kV | 2.59 | 7.86 | 7.63 | 2.93 | 7.04 | 6.97 | 3.68 | 8.95 | 8.70 | 4.48 | 7.60 | 7.54 | | Bracklone 110 kV | 2.59 | 7.86 | 7.63 | 2.93 | 7.04 | 6.97 | 3.68 | 8.95 | 8.70 | 4.48 | 7.60 | 7.54 | | Brinny A 110 kV | 2.82 | 6.07 | 5.64 | 3.50 | 5.29 | 5.17 | 4.49 | 7.21 | 6.73 | 5.49 | 6.02 | 5.90 | | Brinny B 110 kV | 2.82 | 6.10 | 5.66 | 3.50 | 5.32 | 5.21 | 4.50 | 7.25 | 6.76 | 5.51 | 6.07 | 5.95 | | Buffy 110 kV | 3.12 | 5.76 | 5.52 | 3.49 | 7.82 | 7.68 | 3.93 | 6.36 | 6.07 | 4.58 | 8.25 | 8.08 | | Butlerstown 110 kV | 3.51 | 10.86 | 10.26 | 3.53 | 10.73 | 10.52 | 5.24 | 13.34 | 12.63 | 5.38 | 12.62 | 12.40 | | Cabra 110 kV | 2.84 | 10.75 | 10.05 | 1.95 | 12.05 | 11.81 | 5.05 | 13.94 | 12.95 | 2.77 | 14.91 | 14.49 | | Caherhurly 110 kV | 3.46 | 9.24 | 8.63 | 3.61 | 11.04 | 10.73 | 4.76 | 10.84 | 10.23 | 5.08 | 12.54 | 12.26 | | Cahir 110 kV | 3.09 | 9.01 | 8.15 | 3.69 | 7.06 | 6.87 | 3.97 | 10.18 | 9.32 | 4.98 | 7.38 | 7.22 | | Carlow 110 kV | 2.70 | 8.64 | 8.16 | 2.83 | 9.25 | 9.06 | 4.05 | 10.65 | 10.03 | 4.45 | 10.98 | 10.75 | | Carrickalangan 110 kV | 4.09 | 8.61 | 7.54 | 4.71 | 10.25 | 9.71 | 4.83 | 9.32 | 8.14 | 5.74 | 10.90 | 10.31 | | Carrickmines 220 kV | 3.94 | 16.63 | 14.99 | 1.94 | 21.21 | 20.27 | 6.01 | 26.83 | 24.67 | 3.28 | 31.90 | 31.00 | | Carrickmines A 110 kV | 2.48 | 11.23 | 10.63 | 2.37 | 12.14 | 12.00 | 4.73 | 13.80 | 13.00 | 4.32 | 14.34 | 14.15 | | Carrickmines B 110 kV | 2.53 | 12.82 | 11.95 | 2.36 | 15.22 | 14.81 | 4.82 | 15.73 | 14.83 | 4.39 | 18.18 | 17.74 | | Carrick-on-Shannon
110 kV | 3.48 | 11.95 | 10.96 | 3.71 | 12.66 | 12.29 | 4.60 | 13.53 | 12.54 | 5.12 | 13.94 | 13.57 | | Carrigadrohid 110 kV | 4.36 | 13.65 | 12.23 | 4.40 | 12.41 | 11.98 | 5.74 | 16.03 | 14.65 | 5.92 | 13.93 | 13.56 | | Carrigdangan 110 kV | 2.94 | 5.52 | 5.15 | 3.77 | 6.07 | 5.92 | 3.54 | 6.05 | 5.70 | 4.79 | 6.50 | 6.36 | | Carrowbeg 110 kV | 2.37 | 2.99 | 2.83 | 2.97 | 2.64 | 2.59 | 2.70 | 3.38 | 3.18 | 3.63 | 2.80 | 2.75 | | Cashla 110 kV | 3.94 | 16.70 | 15.10 | 3.84 | 21.45 | 20.58 | 5.89 | 20.84 | 19.00 | 5.82 | 25.72 | 24.73 | | Cashla 220 kV | 3.98 | 9.69 | 9.07 | 3.93 | 10.08 | 9.89 | 6.16 | 12.85 | 12.21 | 6.57 | 12.28 | 12.07 | | Castlebagot 110 kV | 2.91 | 20.23 | 17.67 | 2.39 | 28.28 | 26.54 | 5.43 | 26.78 | 23.93 | 5.00 | 36.97 | 35.05 | | Castlebagot 220 kV | 3.97 | 21.14 | 18.47 | 1.99 | 25.47 | 24.12 | 4.93 | 33.63 | 30.54 | 3.34 | 37.33 | 36.05 | | Castlebar 110 kV | 3.14 | 5.51 | 5.08 | 3.31 | 5.42 | 5.28 | 3.67 | 6.72 | 6.16 | 4.09 | 5.90 | 5.75 | | Castledockrill 110 kV | 3.28 | 7.67 | 7.29 | 2.33 | 8.47 | 8.32 | 5.22 | 9.17 | 8.84 | 3.14 | 9.87 | 9.74 | | Castlefarm A 110 kV | 4.37 | 9.91 | 8.90 | 4.54 | 11.10 | 10.64 | 5.85 | 10.66 | 9.74 | 6.23 | 11.71 | 11.31 | | Castlefarm B 110 kV | 4.38 | 9.89 | 8.88 | 4.54 | 11.09 | 10.62 | 5.86 | 10.64 | 9.73 | 6.24 | 11.69 | 11.30 | | | | | Sum | mer | | | | | Wir | nter | | | |-------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Castlelost 220 kV | 2.59 | 6.67 | 6.45 | 2.75 | 7.18 | 7.08 | 5.02 | 9.80 | 9.70 | 5.51 | 9.47 | 9.43 | | Castletreasu 110 kV | 3.88 | 12.65 | 11.69 | 3.90 | 15.39 | 14.87 | 5.26 | 15.73 | 14.66 | 5.32 | 18.51 | 17.99 | | Castleview 110 kV | 2.91 | 11.74 | 10.93 | 3.46 | 11.42 | 11.14 | 3.39 | 14.28 | 13.42 | 4.40 | 13.23 | 12.98
 | Cathaleen's Fall 110 kV | 3.82 | 10.22 | 9.07 | 4.32 | 10.32 | 9.90 | 5.18 | 12.49 | 10.85 | 5.90 | 11.63 | 11.10 | | Cauteen 110 kV | 3.88 | 8.45 | 7.37 | 4.21 | 4.83 | 4.70 | 5.07 | 9.29 | 8.22 | 5.69 | 5.12 | 5.00 | | Celtic 380 kV | 7.63 | 5.12 | 4.87 | 8.36 | 4.90 | 4.82 | 14.79 | 6.10 | 5.88 | 18.59 | 5.64 | 5.57 | | Central Park 110 kV | 2.26 | 10.29 | 9.78 | 1.93 | 11.06 | 10.80 | 3.95 | 12.50 | 11.83 | 3.01 | 12.74 | 12.59 | | Charleville 110 kV | 3.36 | 6.79 | 6.21 | 3.84 | 7.57 | 7.32 | 4.53 | 8.04 | 7.43 | 5.67 | 8.89 | 8.63 | | Cherrywood 110 kV | 2.11 | 9.51 | 9.08 | 1.94 | 9.72 | 9.54 | 3.51 | 11.46 | 10.87 | 3.00 | 11.07 | 10.85 | | City West 110 kV | 1.88 | 7.49 | 6.99 | 1.98 | 6.39 | 6.25 | 2.96 | 9.68 | 8.89 | 3.19 | 7.48 | 7.30 | | CKM Country 110 kV | 2.53 | 12.82 | 11.95 | 2.36 | 15.22 | 14.81 | 4.82 | 15.73 | 14.83 | 4.39 | 18.18 | 17.74 | | Clahane 110 kV | 2.74 | 7.84 | 7.26 | 2.70 | 8.40 | 8.16 | 3.44 | 8.79 | 8.24 | 3.43 | 9.05 | 8.84 | | Clashavoon 220 kV | 5.11 | 10.65 | 9.62 | 5.12 | 11.82 | 11.40 | 7.27 | 12.87 | 11.98 | 7.65 | 13.81 | 13.44 | | Clashavoon A 110 kV | 4.94 | 16.73 | 14.56 | 4.96 | 20.26 | 19.07 | 6.82 | 19.81 | 17.70 | 6.99 | 23.60 | 22.51 | | Clashavoon B 110 kV | 4.94 | 16.73 | 14.56 | 4.96 | 20.26 | 19.07 | 6.82 | 19.81 | 17.70 | 6.99 | 23.60 | 22.51 | | Cliff 110 kV | 3.41 | 7.43 | 6.81 | 4.17 | 6.78 | 6.60 | 4.45 | 8.98 | 8.07 | 5.56 | 7.48 | 7.25 | | Cloghboola 110 kV | 3.57 | 7.47 | 6.93 | 4.21 | 7.84 | 7.62 | 4.97 | 8.10 | 7.67 | 6.40 | 8.14 | 7.98 | | Cloghboola 110 kV | 3.57 | 7.47 | 6.93 | 4.21 | 7.84 | 7.62 | 4.97 | 8.10 | 7.67 | 6.40 | 8.14 | 7.98 | | Clogher 110 kV | 4.05 | 9.70 | 8.35 | 4.58 | 10.41 | 9.84 | 4.78 | 10.61 | 9.08 | 5.55 | 11.04 | 10.43 | | Cloghran 110 kV | 3.01 | 20.56 | 18.31 | 2.71 | 26.67 | 25.46 | 5.25 | 27.73 | 25.24 | 5.07 | 34.25 | 33.11 | | Cloncreen 110 kV | 3.21 | 10.36 | 9.64 | 3.43 | 12.60 | 12.21 | 5.67 | 14.36 | 13.26 | 6.40 | 15.90 | 15.42 | | Clonee 220 kV | 4.30 | 20.06 | 17.72 | 2.40 | 21.13 | 20.27 | 6.25 | 28.84 | 26.56 | 3.99 | 27.76 | 27.19 | | Clonfad 110 kV | 2.69 | 7.60 | 7.39 | 2.59 | 8.33 | 8.23 | 4.22 | 9.52 | 9.25 | 3.97 | 9.82 | 9.72 | | Clonkeen A 110 kV | 3.68 | 6.16 | 5.83 | 4.14 | 4.32 | 4.26 | 4.74 | 6.74 | 6.41 | 5.58 | 4.60 | 4.55 | | Clonkeen B 110 kV | 3.40 | 10.03 | 8.69 | 2.45 | 11.47 | 10.82 | 3.94 | 11.26 | 10.01 | 2.73 | 12.65 | 12.08 | | Cloon 110 kV | 3.12 | 7.79 | 7.35 | 3.56 | 8.53 | 8.35 | 4.20 | 9.15 | 8.69 | 5.14 | 9.60 | 9.43 | | Clutterland 110 kV | 2.88 | 20.09 | 17.55 | 2.32 | 27.55 | 25.95 | 5.32 | 26.54 | 23.73 | 4.63 | 35.95 | 34.12 | | Codling 1 220 kV | 3.91 | 10.87 | 10.18 | 2.09 | 13.00 | 12.61 | 6.46 | 14.25 | 13.66 | 3.18 | 16.26 | 15.99 | | Codling 2 220 kV | 3.65 | 10.64 | 9.93 | 1.72 | 13.37 | 13.00 | 5.24 | 14.07 | 13.50 | 2.64 | 17.02 | 16.75 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Codling 3 220 kV | 3.65 | 10.64 | 9.93 | 1.72 | 13.37 | 13.00 | 5.24 | 14.07 | 13.50 | 2.64 | 17.02 | 16.75 | | College Park 110 kV | 2.86 | 18.84 | 16.98 | 2.24 | 23.50 | 22.57 | 4.91 | 24.92 | 22.93 | 3.47 | 29.64 | 28.82 | | Cookstown 110 kV | 1.99 | 8.14 | 7.78 | 1.91 | 6.93 | 6.82 | 3.13 | 9.53 | 9.15 | 2.82 | 7.66 | 7.56 | | Cookstown A 110 kV | 1.75 | 6.39 | 6.01 | 1.88 | 5.03 | 4.94 | 2.64 | 8.10 | 7.43 | 2.91 | 5.77 | 5.64 | | Coolderrig 110 kV | 2.44 | 11.93 | 10.87 | 2.23 | 14.88 | 14.15 | 5.35 | 17.28 | 15.53 | 4.47 | 19.91 | 19.2 | | Coolnabacky 110 kV | 3.24 | 13.40 | 12.84 | 3.27 | 17.23 | 16.86 | 5.23 | 16.30 | 15.75 | 5.39 | 20.40 | 20.1 | | Coolnabacky 400 kV | 3.13 | 7.17 | 6.77 | 2.77 | 7.62 | 7.48 | 3.36 | 9.37 | 9.14 | 3.38 | 9.58 | 9.49 | | Coolnanoonag 110 kV | 4.89 | 17.42 | 15.77 | 4.18 | 21.97 | 21.06 | 7.51 | 21.11 | 19.62 | 6.82 | 25.66 | 24.8 | | Coolroe 110 kV | 2.70 | 9.28 | 8.69 | 3.40 | 8.77 | 8.57 | 3.26 | 11.10 | 10.39 | 4.44 | 9.88 | 9.68 | | Coolshamroge 110 kV | 2.44 | 8.66 | 7.94 | 2.95 | 8.60 | 8.35 | 3.02 | 10.15 | 9.42 | 3.90 | 9.44 | 9.22 | | Coomagearlahy 110 kV | 3.74 | 7.97 | 6.77 | 3.79 | 8.74 | 8.18 | 4.43 | 8.82 | 7.64 | 4.59 | 9.53 | 9.02 | | Coomataggart 110 kV | 5.50 | 7.03 | 6.54 | 5.33 | 5.65 | 5.54 | 7.65 | 7.71 | 7.29 | 7.35 | 5.95 | 5.86 | | Coomataggart 110 kV | 5.50 | 7.03 | 6.54 | 5.33 | 5.65 | 5.54 | 7.65 | 7.71 | 7.29 | 7.35 | 5.95 | 5.86 | | Coomnaclohy 110 kV | 3.92 | 8.89 | 8.04 | 3.35 | 11.02 | 10.54 | 4.99 | 10.04 | 9.29 | 4.08 | 12.21 | 11.8 | | Corbetstown 110 kV | 2.91 | 8.81 | 8.56 | 2.89 | 11.80 | 11.63 | 5.24 | 12.63 | 12.12 | 5.10 | 16.03 | 15.7 | | Cordal 110 kV | 5.64 | 9.27 | 8.21 | 4.36 | 10.48 | 9.98 | 8.72 | 10.30 | 9.41 | 5.94 | 11.42 | 11.0 | | Corderry 110 kV | 3.27 | 8.72 | 7.78 | 3.70 | 9.25 | 8.87 | 4.04 | 9.75 | 8.79 | 4.78 | 10.04 | 9.68 | | Corduff 110 kV | 3.14 | 22.05 | 19.55 | 2.76 | 28.26 | 26.94 | 5.49 | 30.38 | 27.52 | 5.33 | 37.07 | 35.70 | | Corduff 220 kV | 5.39 | 23.55 | 20.34 | 3.03 | 29.78 | 28.00 | 7.93 | 37.48 | 33.55 | 5.56 | 45.05 | 43.0 | | Corkagh 110 kV | 2.87 | 19.92 | 17.41 | 2.36 | 27.15 | 25.59 | 5.31 | 26.24 | 23.47 | 4.81 | 35.27 | 33.5 | | Corraclassy 110 kV | 3.25 | 6.95 | 6.46 | 3.85 | 5.14 | 5.05 | 3.99 | 7.39 | 6.88 | 4.95 | 5.37 | 5.28 | | Cow Cross 110 kV | 3.14 | 11.77 | 10.96 | 3.42 | 10.51 | 10.28 | 3.75 | 14.42 | 13.53 | 4.31 | 12.07 | 11.8 | | Crane 110 kV | 3.40 | 8.60 | 8.09 | 3.28 | 9.51 | 9.30 | 5.77 | 10.84 | 10.30 | 5.42 | 11.51 | 11.29 | | Croaghaun 110 kV | 3.99 | 4.70 | 4.51 | 4.63 | 6.92 | 6.78 | 6.97 | 7.62 | 7.05 | 7.75 | 9.32 | 9.02 | | Cromcastle A 110 kV | 2.83 | 10.97 | 10.14 | 2.34 | 11.89 | 11.61 | 4.84 | 13.20 | 12.19 | 3.66 | 13.75 | 13.3 | | Cromcastle B 110 kV | 2.83 | 10.97 | 10.14 | 2.34 | 11.89 | 11.61 | 4.84 | 13.20 | 12.19 | 3.66 | 13.75 | 13.3 | | Crory 110 kV | 3.63 | 8.72 | 8.29 | 3.58 | 10.59 | 10.35 | 6.39 | 10.73 | 10.28 | 6.33 | 12.72 | 12.5 | | Cruiserath 220 kV | 5.13 | 22.92 | 19.86 | 2.95 | 28.99 | 27.30 | 7.57 | 36.18 | 32.50 | 5.30 | 43.60 | 41.7 | | Cuilleen 110 kV | 2.62 | 6.82 | 6.51 | 2.98 | 7.75 | 7.62 | 4.36 | 9.66 | 9.05 | 5.31 | 9.64 | 9.43 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | TI | hree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Cullenagh 110 kV | 3.94 | 13.00 | 12.18 | 3.99 | 14.79 | 14.41 | 6.27 | 16.22 | 15.35 | 6.57 | 17.91 | 17.54 | | Cullenagh 220 kV | 3.92 | 8.44 | 8.09 | 3.86 | 8.37 | 8.24 | 6.48 | 11.10 | 10.79 | 6.52 | 10.43 | 10.33 | | Cunghill 110 kV | 2.70 | 5.82 | 5.42 | 3.00 | 5.40 | 5.28 | 3.14 | 6.78 | 6.34 | 3.60 | 5.87 | 5.76 | | Cureeny 110 kV | 3.57 | 6.00 | 5.71 | 3.52 | 5.00 | 4.93 | 4.68 | 6.57 | 6.32 | 4.62 | 5.26 | 5.20 | | Cureeny T 110 kV | 3.53 | 7.40 | 6.98 | 4.01 | 5.64 | 5.55 | 4.63 | 8.21 | 7.81 | 5.54 | 5.96 | 5.89 | | Cushaling 110 kV | 3.23 | 10.50 | 9.76 | 3.47 | 13.02 | 12.60 | 5.76 | 14.61 | 13.47 | 6.62 | 16.50 | 15.99 | | Dallow 110 kV | 2.41 | 5.32 | 5.08 | 2.81 | 3.75 | 3.71 | 3.15 | 6.11 | 5.86 | 3.90 | 4.07 | 4.03 | | Dalton 110 kV | 2.66 | 4.73 | 4.31 | 3.31 | 3.72 | 3.63 | 3.10 | 5.36 | 4.87 | 4.18 | 3.96 | 3.87 | | Dardistown 110 kV | 3.00 | 11.14 | 10.28 | 2.74 | 12.35 | 12.05 | 5.41 | 13.42 | 12.37 | 4.75 | 14.34 | 13.89 | | Darndale 110 kV | 3.25 | 12.44 | 11.26 | 2.97 | 16.54 | 15.84 | 6.19 | 14.26 | 13.30 | 5.74 | 18.76 | 18.38 | | Deenes 110 kV | 2.63 | 10.28 | 9.73 | 2.84 | 10.35 | 10.14 | 4.43 | 13.26 | 12.63 | 5.05 | 12.30 | 12.12 | | Dennistown 110 kV | 2.83 | 5.83 | 5.46 | 2.78 | 7.65 | 7.43 | 4.43 | 7.46 | 7.05 | 4.30 | 9.59 | 9.35 | | Derrybrien 110 kV | 2.24 | 4.61 | 4.08 | 2.98 | 4.17 | 4.02 | 2.68 | 5.09 | 4.56 | 3.87 | 4.56 | 4.41 | | Derryiron 110 kV | 2.92 | 9.01 | 8.75 | 2.94 | 12.11 | 11.93 | 5.29 | 13.01 | 12.46 | 5.33 | 16.54 | 16.23 | | Derrylahan 110 kV | 3.06 | 12.07 | 11.38 | 3.23 | 13.80 | 13.44 | 5.58 | 17.99 | 16.95 | 5.89 | 18.50 | 18.12 | | Donore 110 kV | 2.78 | 11.09 | 10.32 | 2.87 | 13.70 | 13.28 | 5.12 | 15.61 | 14.48 | 5.45 | 17.73 | 17.22 | | Doon 110 kV | 2.95 | 7.23 | 6.71 | 3.14 | 5.34 | 5.24 | 3.81 | 8.17 | 7.63 | 4.15 | 5.67 | 5.58 | | Dromada 110 kV | 4.34 | 8.33 | 7.33 | 3.34 | 7.81 | 7.48 | 6.59 | 9.11 | 8.22 | 4.57 | 8.25 | 7.98 | | Drombeg 110 kV | 3.75 | 8.78 | 8.26 | 3.96 | 9.14 | 8.94 | 5.42 | 9.96 | 9.52 | 5.91 | 10.06 | 9.90 | | Drumkeen 110 kV | 3.48 | 8.41 | 7.39 | 4.14 | 7.12 | 6.85 | 3.84 | 8.85 | 7.76 | 4.74 | 7.28 | 7.01 | | Drumline 110 kV | 2.41 | 8.45 | 7.80 | 2.93 | 7.69 | 7.50 | 2.95 | 9.88 | 9.21 | 3.85 | 8.43 | 8.26 | | Drybridge 110 kV | 2.73 | 13.79 | 12.64 | 2.82 | 14.68 | 14.22 | 4.77 | 19.66 | 18.15 | 5.04 | 18.67 | 18.16 | | Dublin Array 220 kV | 3.56 | 14.95 | 13.59 | 1.76 | 18.70 | 17.98 | 5.00 | 22.90 | 21.32 | 2.89 | 26.80 | 26.18 | | Dundalk 110 kV | 2.16 | 8.91 | 8.37 | 2.53 | 8.08 | 7.93 | 2.72 | 9.97 | 9.38 | 3.40 | 8.68 | 8.52 | | Dunfirth 110 kV | 2.49 | 6.56 | 6.41 | 2.73 | 6.46 | 6.40 | 3.19 | 6.83 | 6.67 | 3.82 | 6.62 | 6.57 | | Dungarvan 110 kV | 3.79 | 6.39 | 5.94 | 3.93 | 7.08 | 6.89 | 5.44 | 7.56 | 7.08 | 5.71 | 8.04 | 7.85 | | Dunmanway 110 kV | 3.50 | 9.14 | 8.15 | 4.12 | 8.63 | 8.30 | 4.59 | 10.40 | 9.35 | 5.60 | 9.44 | 9.13 | | Dunstown 220 kV | 4.54 | 18.67 | 16.87 | 2.54 | 20.65 | 19.94 | 4.57 | 25.64 | 24.31 | 4.21 | 26.71 | 26.24 | | Dunstown 400 kV | 3.27 | 7.54 | 7.08 | 2.98 | 8.70 | 8.52 | 3.73 | 9.65 | 9.39 | 4.11 | 10.93 | 10.89 | | | | | Sum | mer | | | | | Wir | nter | | | |-------------------------|--------------|-------------
-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Effernoge 110 kV | 3.45 | 8.56 | 8.07 | 3.39 | 9.51 | 9.30 | 5.92 | 10.70 | 10.21 | 5.76 | 11.42 | 11.23 | | Ennis 110 kV | 3.06 | 12.10 | 10.56 | 3.53 | 11.07 | 10.59 | 3.81 | 14.18 | 12.57 | 4.75 | 12.31 | 11.8 | | Fassaroe East 110 kV | 1.76 | 7.61 | 7.29 | 1.84 | 5.85 | 5.78 | 2.61 | 8.90 | 8.53 | 2.68 | 6.42 | 6.35 | | Fassaroe West 110 kV | 1.78 | 7.77 | 7.44 | 1.86 | 6.04 | 5.97 | 2.65 | 9.10 | 8.72 | 2.70 | 6.64 | 6.56 | | Ferry View 110 kV | 3.15 | 5.64 | 5.41 | 3.50 | 7.67 | 7.53 | 3.98 | 6.22 | 5.94 | 4.61 | 8.09 | 7.93 | | Finglas 220 kV | 5.54 | 23.19 | 20.05 | 3.07 | 29.43 | 27.67 | 8.33 | 37.13 | 33.18 | 5.61 | 44.81 | 42.79 | | Finglas A 110 kV | 3.39 | 12.94 | 11.84 | 3.20 | 14.13 | 13.69 | 6.90 | 15.91 | 14.61 | 6.48 | 16.55 | 15.9 | | Finglas B 110 kV | 3.39 | 12.54 | 11.65 | 3.17 | 16.06 | 15.58 | 7.45 | 16.79 | 15.56 | 7.00 | 20.90 | 20.4 | | Firlough 110 kV | 3.42 | 4.91 | 4.71 | 3.98 | 6.33 | 6.22 | 4.91 | 6.77 | 6.41 | 5.81 | 7.86 | 7.69 | | Flagford 110 kV | 3.65 | 12.48 | 11.47 | 3.95 | 14.85 | 14.35 | 4.92 | 14.18 | 13.14 | 5.60 | 16.49 | 15.99 | | Flagford 220 kV | 3.99 | 7.30 | 6.95 | 4.40 | 6.71 | 6.60 | 5.93 | 8.25 | 7.94 | 7.06 | 7.32 | 7.24 | | Fortunestown 110 kV | 1.83 | 7.37 | 6.89 | 1.94 | 6.31 | 6.17 | 2.84 | 9.51 | 8.75 | 3.06 | 7.39 | 7.20 | | Francis Street A 110 kV | 2.37 | 12.31 | 11.40 | 1.81 | 14.62 | 14.18 | 3.90 | 14.85 | 13.57 | 2.64 | 16.77 | 16.3 | | Francis Street B 110 kV | 2.31 | 12.17 | 11.27 | 1.85 | 14.93 | 14.33 | 4.06 | 14.68 | 13.67 | 2.92 | 17.26 | 16.9 | | Gallanstown 110 kV | 2.61 | 11.25 | 10.52 | 2.79 | 11.40 | 11.15 | 4.54 | 14.45 | 13.91 | 5.16 | 13.69 | 13.4 | | Galway 110 kV | 3.41 | 13.35 | 12.09 | 3.00 | 16.08 | 15.39 | 4.48 | 15.98 | 14.40 | 3.86 | 18.46 | 17.70 | | Garballagh 110 kV | 2.83 | 11.05 | 10.36 | 2.97 | 12.77 | 12.45 | 5.31 | 15.86 | 14.85 | 5.74 | 16.42 | 16.0 | | Garrintaggar 110 kV | 3.09 | 8.19 | 7.98 | 3.34 | 8.50 | 8.42 | 4.73 | 9.37 | 9.15 | 5.40 | 9.37 | 9.29 | | Garrow 110 kV | 5.72 | 11.63 | 10.12 | 5.05 | 14.40 | 13.54 | 8.22 | 13.26 | 11.88 | 6.90 | 16.15 | 15.4 | | Garvagh 110 kV | 3.46 | 6.97 | 6.20 | 3.90 | 8.02 | 7.66 | 4.37 | 7.76 | 6.99 | 5.14 | 8.75 | 8.40 | | Gilra 110 kV | 2.40 | 6.50 | 6.18 | 2.82 | 4.88 | 4.82 | 2.92 | 7.09 | 6.78 | 3.61 | 5.23 | 5.17 | | Glanagow 220 kV | 6.07 | 12.80 | 11.65 | 5.92 | 16.59 | 15.93 | 12.25 | 20.90 | 18.88 | 11.43 | 25.04 | 23.9 | | Glanlee 110 kV | 3.64 | 7.86 | 6.68 | 3.55 | 8.57 | 8.03 | 4.30 | 8.68 | 7.53 | 4.24 | 9.34 | 8.85 | | Glasmore A 110 kV | 2.02 | 6.79 | 6.42 | 2.12 | 4.73 | 4.66 | 2.98 | 8.08 | 7.52 | 3.18 | 5.18 | 5.09 | | Glen 110 kV | 3.45 | 6.95 | 6.18 | 3.89 | 8.00 | 7.65 | 4.36 | 7.74 | 6.97 | 5.13 | 8.74 | 8.39 | | Glenart 220 kV | 2.63 | 7.29 | 7.01 | 2.55 | 9.06 | 8.90 | 4.38 | 8.92 | 8.70 | 4.34 | 10.81 | 10.7 | | Glencloosagh 220 kV | 4.65 | 15.99 | 14.39 | 3.77 | 8.70 | 8.53 | 7.14 | 26.33 | 24.26 | 6.54 | 10.26 | 10.1 | | Glenlara A 110 kV | 2.57 | 3.20 | 3.01 | 3.31 | 2.68 | 2.64 | 3.05 | 3.51 | 3.31 | 4.19 | 2.93 | 2.88 | | Glenlara B 110 kV | 5.10 | 8.55 | 7.21 | 3.63 | 9.54 | 8.91 | 7.17 | 9.30 | 8.09 | 4.56 | 10.26 | 9.72 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | ise | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Glenree 110 kV | 3.30 | 4.94 | 4.73 | 3.71 | 5.98 | 5.88 | 4.59 | 6.59 | 6.26 | 5.10 | 7.20 | 7.06 | | Golagh 110 kV | 3.39 | 7.73 | 6.86 | 3.93 | 6.75 | 6.51 | 3.84 | 8.36 | 7.39 | 4.58 | 7.11 | 6.85 | | Gorman 110 kV | 3.00 | 14.73 | 13.62 | 3.08 | 17.98 | 17.40 | 4.73 | 19.17 | 17.90 | 5.16 | 22.21 | 21.62 | | Gorman 220 kV | 3.12 | 11.45 | 10.81 | 3.02 | 9.65 | 9.49 | 4.94 | 13.64 | 13.23 | 5.04 | 10.81 | 10.71 | | Gorman ESS 110 kV | 2.97 | 14.49 | 13.41 | 3.03 | 17.58 | 17.02 | 4.66 | 18.77 | 17.56 | 5.01 | 21.62 | 21.06 | | Gortawee 110 kV | 3.30 | 6.57 | 6.10 | 4.03 | 5.21 | 5.11 | 4.15 | 7.01 | 6.52 | 5.39 | 5.38 | 5.28 | | Grahomick110 kV | 2.56 | 5.06 | 4.78 | 2.49 | 6.64 | 6.48 | 3.78 | 6.35 | 6.06 | 3.61 | 8.17 | 8.00 | | Grange 110 kV | 2.89 | 11.27 | 10.39 | 1.87 | 11.42 | 11.16 | 5.05 | 13.64 | 12.54 | 2.64 | 13.15 | 12.75 | | Grange Castle 110 kV | 2.46 | 12.26 | 11.12 | 2.24 | 16.00 | 15.17 | 5.52 | 17.93 | 16.06 | 4.63 | 21.85 | 21.06 | | Great Island 110 kV | 4.05 | 13.67 | 12.91 | 4.09 | 16.96 | 16.53 | 6.96 | 17.36 | 16.52 | 7.36 | 21.21 | 20.78 | | Great Island 220 kV | 3.91 | 9.92 | 9.48 | 3.78 | 11.68 | 11.45 | 8.14 | 15.31 | 14.84 | 8.21 | 17.38 | 17.15 | | Greenlink 150 kV | 4.18 | 13.08 | 12.51 | 5.74 | 4.86 | 4.83 | 9.13 | 19.74 | 19.17 | 17.16 | 5.40 | 5.39 | | Griffinrath A 110 kV | 2.55 | 10.39 | 9.98 | 2.61 | 10.38 | 10.22 | 3.97 | 12.31 | 11.98 | 4.15 | 11.84 | 11.71 | | Griffinrath B 110 kV | 2.62 | 10.76 | 10.33 | 2.63 | 10.39 | 10.23 | 4.16 | 12.79 | 12.49 | 4.19 | 11.85 | 11.72 | | Harolds Cross 110 kV | 2.38 | 12.35 | 11.44 | 1.76 | 14.57 | 14.14 | 3.92 | 14.90 | 13.62 | 2.54 | 16.70 | 16.33 | | Harristown 110 kV | 2.58 | 7.42 | 7.22 | 2.78 | 8.39 | 8.30 | 3.77 | 8.99 | 8.76 | 4.33 | 9.73 | 9.64 | | Heuston 110 kV | 2.34 | 12.42 | 11.48 | 1.96 | 15.41 | 14.77 | 4.18 | 15.00 | 13.96 | 3.20 | 17.86 | 17.55 | | Huntstown A 220 kV | 5.36 | 23.18 | 20.06 | 3.09 | 14.07 | 13.63 | 7.56 | 36.37 | 32.60 | 6.65 | 14.47 | 14.27 | | Huntstown B 220 kV | 5.35 | 23.17 | 20.05 | 2.30 | 15.38 | 14.82 | 7.53 | 36.36 | 32.60 | 3.70 | 16.85 | 16.56 | | lkerrin 110 kV | 3.51 | 5.20 | 4.61 | 3.86 | 6.34 | 6.03 | 5.38 | 6.43 | 5.83 | 6.06 | 7.47 | 7.18 | | Inchicore 220 kV | 4.39 | 20.46 | 17.91 | 2.13 | 26.18 | 24.70 | 6.18 | 35.30 | 31.70 | 3.54 | 41.97 | 40.19 | | Inchicore A 110 kV | 2.64 | 13.70 | 12.62 | 2.43 | 17.49 | 16.72 | 5.12 | 16.78 | 15.59 | 4.80 | 20.86 | 20.17 | | Inchicore B 110 kV | 2.66 | 13.26 | 11.99 | 2.46 | 17.69 | 16.76 | 6.25 | 19.26 | 17.31 | 5.64 | 24.58 | 23.53 | | Inniscarra 110 kV | 2.68 | 9.15 | 8.57 | 3.34 | 8.43 | 8.25 | 3.27 | 10.98 | 10.26 | 4.38 | 9.47 | 9.28 | | Irishtown 220 kV | 4.03 | 17.53 | 15.70 | 1.99 | 22.93 | 21.81 | 6.47 | 31.56 | 28.58 | 3.59 | 38.25 | 36.73 | | Kellis 110 kV | 2.94 | 9.27 | 8.75 | 3.08 | 11.21 | 10.96 | 4.64 | 11.40 | 10.81 | 5.19 | 13.69 | 13.39 | | Kellis 220 kV | 3.01 | 7.66 | 7.36 | 3.24 | 6.66 | 6.58 | 4.96 | 9.24 | 9.07 | 5.69 | 7.64 | 7.58 | | Kellystown 220 kV | 4.06 | 18.16 | 16.34 | 2.36 | 18.73 | 18.14 | 4.63 | 24.23 | 22.93 | 3.94 | 23.23 | 22.91 | | Kilbarry 110 kV | 3.94 | 15.26 | 13.78 | 4.30 | 14.96 | 14.45 | 5.13 | 19.42 | 17.60 | 5.95 | 17.77 | 17.22 | | | | | Sum | mer | | | | | Wir | iter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Kilcarbery 110 kV | 2.86 | 19.76 | 17.30 | 2.35 | 26.57 | 25.08 | 5.29 | 26.06 | 23.34 | 4.76 | 34.46 | 32.77 | | Kildonan 110 kV | 2.52 | 14.61 | 13.44 | 2.15 | 13.63 | 13.24 | 4.02 | 18.32 | 17.25 | 3.22 | 15.94 | 15.62 | | Kilkenny 110 kV | 2.76 | 7.45 | 7.18 | 3.14 | 6.66 | 6.59 | 3.98 | 8.79 | 8.43 | 4.87 | 7.36 | 7.28 | | Kill Hill 110 kV | 3.40 | 6.46 | 5.82 | 4.14 | 5.60 | 5.43 | 4.50 | 7.18 | 6.58 | 5.74 | 5.99 | 5.84 | | Killinskyduf 110 kV | 2.99 | 9.27 | 8.77 | 2.96 | 12.60 | 12.26 | 5.13 | 11.15 | 10.64 | 4.99 | 15.05 | 14.73 | | Killonan 110 kV | 3.95 | 19.11 | 16.90 | 4.03 | 23.08 | 22.00 | 5.59 | 23.61 | 21.37 | 5.87 | 27.56 | 26.47 | | Killonan 220 kV | 4.09 | 10.55 | 9.78 | 4.37 | 10.02 | 9.82 | 5.82 | 12.69 | 12.14 | 7.15 | 11.44 | 11.28 | | Killoteran 110 kV | 3.75 | 11.92 | 11.18 | 3.73 | 12.84 | 12.55 | 5.85 | 14.84 | 14.00 | 5.90 | 15.41 | 15.09 | | Kilmahud 110 kV | 2.86 | 19.84 | 17.36 | 2.34 | 26.63 | 25.13 | 5.27 | 26.12 | 23.40 | 4.68 | 34.48 | 32.80 | | Kilmore 110 kV | 2.98 | 11.50 | 10.59 | 2.56 | 12.51 | 12.20 | 5.34 | 13.93 | 12.80 | 4.22 | 14.55 | 14.08 | | Kilnap 110 kV | 3.96 | 16.13 | 14.53 | 4.30 | 15.53 | 14.99 | 5.08 | 20.31 | 18.51 | 5.88 | 18.24 | 17.72 | | Kilpaddoge 110 kV | 4.96 | 17.65 | 15.95 | 4.32 | 22.79 | 21.80 | 7.67 | 21.43 | 19.90 | 7.25 | 26.77 | 25.94 | | Kilpaddoge 220 kV | 4.76 | 16.09 | 14.47 | 4.09 | 21.62 | 20.57 | 7.60 | 26.60 | 24.49 | 6.61 | 32.97 | 31.79 | | Kilpaddoge 400 kV | 3.80 | 8.46 | 7.80 | 3.15 | 10.49 | 10.14 | 4.24 | 13.77 | 13.00 | 4.00 | 15.62 | 15.26 | | Kilteel 110 kV | 2.30 | 8.14 | 7.79 | 2.59 | 8.29 | 8.18 | 3.31 | 9.52 | 9.10 | 3.97 | 9.25 | 9.11 | | Kilvinoge 110 kV | 3.35 | 7.22 | 7.02 | 3.63 | 7.77 | 7.70 | 4.91 | 8.16 | 7.99 | 5.62 | 8.54 | 8.47 | | Kinnegad 110 kV | 2.70 | 8.43 | 8.17 | 2.80 | 9.18 | 9.07 | 4.19 | 10.70 | 10.36 | 4.47 | 10.92 | 10.80 | | Kishoge 110 kV | 2.82 | 19.38 | 17.04 | 2.30 | 25.42 | 24.05 | 5.15 | 25.43 | 22.85 | 4.49 | 32.45 | 31.08 | | Knockacummer 110 kV | 4.85 | 7.47 | 6.27 | 4.13 | 7.21 | 6.77 | 6.57 | 8.04 | 6.93 | 5.36 | 7.50 | 7.14 | | Knockalough 110 kV | 3.19 | 5.02 | 4.84 | 3.02 | 6.71 | 6.60 | 4.06 | 5.51 | 5.29 | 3.82 | 7.07 | 6.95 | | Knockanure 220 kV | 4.63 | 13.88 | 12.53 | 3.30 | 17.97 | 17.19 | 7.62 | 20.01 | 18.69 | 4.47 | 24.14 | 23.42 | | Knockanure A 110 kV | 5.60 | 12.43 | 11.06 | 4.71 | 13.91 | 13.29 | 10.06 | 14.12 | 12.90 | 8.14 | 15.22 | 14.70 | | Knockanure B 110 kV | 2.93 | 8.70 | 8.09 | 3.17 | 7.17 | 7.02 | 3.74 | 9.76 | 9.19 | 4.23 | 7.72 | 7.59 | | Knockearagh 110 kV | 3.51 | 5.75 | 5.38
 4.20 | 4.74 | 4.65 | 4.55 | 6.40 | 5.95 | 5.83 | 5.13 | 5.03 | | Knocknamona 110 kV | 3.80 | 6.32 | 5.85 | 3.73 | 9.44 | 9.07 | 5.24 | 7.30 | 6.82 | 5.10 | 10.84 | 10.48 | | Knockraha 380 kV | 7.74 | 5.13 | 4.88 | 8.32 | 5.21 | 5.12 | 15.33 | 6.12 | 5.89 | 18.71 | 6.04 | 5.96 | | Knockraha A 110 kV | 4.73 | 19.48 | 17.43 | 4.86 | 21.53 | 20.59 | 6.87 | 25.84 | 23.47 | 7.32 | 26.87 | 25.94 | | Knockraha A 220 kV | 5.72 | 14.79 | 13.36 | 5.46 | 17.56 | 16.87 | 9.52 | 21.61 | 19.79 | 9.07 | 24.16 | 23.34 | | Knockraha B 110 kV | 4.73 | 19.48 | 17.43 | 4.86 | 21.53 | 20.59 | 6.87 | 25.84 | 23.47 | 7.32 | 26.87 | 25.94 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Knockraha B 220 kV | 5.72 | 14.79 | 13.36 | 5.46 | 17.56 | 16.87 | 9.52 | 21.61 | 19.79 | 9.07 | 24.16 | 23.34 | | Knockranny 110 kV | 3.92 | 8.55 | 7.66 | 3.40 | 10.78 | 10.26 | 5.34 | 9.56 | 8.59 | 4.48 | 11.78 | 11.25 | | Knockranny A 110 kV | 3.12 | 5.79 | 5.56 | 3.48 | 7.86 | 7.72 | 3.93 | 6.40 | 6.11 | 4.58 | 8.30 | 8.13 | | Knockranny B 110 kV | 3.92 | 8.55 | 7.66 | 3.40 | 10.78 | 10.26 | 5.34 | 9.56 | 8.59 | 4.48 | 11.78 | 11.25 | | Knockumber 110 kV | 2.17 | 8.34 | 7.92 | 2.41 | 6.40 | 6.31 | 2.90 | 9.87 | 9.41 | 3.47 | 7.09 | 7.01 | | Laghtanvack 110 kV | 3.95 | 5.12 | 4.90 | 4.49 | 8.23 | 8.04 | 7.61 | 8.95 | 8.16 | 8.27 | 12.03 | 11.53 | | Lanesboro 110 kV | 2.93 | 9.66 | 9.22 | 3.32 | 9.85 | 9.70 | 3.86 | 11.34 | 10.78 | 4.70 | 10.99 | 10.81 | | Lenalea 110 kV | 3.53 | 6.62 | 6.01 | 4.24 | 7.21 | 6.95 | 3.94 | 7.03 | 6.35 | 4.89 | 7.49 | 7.22 | | Letterkenny110 kV | 3.82 | 10.07 | 8.67 | 4.39 | 9.50 | 9.04 | 4.25 | 10.73 | 9.18 | 5.07 | 9.90 | 9.41 | | Liberty A 110 kV | 3.75 | 15.54 | 14.02 | 3.36 | 17.03 | 16.36 | 4.73 | 19.75 | 17.91 | 4.13 | 20.48 | 19.77 | | Liberty B 110 kV | 3.71 | 15.53 | 14.01 | 3.29 | 16.99 | 16.33 | 4.65 | 19.72 | 17.89 | 4.01 | 20.42 | 19.71 | | Lickny 110 kV | 2.21 | 4.99 | 4.87 | 2.09 | 5.84 | 5.79 | 3.00 | 5.57 | 5.44 | 2.81 | 6.36 | 6.31 | | Limerick 110 kV | 3.27 | 16.20 | 14.46 | 3.48 | 15.16 | 14.57 | 4.28 | 19.67 | 17.81 | 4.74 | 17.35 | 16.82 | | Lisdrum 110 kV | 2.15 | 5.68 | 5.44 | 2.38 | 8.08 | 7.92 | 2.62 | 6.09 | 5.78 | 2.97 | 8.58 | 8.37 | | Lisdrumdoagh 110 kV | 2.15 | 5.67 | 5.43 | 2.39 | 8.10 | 7.94 | 2.62 | 6.08 | 5.77 | 3.00 | 8.61 | 8.40 | | Lisheen 110 kV | 2.99 | 4.94 | 4.08 | 3.39 | 7.88 | 7.07 | 3.67 | 5.43 | 4.59 | 4.22 | 8.60 | 7.83 | | Lislea 110 kV | 2.31 | 6.17 | 5.80 | 2.70 | 4.75 | 4.68 | 2.81 | 6.59 | 6.21 | 3.45 | 4.99 | 4.91 | | Lodgewood 110 kV | 3.63 | 8.72 | 8.29 | 3.58 | 10.59 | 10.35 | 6.39 | 10.73 | 10.28 | 6.33 | 12.72 | 12.51 | | Lodgewood 220 kV | 3.10 | 7.19 | 6.93 | 3.15 | 6.96 | 6.86 | 5.31 | 9.07 | 8.86 | 5.50 | 8.31 | 8.24 | | Longpoint 220 kV | 6.15 | 13.33 | 12.10 | 6.19 | 17.29 | 16.57 | 12.44 | 21.66 | 19.52 | 12.67 | 25.96 | 24.83 | | Loughtown 220 kV | 3.88 | 9.86 | 9.44 | 3.71 | 11.57 | 11.34 | 7.91 | 15.17 | 14.71 | 7.73 | 17.13 | 16.91 | | Louth 220 kV | 3.84 | 17.04 | 15.65 | 3.55 | 19.38 | 18.69 | 5.94 | 20.93 | 19.90 | 5.85 | 22.51 | 22.06 | | Louth A 110 kV | 3.49 | 13.74 | 12.78 | 3.53 | 17.42 | 16.81 | 5.31 | 15.70 | 14.88 | 5.63 | 19.53 | 19.09 | | Louth A 275 kV | 4.30 | 10.19 | 9.55 | 3.81 | 11.86 | 11.59 | 7.04 | 12.32 | 11.87 | 6.25 | 13.85 | 13.63 | | Louth B 110 kV | 3.29 | 14.37 | 13.45 | 3.28 | 17.73 | 17.16 | 4.69 | 16.25 | 15.44 | 4.89 | 19.72 | 19.31 | | Louth B 275 kV | 4.20 | 10.19 | 9.55 | 3.62 | 12.08 | 11.81 | 6.75 | 12.32 | 11.88 | 5.70 | 14.21 | 13.98 | | Lumcloon 110 kV | 3.34 | 8.17 | 7.86 | 3.61 | 9.68 | 9.54 | 5.13 | 9.57 | 9.30 | 5.82 | 10.83 | 10.72 | | Lysaghtstown 110 kV | 2.87 | 11.01 | 10.26 | 3.14 | 13.04 | 12.66 | 3.58 | 13.75 | 12.96 | 4.08 | 15.48 | 15.13 | | Macetown 110 kV | 2.59 | 16.30 | 14.89 | 2.39 | 16.80 | 16.28 | 4.22 | 20.87 | 19.45 | 3.85 | 20.11 | 19.59 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | ise | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Macroom 110 kV | 4.53 | 15.76 | 13.85 | 4.42 | 16.24 | 15.48 | 6.03 | 18.75 | 16.86 | 5.92 | 18.63 | 17.94 | | Mallow 110 kV | 3.58 | 6.57 | 6.18 | 4.28 | 5.77 | 5.67 | 4.71 | 7.55 | 7.13 | 6.10 | 6.43 | 6.32 | | Marina 110 kV | 4.18 | 17.22 | 15.38 | 4.48 | 19.00 | 18.18 | 5.56 | 22.40 | 20.08 | 6.31 | 23.27 | 22.36 | | Maynooth A 110 kV | 2.97 | 13.19 | 12.56 | 2.96 | 16.08 | 15.85 | 5.16 | 16.14 | 15.55 | 5.24 | 19.13 | 18.82 | | Maynooth A 220 kV | 4.21 | 20.40 | 18.12 | 2.07 | 20.63 | 19.92 | 4.55 | 29.55 | 27.67 | 3.30 | 26.88 | 26.43 | | Maynooth B 110 kV | 2.70 | 17.10 | 15.95 | 2.81 | 16.34 | 15.91 | 4.22 | 20.34 | 19.40 | 4.68 | 18.59 | 18.28 | | Maynooth B 220 kV | 3.73 | 17.97 | 16.16 | 2.06 | 17.69 | 17.14 | 4.03 | 24.81 | 23.38 | 3.21 | 22.14 | 21.77 | | McDermott 110 kV | 3.01 | 11.48 | 10.69 | 2.15 | 13.64 | 13.27 | 5.71 | 15.10 | 13.95 | 3.21 | 17.17 | 16.61 | | Meath Hill 110 kV | 2.36 | 9.45 | 8.97 | 2.74 | 9.44 | 9.26 | 3.09 | 10.69 | 10.15 | 3.85 | 10.22 | 10.05 | | Meentycat 110 kV | 3.26 | 6.92 | 6.17 | 4.17 | 5.82 | 5.63 | 3.57 | 7.20 | 6.42 | 4.76 | 5.83 | 5.64 | | Midleton 110 kV | 2.75 | 9.83 | 9.20 | 3.13 | 10.95 | 10.66 | 3.35 | 12.03 | 11.35 | 4.01 | 12.70 | 12.44 | | Milltown A 110 kV | 2.56 | 13.38 | 12.30 | 1.99 | 16.11 | 15.44 | 4.43 | 16.30 | 14.83 | 3.05 | 18.94 | 18.23 | | Milltown B 110 kV | 2.12 | 10.95 | 10.24 | 1.53 | 13.17 | 12.82 | 3.49 | 13.09 | 12.24 | 2.20 | 15.07 | 14.63 | | Misery Hill 110 kV | 2.50 | 13.05 | 12.01 | 2.06 | 15.87 | 15.21 | 4.26 | 15.86 | 14.44 | 3.22 | 18.36 | 17.93 | | Monatooreen 110 kV | 3.79 | 18.19 | 16.39 | 3.81 | 20.00 | 19.18 | 4.79 | 23.74 | 21.71 | 4.97 | 24.64 | 23.86 | | Moneteen 110 kV | 3.40 | 11.29 | 10.34 | 3.70 | 8.35 | 8.17 | 4.44 | 12.79 | 11.93 | 5.02 | 9.07 | 8.91 | | Moneypoint 110 kV | 4.56 | 9.47 | 8.93 | 4.75 | 9.37 | 9.18 | 7.76 | 10.55 | 10.14 | 8.37 | 10.16 | 10.03 | | Moneypoint 220 kV | 4.79 | 15.84 | 14.28 | 4.05 | 21.30 | 20.30 | 7.60 | 25.90 | 23.93 | 6.47 | 32.23 | 31.12 | | Moneypoint G1 400 kV | 4.26 | 8.56 | 7.89 | 3.72 | 11.32 | 10.89 | 5.34 | 14.05 | 13.25 | 5.39 | 17.30 | 16.93 | | Moneypoint G2 400 kV | 4.26 | 8.56 | 7.89 | 3.72 | 11.32 | 10.89 | 5.34 | 14.05 | 13.25 | 5.39 | 17.30 | 16.93 | | Moneypoint G3 400 kV | 4.26 | 8.56 | 7.89 | 3.72 | 11.32 | 10.89 | 5.34 | 14.05 | 13.25 | 5.39 | 17.30 | 16.93 | | Monread 110 kV | 2.25 | 8.04 | 7.76 | 2.49 | 8.09 | 7.97 | 3.14 | 9.44 | 9.01 | 3.70 | 8.97 | 8.83 | | Mooretown 220 kV | 5.49 | 23.34 | 20.18 | 3.02 | 29.50 | 27.74 | 8.12 | 36.79 | 32.94 | 5.35 | 44.32 | 42.35 | | Mount Lucas 110 kV | 2.94 | 7.70 | 7.36 | 2.93 | 8.49 | 8.36 | 4.31 | 9.56 | 9.17 | 4.35 | 9.96 | 9.82 | | Moy 110 kV | 3.69 | 4.72 | 4.52 | 4.28 | 6.08 | 5.96 | 6.43 | 7.80 | 7.22 | 7.32 | 8.32 | 8.09 | | Mulgeeth 110 kV | 2.55 | 6.56 | 6.38 | 2.79 | 7.34 | 7.27 | 3.38 | 7.02 | 6.87 | 3.97 | 7.75 | 7.68 | | Mullagharlin 110 kV | 2.20 | 9.05 | 8.58 | 2.58 | 9.18 | 9.01 | 2.79 | 10.09 | 9.59 | 3.49 | 9.87 | 9.71 | | Mullingar 110 kV | 2.62 | 7.54 | 7.26 | 2.68 | 8.76 | 8.63 | 3.96 | 9.03 | 8.68 | 4.10 | 10.02 | 9.87 | | Mulreavy 110 kV | 4.13 | 8.65 | 7.43 | 4.62 | 9.48 | 8.94 | 4.86 | 9.34 | 8.00 | 5.56 | 9.98 | 9.41 | | | | | Sum | mer | | | | | Wir | nter | | | |-----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Mungret A 110 kV | 3.26 | 10.69 | 9.83 | 3.58 | 7.74 | 7.57 | 4.19 | 12.04 | 11.25 | 4.81 | 8.37 | 8.24 | | Mungret B 110 kV | 3.25 | 10.71 | 9.84 | 3.58 | 7.74 | 7.58 | 4.18 | 12.07 | 11.27 | 4.80 | 8.38 | 8.25 | | Nangor 110 kV | 2.41 | 11.96 | 10.90 | 2.11 | 15.50 | 14.72 | 5.17 | 17.36 | 15.60 | 4.01 | 21.01 | 20.28 | | Navan 110 kV | 2.80 | 12.85 | 11.94 | 2.92 | 13.52 | 13.17 | 4.27 | 16.39 | 15.35 | 4.67 | 16.09 | 15.74 | | Nenagh 110 kV | 2.46 | 3.91 | 3.68 | 3.08 | 2.35 | 2.32 | 2.97 | 4.24 | 4.01 | 3.92 | 2.46 | 2.44 | | Newbridge 110 kV | 2.43 | 10.63 | 10.04 | 2.63 | 10.13 | 9.95 | 3.42 | 12.90 | 12.15 | 3.90 | 11.56 | 11.35 | | Newbury 110 kV | 3.21 | 12.30 | 11.16 | 2.77 | 16.18 | 15.51 | 6.07 | 14.10 | 13.18 | 5.01 | 18.38 | 18.02 | | NISA Belcamp 220 kV | 4.01 | 13.23 | 12.16 | 2.19 | 16.60 | 15.94 | 6.41 | 17.52 | 16.59 | 3.17 | 21.17 | 20.80 | | North Quays 110 kV | 2.67 | 13.67 | 12.55 | 1.94 | 16.13 | 15.46 | 4.74 | 16.70 | 15.23 | 2.94 | 18.95 | 18.25 | | North Wall 220 kV | 4.71 | 20.29 | 17.86 | 2.36 | 23.13 | 22.05 | 7.09 | 32.48 | 29.46 | 3.69 | 33.69 | 32.60 | | Oaklands 110 kV | 3.03 | 8.16 | 7.79 | 3.03 | 9.46 | 9.29 | 5.02 | 9.63 | 9.28 | 4.98 | 10.78 | 10.62 | | Oldbridge 110 kV | 2.76 | 13.03 | 11.96 | 2.86 | 15.57 | 15.03 | 5.18 | 19.35 | 17.71 | 5.55 | 20.80 | 20.12 | | Oldcourt A 110 kV | 2.85 | 9.90 | 9.32 | 3.23 | 7.92 | 7.79 | 3.34 | 11.81 | 11.20 | 4.01 | 8.90 | 8.78 | | Oldcourt B 110 kV | 2.87 | 9.96 | 9.37 | 3.24 | 8.01 | 7.87 | 3.37 | 11.89 | 11.28 | 4.03 | 9.00 | 8.87 | | Oldstreet 220 kV | 4.05 | 8.01 | 7.68 | 3.79 | 9.33 | 9.21 | 7.27 | 12.98 | 12.38 | 7.18 | 13.57 | 13.33 | | Oldstreet 400 kV | 3.93 | 7.17 | 6.77 | 3.24 | 6.95 | 6.83 | 4.16 | 10.46 | 10.13 | 3.95 | 9.13 | 9.03 | | Oriel 220 kV | 3.59 | 12.36 | 11.66 | 2.91 | 12.09 | 11.90 | 5.50 | 14.50 | 14.07 | 4.38 | 13.52 |
13.37 | | Oriel Offshore 220 kV | 3.59 | 8.33 | 8.01 | 2.94 | 9.19 | 9.04 | 5.44 | 9.35 | 9.21 | 4.34 | 10.07 | 9.99 | | Oriel Onshore 220 kV | 3.75 | 8.99 | 8.62 | 2.98 | 9.71 | 9.54 | 5.86 | 10.20 | 10.00 | 4.48 | 10.69 | 10.59 | | Oughtragh 110 kV | 2.58 | 4.70 | 4.37 | 3.09 | 3.00 | 2.95 | 3.14 | 5.14 | 4.78 | 3.95 | 3.16 | 3.11 | | Pelletstown 110 kV | 2.92 | 10.85 | 10.15 | 2.40 | 11.81 | 11.59 | 5.35 | 14.08 | 13.10 | 3.85 | 14.59 | 14.19 | | Philipstown 110 kV | 3.13 | 10.01 | 9.35 | 3.31 | 11.42 | 11.11 | 5.30 | 13.63 | 12.66 | 5.78 | 14.12 | 13.75 | | Platin 110 kV | 2.79 | 12.74 | 11.75 | 2.87 | 14.86 | 14.39 | 5.81 | 20.32 | 18.53 | 5.93 | 20.55 | 19.87 | | Pollahoney 110 kV | 3.05 | 8.79 | 8.33 | 3.07 | 12.09 | 11.78 | 5.27 | 10.49 | 10.04 | 5.30 | 14.31 | 14.02 | | Pollaphuca 110 kV | 1.74 | 2.54 | 2.49 | 2.26 | 2.30 | 2.29 | 2.70 | 3.22 | 3.11 | 3.70 | 2.63 | 2.61 | | Poolbeg A 110 kV | 2.86 | 14.27 | 13.09 | 2.58 | 17.82 | 17.05 | 5.23 | 17.54 | 16.02 | 4.80 | 21.20 | 20.36 | | Poolbeg A 220 kV | 4.88 | 20.39 | 17.95 | 2.32 | 22.46 | 21.44 | 7.27 | 32.97 | 29.86 | 3.60 | 32.52 | 31.52 | | Poolbeg B 110 kV | 2.85 | 14.25 | 13.07 | 2.58 | 17.80 | 17.03 | 5.23 | 17.52 | 15.99 | 4.80 | 21.17 | 20.34 | | Poolbeg B 220 kV | 4.63 | 19.43 | 17.14 | 2.16 | 24.48 | 23.21 | 6.38 | 32.27 | 29.29 | 3.71 | 37.59 | 36.22 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Poppintree 110 kV | 3.01 | 11.85 | 10.91 | 2.57 | 12.86 | 12.53 | 5.47 | 14.42 | 13.23 | 4.26 | 15.00 | 14.5 | | Portan 260 kV | 4.47 | 12.22 | 11.46 | 4.85 | 3.26 | 3.24 | 6.24 | 16.16 | 15.72 | 11.09 | 3.39 | 3.38 | | Portan 400 kV | 4.72 | 10.71 | 9.85 | 3.78 | 9.20 | 8.97 | 5.53 | 14.58 | 14.01 | 7.32 | 10.88 | 10.8 | | Portlaoise 110 kV | 3.01 | 12.39 | 11.84 | 3.19 | 11.40 | 11.23 | 4.47 | 14.74 | 14.20 | 5.00 | 12.72 | 12.5 | | Pottery 110 kV | 2.33 | 10.64 | 10.09 | 1.73 | 10.85 | 10.60 | 4.18 | 12.98 | 12.26 | 2.58 | 12.47 | 12.3 | | Prospect 220 kV | 4.21 | 13.35 | 12.24 | 3.18 | 14.96 | 14.45 | 6.64 | 20.08 | 18.95 | 4.54 | 19.80 | 19.3 | | Raffeen 220 kV | 5.92 | 12.69 | 11.55 | 5.49 | 15.90 | 15.28 | 11.23 | 19.70 | 17.91 | 9.29 | 22.87 | 22.00 | | Raffeen A 110 kV | 3.85 | 13.68 | 12.56 | 4.16 | 16.09 | 15.54 | 4.98 | 17.12 | 15.88 | 5.68 | 19.44 | 18.8 | | Raffeen B 110 kV | 4.91 | 13.60 | 12.48 | 5.09 | 16.54 | 15.94 | 7.76 | 17.03 | 15.79 | 8.26 | 20.06 | 19.4 | | Rappareehill 110 kV | 3.06 | 7.48 | 7.23 | 3.48 | 8.16 | 8.07 | 4.10 | 8.47 | 8.16 | 5.00 | 8.96 | 8.84 | | Rathkeale 110 kV | 2.43 | 7.56 | 6.99 | 3.01 | 5.79 | 5.67 | 2.99 | 8.43 | 7.83 | 3.96 | 6.18 | 6.06 | | Rathnaskillo 110 kV | 3.65 | 7.10 | 6.72 | 3.98 | 7.70 | 7.55 | 5.46 | 8.58 | 8.21 | 6.26 | 8.81 | 8.67 | | Ratrussan 110 kV | 3.11 | 8.14 | 6.99 | 3.60 | 8.71 | 8.23 | 4.04 | 8.76 | 7.64 | 4.96 | 9.13 | 8.69 | | Reamore 110 kV | 2.62 | 9.05 | 8.14 | 2.70 | 7.86 | 7.61 | 3.16 | 10.10 | 9.19 | 3.35 | 8.42 | 8.19 | | Richmond A 110 kV | 2.39 | 6.61 | 6.38 | 2.93 | 5.98 | 5.92 | 3.02 | 7.58 | 7.23 | 4.02 | 6.60 | 6.51 | | Richmond B 110 kV | 2.39 | 6.61 | 6.38 | 2.93 | 5.98 | 5.92 | 3.02 | 7.58 | 7.23 | 4.02 | 6.60 | 6.51 | | Rinawade 110 kV | 2.49 | 10.95 | 10.44 | 2.58 | 8.22 | 8.11 | 3.62 | 12.36 | 11.84 | 3.99 | 9.41 | 9.30 | | Ringaskiddy 110 kV | 3.90 | 11.30 | 10.54 | 4.01 | 11.25 | 10.97 | 5.22 | 13.78 | 12.95 | 5.43 | 13.06 | 12.80 | | Ringsend 110 kV | 2.87 | 14.39 | 13.16 | 2.61 | 17.97 | 17.17 | 5.27 | 17.74 | 16.12 | 4.87 | 21.42 | 20.5 | | Rosspile 110 kV | 3.51 | 7.74 | 7.34 | 3.61 | 8.53 | 8.36 | 5.63 | 9.62 | 9.24 | 5.95 | 9.97 | 9.83 | | Ryebrook 110 kV | 2.28 | 14.22 | 12.98 | 2.43 | 12.55 | 12.19 | 3.31 | 16.55 | 15.61 | 3.77 | 13.83 | 13.5 | | Salthill 110 kV | 3.17 | 12.77 | 11.59 | 2.60 | 15.12 | 14.52 | 4.04 | 15.17 | 13.74 | 3.20 | 17.22 | 16.5 | | Screeb 110 kV | 2.79 | 2.67 | 2.60 | 3.30 | 1.86 | 1.85 | 3.48 | 2.94 | 2.81 | 4.33 | 1.98 | 1.96 | | Seal Rock A 110 kV | 4.55 | 10.13 | 9.08 | 4.64 | 11.83 | 11.31 | 6.18 | 10.89 | 9.94 | 6.42 | 12.47 | 12.0 | | Seal Rock B 110 kV | 4.56 | 10.14 | 9.08 | 4.65 | 11.84 | 11.31 | 6.20 | 10.90 | 9.94 | 6.43 | 12.48 | 12.0 | | Shankill 110 kV | 3.04 | 9.22 | 8.15 | 3.44 | 8.13 | 7.84 | 3.94 | 10.13 | 9.06 | 4.70 | 8.69 | 8.41 | | Shannonbridge 110 kV | 3.07 | 13.46 | 12.54 | 3.24 | 17.74 | 17.15 | 5.87 | 20.86 | 19.48 | 6.50 | 25.65 | 24.9 | | Shannonbridge 220 kV | 3.26 | 7.10 | 6.82 | 3.55 | 8.11 | 7.98 | 5.83 | 8.84 | 8.67 | 6.79 | 9.56 | 9.50 | | Shanonagh 110 kV | 2.67 | 7.06 | 6.83 | 2.86 | 8.17 | 8.07 | 4.05 | 8.39 | 8.11 | 4.50 | 9.26 | 9.14 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | hree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Shellybanks A 220 kV | 4.84 | 20.36 | 17.92 | 2.38 | 22.99 | 21.93 | 7.12 | 32.89 | 29.78 | 3.77 | 33.51 | 32.43 | | Shellybanks B 220 kV | 3.94 | 16.82 | 15.12 | 1.83 | 21.65 | 20.65 | 6.32 | 29.99 | 27.25 | 3.21 | 35.36 | 34.07 | | Shelton Abbey 110 kV | 3.03 | 8.60 | 8.16 | 3.01 | 11.41 | 11.14 | 5.18 | 10.24 | 9.81 | 5.10 | 13.42 | 13.16 | | Singland 110 kV | 3.72 | 15.44 | 13.91 | 3.91 | 15.54 | 14.96 | 5.28 | 19.01 | 17.39 | 5.70 | 18.00 | 17.47 | | Skerd Rock 220 kV | 3.74 | 8.62 | 8.11 | 2.30 | 11.69 | 11.37 | 4.58 | 10.98 | 10.59 | 2.64 | 14.45 | 14.22 | | Sliabh Bawn 110 kV | 3.18 | 8.89 | 8.50 | 3.65 | 8.81 | 8.68 | 4.25 | 10.10 | 9.69 | 5.24 | 9.39 | 9.27 | | Slievecallan 110 kV | 4.43 | 6.73 | 5.75 | 5.09 | 6.75 | 6.39 | 6.24 | 7.34 | 6.39 | 7.71 | 7.10 | 6.77 | | Sligo 110 kV | 2.92 | 9.69 | 8.89 | 3.25 | 8.89 | 8.66 | 3.45 | 11.10 | 10.20 | 4.02 | 9.70 | 9.45 | | Snughborough 110 kV | 3.05 | 20.59 | 18.34 | 2.70 | 26.46 | 25.27 | 5.42 | 27.77 | 25.29 | 5.02 | 33.92 | 32.81 | | Somerset 110 kV | 2.09 | 7.08 | 6.74 | 2.54 | 4.77 | 4.72 | 2.60 | 8.55 | 8.24 | 3.45 | 5.29 | 5.25 | | Sorne Hill 110 kV | 3.13 | 3.73 | 3.13 | 3.90 | 3.52 | 3.32 | 3.39 | 3.87 | 3.25 | 4.32 | 3.62 | 3.41 | | Srahnakilly 110 kV | 4.00 | 5.01 | 4.80 | 4.59 | 8.03 | 7.85 | 7.21 | 8.40 | 7.71 | 8.03 | 11.35 | 10.91 | | Srananagh 110 kV | 3.48 | 11.33 | 10.26 | 3.81 | 12.07 | 11.64 | 4.30 | 12.99 | 11.84 | 4.94 | 13.37 | 12.93 | | Srananagh 220 kV | 4.19 | 4.68 | 4.47 | 4.72 | 3.71 | 3.67 | 6.06 | 5.16 | 4.98 | 7.31 | 3.98 | 3.94 | | Stevenstown 110 kV | 2.00 | 5.67 | 5.40 | 2.11 | 3.73 | 3.69 | 2.88 | 6.43 | 6.16 | 3.10 | 4.02 | 3.97 | | Stonestown 110 kV | 3.33 | 8.69 | 8.31 | 3.59 | 9.92 | 9.75 | 5.20 | 10.40 | 10.05 | 5.85 | 11.36 | 11.22 | | Stratford 110 kV | 1.90 | 3.99 | 3.86 | 2.30 | 3.12 | 3.10 | 2.70 | 4.84 | 4.62 | 3.41 | 3.47 | 3.43 | | Taney 110 kV | 2.03 | 9.21 | 8.80 | 1.35 | 9.12 | 8.96 | 3.29 | 11.04 | 10.51 | 1.84 | 10.31 | 10.12 | | Tarbert 110 kV | 4.77 | 7.45 | 7.23 | 4.91 | 5.56 | 5.52 | 9.82 | 8.36 | 8.22 | 10.12 | 5.97 | 5.94 | | Tarbert 220 kV | 4.58 | 15.35 | 13.87 | 3.95 | 19.80 | 18.92 | 7.46 | 25.47 | 23.50 | 6.50 | 29.70 | 28.72 | | Tawnaghmore A 110 kV | 3.16 | 3.78 | 3.65 | 3.82 | 4.17 | 4.12 | 4.65 | 5.91 | 5.57 | 5.76 | 5.33 | 5.24 | | Tawnaghmore B 110 kV | 3.13 | 3.70 | 3.58 | 3.71 | 4.55 | 4.49 | 5.36 | 6.19 | 5.77 | 6.52 | 6.23 | 6.08 | | Thornsberry 110 kV | 2.83 | 6.88 | 6.63 | 3.09 | 6.59 | 6.52 | 4.44 | 8.82 | 8.46 | 5.10 | 7.86 | 7.76 | | Thurles 110 kV | 3.48 | 6.11 | 5.16 | 4.00 | 7.31 | 6.80 | 4.74 | 7.00 | 6.04 | 5.58 | 8.10 | 7.63 | | Tievebrack 110 kV | 3.64 | 4.79 | 4.43 | 4.52 | 3.38 | 3.32 | 4.17 | 5.15 | 4.74 | 5.37 | 3.54 | 3.47 | | Timahoe 110 kV | 2.74 | 7.82 | 7.60 | 2.50 | 8.03 | 7.95 | 4.48 | 9.56 | 9.36 | 3.83 | 9.26 | 9.19 | | Timoney 110 kV | 3.51 | 5.21 | 4.63 | 3.88 | 6.50 | 6.18 | 5.43 | 6.48 | 5.89 | 6.17 | 7.73 | 7.43 | | Tipperary 110 kV | 3.54 | 7.55 | 6.81 | 4.02 | 4.65 | 4.55 | 4.60 | 8.35 | 7.63 | 5.45 | 4.92 | 4.83 | | Tonroe 110 kV | 2.14 | 3.47 | 3.26 | 2.84 | 3.24 | 3.17 | 2.56 | 3.76 | 3.52 | 3.61 | 3.46 | 3.39 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Trabeg 110 kV | 4.14 | 17.14 | 15.32 | 4.43 | 18.93 | 18.11 | 5.49 | 22.29 | 19.99 | 6.23 | 23.18 | 22.28 | | Tralee 110 kV | 3.24 | 9.64 | 8.64 | 3.44 | 8.42 | 8.14 | 4.16 | 10.88 | 9.85 | 4.60 | 9.07 | 8.81 | | Trien A 110 kV | 2.87 | 8.22 | 7.61 | 3.13 | 7.44 | 7.26 | 3.65 | 9.22 | 8.63 | 4.14 | 8.02 | 7.86 | | Trien B 110 kV | 4.58 | 9.91 | 8.95 | 3.96 | 7.75 | 7.53 | 7.42 | 10.97 | 10.16 | 5.90 | 8.14 | 7.97 | | Trillick 110 kV | 3.18 | 4.06 | 3.40 | 3.95 | 3.51 | 3.33 | 3.45 | 4.22 | 3.53 | 4.39 | 3.62 | 3.43 | | Trinity 110 kV | 2.43 | 12.68 | 11.72 | 1.94 | 15.27 | 14.80 | 4.06 | 15.35 | 14.00 | 2.93 | 17.59 | 17.18 | | Tullabeg 110 kV | 2.90 | 6.56 | 6.33 | 2.95 | 8.67 | 8.51 | 4.70 | 8.14 | 7.88 | 4.89 | 10.56 | 10.42 | | Tullabrack 110 kV | 3.43 | 7.29 | 6.88 | 3.58 | 5.45 | 5.37 | 4.73 | 7.92 | 7.59 | 5.09 | 5.75 | 5.69 | | Turlough 220 kV | 3.13 | 12.35 | 11.36 | 3.07 | 10.96 | 10.62 | 4.84 | 14.51 | 13.79 | 5.18 | 11.91 | 11.72 | | Tynagh 220 kV | 3.92 | 7.74 | 7.40 | 3.92 | 9.50 | 9.38 | 8.49 | 13.78 | 12.93 | 9.07 | 14.67 | 14.32 | | Uggool 110 kV | 3.99 | 8.22 | 7.34 | 3.60 | 10.36 | 9.85 | 5.45 | 9.13 | 8.18 | 4.82 | 11.29 | 10.77 | | Walterstown 110 kV | | | | | | | 3.18
| 9.65 | 9.24 | 3.83 | 7.68 | 7.59 | | Waterford 110 kV | 3.81 | 12.51 | 11.75 | 3.84 | 13.37 | 13.06 | 6.02 | 15.69 | 14.78 | 6.23 | 16.11 | 15.78 | | Wexford 110 kV | 3.39 | 7.06 | 6.54 | 2.86 | 8.62 | 8.35 | 5.65 | 9.07 | 8.46 | 4.19 | 10.69 | 10.39 | | Whitebank 110 kV | 2.83 | 14.34 | 13.12 | 2.56 | 17.87 | 17.08 | 5.12 | 17.66 | 16.05 | 4.69 | 21.28 | 20.41 | | Whitegate 110 kV | 3.25 | 9.27 | 8.73 | 3.61 | 9.62 | 9.42 | 3.99 | 11.01 | 10.51 | 4.65 | 10.95 | 10.78 | | Wolfe Tone 110 kV | 2.94 | 11.23 | 10.47 | 2.07 | 13.19 | 12.84 | 5.41 | 14.71 | 13.61 | 3.03 | 16.50 | 15.97 | | Woodhouse 110 kV | 3.92 | 6.50 | 6.00 | 3.58 | 9.53 | 9.15 | 5.50 | 7.52 | 7.02 | 4.82 | 10.96 | 10.58 | | Woodland 220 kV | 4.96 | 23.09 | 20.43 | 2.64 | 25.90 | 24.79 | 5.94 | 32.89 | 30.63 | 4.45 | 34.57 | 33.84 | | Woodland 400 kV | 4.85 | 10.78 | 9.91 | 3.33 | 10.26 | 9.99 | 5.76 | 14.71 | 14.13 | 5.19 | 13.26 | 13.09 | | Yellowmeadow 110 kV | 2.56 | 12.45 | 11.31 | 2.40 | 16.11 | 15.29 | 5.80 | 17.92 | 16.12 | 5.26 | 21.65 | 20.91 | ## Ireland Short Circuit Currents for Maximum and Minimum Demand in 2030 | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | T | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Adamstown 110 kV | 2.27 | 12.65 | 11.62 | 2.07 | 16.46 | 15.87 | 4.71 | 17.71 | 15.88 | 3.98 | 22.24 | 21.2 | | Agannygal 110 kV | 2.23 | 5.88 | 5.32 | 2.90 | 4.63 | 4.51 | 2.67 | 6.41 | 5.85 | 3.73 | 4.97 | 4.85 | | Aghada 110 kV | 3.54 | 9.01 | 8.64 | 4.06 | 10.36 | 10.19 | 4.35 | 10.20 | 9.79 | 5.23 | 11.50 | 11.3 | | Aghada A 220 kV | 6.61 | 14.24 | 13.18 | 6.67 | 18.35 | 17.72 | 12.79 | 21.73 | 19.61 | 13.04 | 26.04 | 24.9 | | Aghada B 220 kV | 6.61 | 14.24 | 13.18 | 6.67 | 18.35 | 17.72 | 12.79 | 21.73 | 19.61 | 13.04 | 26.04 | 24.9 | | Aghada C 220 kV | 6.49 | 13.82 | 12.82 | 6.23 | 17.79 | 17.19 | 12.04 | 20.79 | 18.84 | 10.84 | 24.98 | 23.9 | | Aghada D 220 kV | 6.61 | 14.24 | 13.18 | 6.67 | 18.35 | 17.72 | 12.79 | 21.73 | 19.61 | 13.04 | 26.04 | 24.9 | | Ahane 110 kV | 3.33 | 14.10 | 13.30 | 3.52 | 11.50 | 11.28 | 4.26 | 15.33 | 14.39 | 4.65 | 12.24 | 12.0 | | Anner 110 kV | 3.02 | 6.91 | 6.54 | 3.27 | 4.87 | 4.80 | 3.72 | 7.49 | 7.03 | 4.12 | 5.09 | 5.01 | | Ardnacrusha 110 kV | 3.98 | 17.73 | 16.25 | 4.34 | 19.31 | 18.59 | 5.21 | 19.29 | 17.48 | 5.99 | 20.41 | 19.68 | | Ardnagappary 110 kV | 2.63 | 2.34 | 2.22 | 3.57 | 1.33 | 1.32 | 2.90 | 2.46 | 2.31 | 4.08 | 1.39 | 1.37 | | Arigna 110 kV | 3.49 | 8.18 | 7.59 | 3.88 | 6.27 | 6.14 | 4.40 | 8.85 | 8.26 | 5.11 | 6.66 | 6.54 | | Arklow 110 kV | 3.13 | 12.59 | 12.09 | 3.11 | 17.44 | 17.17 | 5.41 | 14.31 | 13.71 | 5.30 | 19.81 | 19.38 | | Arklow 220 kV | 2.72 | 8.53 | 8.25 | 2.67 | 10.52 | 10.36 | 4.47 | 9.89 | 9.60 | 4.47 | 12.06 | 11.93 | | Artane 110 kV | 2.69 | 11.64 | 11.01 | 2.00 | 13.98 | 13.66 | 5.29 | 14.71 | 13.66 | 3.19 | 17.25 | 16.7 | | Arva 110 kV | 3.19 | 9.92 | 9.13 | 3.60 | 7.45 | 7.29 | 4.11 | 10.64 | 9.85 | 4.88 | 7.83 | 7.68 | | Athea 110 kV | 4.27 | 9.42 | 8.38 | 4.26 | 8.86 | 8.49 | 7.54 | 10.17 | 9.17 | 7.52 | 9.23 | 8.93 | | Athlone 110 kV | 3.32 | 7.61 | 7.31 | 3.59 | 8.40 | 8.28 | 5.57 | 10.38 | 9.71 | 6.19 | 10.12 | 9.90 | | Athy 110 kV | 2.08 | 7.44 | 7.30 | 2.52 | 5.91 | 5.86 | 2.66 | 8.08 | 7.80 | 3.43 | 6.28 | 6.22 | | Aughinish 110 kV | 4.72 | 10.75 | 9.72 | 4.97 | 12.44 | 11.94 | 6.56 | 11.15 | 10.18 | 7.11 | 12.75 | 12.30 | | Aungierstown 110 kV | 2.76 | 21.16 | 18.46 | 2.24 | 28.96 | 27.33 | 5.31 | 26.86 | 23.78 | 4.53 | 36.24 | 34.2 | | Baldonnell 110 kV | 2.56 | 19.91 | 17.50 | 2.07 | 26.15 | 24.84 | 4.78 | 25.28 | 22.48 | 3.86 | 32.54 | 30.98 | | Ballinknocka 110 kV | 4.39 | 10.10 | 9.31 | 4.37 | 12.77 | 12.31 | 6.12 | 10.55 | 9.80 | 6.12 | 13.19 | 12.78 | | Ballyadam 110 kV | 2.87 | 9.67 | 9.23 | 3.40 | 9.80 | 9.65 | 3.31 | 10.74 | 10.23 | 4.12 | 10.63 | 10.4 | | Ballybeg 110 kV | 2.62 | 7.12 | 6.98 | 2.64 | 8.40 | 8.28 | 4.32 | 8.01 | 7.75 | 4.26 | 9.30 | 9.18 | | Ballydine 110 kV | 2.87 | 7.60 | 7.26 | 2.71 | 5.81 | 5.74 | 3.54 | 8.30 | 7.87 | 3.33 | 6.13 | 6.04 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Ballylickey 110 kV | 2.60 | 3.81 | 3.49 | 3.31 | 2.16 | 2.12 | 2.95 | 4.04 | 3.71 | 3.91 | 2.26 | 2.22 | | Ballymoneen 110 kV | 3.24 | 16.97 | 15.70 | 2.97 | 21.07 | 20.30 | 4.47 | 19.28 | 17.73 | 4.04 | 23.55 | 22.7 | | Ballynadride 110 kV | 3.74 | 7.18 | 6.70 | 4.51 | 8.42 | 8.19 | 4.61 | 7.71 | 7.16 | 5.84 | 8.72 | 8.48 | | Ballynahulla 110 kV | 6.09 | 11.36 | 9.97 | 5.94 | 12.89 | 12.23 | 11.25 | 12.64 | 11.38 | 10.68 | 14.00 | 13.4 | | Ballynahulla 220 kV | 4.53 | 10.77 | 9.84 | 4.44 | 11.53 | 11.13 | 6.87 | 12.37 | 11.54 | 7.14 | 12.77 | 12.4 | | Ballyragget 110 kV | 3.26 | 7.75 | 7.65 | 3.37 | 6.19 | 6.15 | 4.79 | 8.42 | 8.20 | 5.05 | 6.53 | 6.49 | | Ballyvouskill 110 kV | 6.74 | 12.49 | 11.04 | 6.20 | 15.57 | 14.74 | 11.44 | 13.86 | 12.49 | 9.93 | 17.01 | 16.28 | | Ballyvouskill 220 kV | 4.84 | 10.96 | 10.00 | 4.90 | 13.09 | 12.58 | 7.25 | 12.49 | 11.61 | 7.65 | 14.59 | 14.16 | | Ballywater 110 kV | 3.02 | 6.89 | 6.68 | 1.96 | 6.67 | 6.61 | 4.08 | 7.46 | 7.21 | 2.40 | 7.16 | 7.08 | | Balruntagh 110 kV | 3.28 | 5.19 | 5.07 | 3.86 | 4.43 | 4.40 | 4.59 | 5.52 | 5.41 | 5.82 | 4.57 | 4.55 | | Baltrasna 110 kV | 2.60 | 11.00 | 10.51 | 2.79 | 8.87 | 8.73 | 4.19 | 12.51 | 11.97 | 4.66 | 9.77 | 9.66 | | Bancroft 110 kV | 2.24 | 12.02 | 11.42 | 1.88 | 13.75 | 13.44 | 3.91 | 14.00 | 13.24 | 2.94 | 15.75 | 15.40 | | Bandon 110 kV | 4.23 | 7.47 | 6.97 | 5.00 | 7.06 | 6.90 | 5.31 | 8.25 | 7.62 | 6.64 | 7.55 | 7.36 | | Banoge 110 kV | 2.99 | 7.09 | 6.95 | 3.10 | 6.85 | 6.79 | 4.24 | 7.62 | 7.41 | 4.48 | 7.23 | 7.17 | | Barnageeragh 110 kV | 2.88 | 21.99 | 19.80 | 2.65 | 28.46 | 27.23 | 5.29 | 27.65 | 25.21 | 5.18 | 34.32 | 33.15 | | Barnahealy A 110 kV | 3.43 | 12.38 | 11.67 | 3.81 | 12.59 | 12.33 | 4.16 | 14.43 | 13.50 | 4.84 | 14.17 | 13.86 | | Barnahealy B 110 kV | 4.62 | 12.44 | 11.74 | 4.79 | 12.76 | 12.49 | 6.12 | 14.31 | 13.42 | 6.48 | 14.21 | 13.90 | | Barnakyle 110 kV | 2.73 | 20.84 | 18.21 | 2.28 | 27.98 | 26.41 | 5.26 | 26.49 | 23.46 | 4.71 | 34.92 | 33.04 | | Baroda 110 kV | 2.42 | 9.67 | 9.34 | 2.67 | 10.68 | 10.49 | 3.35 | 10.99 | 10.45 | 3.90 | 11.77 | 11.56 | | Barrymore 110 kV | 4.09 | 8.35 | 7.90 | 4.46 | 5.18 | 5.12 | 5.17 | 9.10 | 8.59 | 5.84 | 5.48 | 5.41 | | Belcamp 110 kV | 2.98 | 13.33 | 12.02 | 2.76 | 17.89 | 17.28 | 6.54 | 15.19 | 14.05 | 6.12 | 20.33 | 19.75 | | Belcamp 220 kV | 4.77 | 21.90 | 19.02 | 2.66 | 28.82 | 27.16 | 7.04 | 37.14 | 33.50 | 5.08 | 45.58 | 43.67 | | Belcamp 380 kV | 2.46 | 10.76 | 9.80 | 1.76 | 12.58 | 12.22 | 2.46 | 14.49 | 13.95 | 2.45 | 15.51 | 15.3 | | Belgard 110 kV | 2.21 | 12.60 | 11.77 | 1.83 | 15.33 | 14.76 | 3.96 | 14.65 | 13.61 | 2.94 | 17.32 | 17.0 | | Bellacorick 110 kV | 3.99 | 5.92 | 5.67 | 4.50 | 9.21 | 9.00 | 7.29 | 9.52 | 8.74 | 8.03 | 12.68 | 12.20 | | Bellewstown 110 kV | 2.85 | 13.88 | 13.02 | 2.93 | 15.58 | 15.13 | 5.73 | 20.28 | 18.37 | 5.77 | 20.28 | 19.59 | | Bendinstown 110 kV | 2.92 | 9.90 | 9.56 | 2.95 | 12.00 | 11.79 | 4.14 | 10.83 | 10.33 | 4.21 | 12.95 | 12.70 | | Binbane 110 kV | 4.21 | 5.59 | 5.09 | 5.44 | 4.76 | 4.63 | 4.90 | 5.82 | 5.28 | 6.69 | 4.86 | 4.72 | | | | | Sum | mer | | | | | Wir | nter | | | |------------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Blackrock 110 kV | 2.29 | 12.75 | 11.93 | 1.20 | 12.00 | 11.74 | 3.86 | 14.99 | 13.69 | 1.58 | 13.25 | 12.86 | | Blake 110 kV | 2.23 | 8.46 | 8.23 | 2.53 | 5.52 | 5.46 | 3.10 | 9.42 | 9.01 | 3.71 | 5.93 | 5.87 | | Blundelstown 110 kV | 2.12 | 8.51 | 8.30 | 2.41 | 8.81 | 8.68 | 3.01 | 9.32 | 9.03 | 3.64 | 9.51 | 9.41 | | Boggeragh 110 kV | 4.66 | 9.00 | 7.78 | 5.21 | 8.56 | 8.15 | 5.94 | 9.57 | 8.39 | 6.93 | 8.95 | 8.57 | | Bogtown 110 kV | 2.81 | 6.56 | 6.36 | 2.94 | 7.53 | 7.44 | 3.62 | 7.61 | 7.37 | 3.91 | 8.46 | 8.35 | | Booltiagh 110 kV | 3.73 | 8.52 | 7.76 | 4.24 | 6.64 | 6.47 | 5.27 | 8.95 | 8.22 | 6.39 | 6.84 | 6.68 | | Bracetown 220 kV | 4.00 | 20.08 | 17.72 | 2.12 | 21.50 | 20.65 | 5.99 | 30.07 | 27.76 | 3.75 | 28.44 | 27.83 | | Bracklone 110 kV | 2.70 | 8.30 | 8.18 | 3.07 | 7.29 | 7.23 | 3.78 | 9.18 | 8.93 | 4.58 | 7.75 | 7.69 | | Bracklone 110 kV | 2.70 | 8.30 | 8.18 | 3.07 | 7.29 | 7.23 | 3.78 | 9.18 | 8.93 | 4.58 | 7.75 | 7.69 | | Brinny A 110 kV | 3.73 | 6.58 | 6.18 | 4.37 | 5.66 | 5.56 | 4.55 | 7.22 | 6.73 | 5.58 | 6.03 | 5.91 | | Brinny B 110 kV | 3.74 | 6.61 | 6.21 | 4.38 | 5.70 | 5.60 | 4.55 | 7.26 | 6.77 | 5.59 | 6.08 | 5.96 | | Buffy 110 kV | 3.18 | 5.91 | 5.70 | 3.53 | 7.96 | 7.83 | 4.17 | 6.41 | 6.12 | 4.82 | 8.29 | 8.13 | | Butlerstown 110 kV | 3.65 | 12.24 | 11.78 | 3.69 | 11.75 | 11.59 | 5.14 | 14.12 | 13.41 | 5.26 | 13.14 | 12.92 | | Cabra 110 kV | 2.64 | 11.20 | 10.63 | 1.84 | 12.37 | 12.17 | 5.08 | 14.09 | 13.10 | 2.77 | 15.06 | 14.64 | | Caherhurly 110 kV | 3.73 | 10.18 | 9.65 | 3.90 | 11.95 | 11.68 | 4.83 | 10.87 | 10.28 | 5.16 | 12.55 | 12.28 | | Cahir 110 kV | 3.72 | 9.73 | 8.98 | 4.25 | 7.46 | 7.30 | 4.67 | 10.46 | 9.58 | 5.57 | 7.60 | 7.43 | | Carlow 110 kV | 2.84 | 9.93 | 9.52 | 3.04 | 10.36 | 10.18 | 3.96 | 10.89 | 10.28 | 4.37 | 11.16 | 10.94 | |
Carrickalangan 110 kV | 4.16 | 9.13 | 7.96 | 4.80 | 10.66 | 10.07 | 4.80 | 9.34 | 8.16 | 5.69 | 10.91 | 10.32 | | Carrickmines 220 kV | 3.85 | 17.71 | 16.05 | 1.90 | 22.63 | 21.79 | 6.04 | 27.09 | 24.93 | 3.32 | 32.20 | 31.28 | | Carrickmines A 110 kV | 2.43 | 11.61 | 11.13 | 2.36 | 12.58 | 12.36 | 4.75 | 13.81 | 13.01 | 4.34 | 14.50 | 14.17 | | Carrickmines B 110 kV | 2.49 | 13.36 | 12.65 | 2.36 | 15.73 | 15.35 | 4.80 | 15.77 | 14.87 | 4.37 | 18.22 | 17.78 | | Carrick-on-Shannon
110 kV | 3.56 | 13.06 | 12.29 | 3.79 | 13.59 | 13.23 | 4.68 | 14.75 | 13.75 | 5.17 | 14.84 | 14.48 | | Carrigadrohid 110 kV | 4.52 | 14.55 | 13.22 | 4.57 | 12.94 | 12.56 | 5.84 | 16.08 | 14.71 | 6.02 | 13.95 | 13.58 | | Carrigdangan 110 kV | 3.07 | 5.66 | 5.32 | 3.95 | 6.18 | 6.04 | 3.57 | 6.06 | 5.71 | 4.84 | 6.50 | 6.36 | | Carrowbeg 110 kV | 2.43 | 3.10 | 2.95 | 3.02 | 2.68 | 2.64 | 2.82 | 3.44 | 3.23 | 3.76 | 2.83 | 2.78 | | Cashla 110 kV | 3.98 | 18.25 | 16.78 | 3.89 | 22.99 | 22.15 | 6.18 | 20.93 | 19.12 | 6.08 | 25.91 | 24.91 | | Cashla 220 kV | 3.71 | 10.56 | 10.03 | 3.76 | 10.71 | 10.51 | 6.33 | 13.03 | 12.40 | 6.75 | 12.42 | 12.21 | | | | | Sum | mer | | | | | Wir | iter | | | |-------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Castlebagot 110 kV | 2.79 | 21.40 | 18.64 | 2.32 | 29.86 | 28.13 | 5.42 | 27.24 | 24.08 | 4.96 | 37.57 | 35.42 | | Castlebagot 220 kV | 3.82 | 22.48 | 19.64 | 1.95 | 27.33 | 25.95 | 4.88 | 34.24 | 31.04 | 3.36 | 38.06 | 36.7 | | Castlebar 110 kV | 3.48 | 5.89 | 5.46 | 3.55 | 5.66 | 5.52 | 4.22 | 6.93 | 6.36 | 4.53 | 6.06 | 5.90 | | Castledockrill 110 kV | 3.53 | 8.43 | 8.18 | 2.42 | 9.16 | 9.04 | 5.19 | 9.18 | 8.85 | 3.13 | 9.88 | 9.74 | | Castlefarm A 110 kV | 4.42 | 10.32 | 9.36 | 4.60 | 11.44 | 11.01 | 5.99 | 10.71 | 9.80 | 6.39 | 11.74 | 11.3 | | Castlefarm B 110 kV | 4.42 | 10.30 | 9.34 | 4.61 | 11.42 | 11.00 | 6.00 | 10.69 | 9.78 | 6.40 | 11.73 | 11.34 | | Castlelost 220 kV | 2.53 | 6.85 | 6.69 | 2.70 | 7.25 | 7.24 | 5.00 | 9.82 | 9.73 | 5.48 | 9.49 | 9.45 | | Castletreasu 110 kV | 4.19 | 13.62 | 12.79 | 4.20 | 16.44 | 16.00 | 5.33 | 15.76 | 14.70 | 5.39 | 18.54 | 18.02 | | Castleview 110 kV | 2.97 | 12.46 | 11.79 | 3.60 | 11.88 | 11.66 | 3.45 | 14.32 | 13.47 | 4.47 | 13.25 | 12.99 | | Cathaleen's Fall 110 kV | 4.34 | 12.10 | 10.49 | 4.78 | 11.36 | 10.83 | 5.15 | 12.50 | 10.86 | 5.85 | 11.57 | 11.0 | | Cauteen 110 kV | 4.13 | 8.76 | 7.75 | 4.44 | 4.91 | 4.79 | 5.30 | 9.36 | 8.30 | 5.85 | 5.15 | 5.03 | | Celtic 380 kV | 8.19 | 5.32 | 5.13 | 9.07 | 5.09 | 5.03 | 15.25 | 6.11 | 5.90 | 19.32 | 5.62 | 5.56 | | Central Park 110 kV | 2.21 | 10.63 | 10.20 | 1.91 | 11.40 | 11.10 | 3.96 | 12.50 | 11.83 | 3.02 | 12.76 | 12.59 | | Charleville 110 kV | 3.72 | 7.50 | 6.97 | 4.44 | 8.57 | 8.32 | 4.57 | 8.06 | 7.45 | 5.74 | 8.91 | 8.65 | | Cherrywood 110 kV | 2.07 | 9.81 | 9.45 | 1.93 | 9.79 | 9.72 | 3.51 | 11.46 | 10.87 | 3.01 | 11.08 | 10.86 | | City West 110 kV | 1.83 | 7.69 | 7.24 | 1.95 | 6.39 | 6.24 | 2.94 | 9.69 | 8.89 | 3.17 | 7.47 | 7.28 | | CKM Country 110 kV | 2.49 | 13.36 | 12.65 | 2.36 | 15.73 | 15.35 | 4.80 | 15.77 | 14.87 | 4.37 | 18.22 | 17.78 | | Clahane 110 kV | 2.74 | 8.31 | 7.79 | 2.71 | 8.75 | 8.54 | 3.51 | 8.80 | 8.24 | 3.50 | 9.07 | 8.86 | | Clashavoon 220 kV | 5.12 | 11.29 | 10.41 | 5.21 | 12.38 | 12.00 | 7.44 | 12.99 | 12.11 | 7.86 | 13.90 | 13.54 | | Clashavoon A 110 kV | 5.12 | 17.84 | 15.90 | 5.15 | 21.46 | 20.36 | 6.96 | 19.90 | 17.81 | 7.14 | 23.68 | 22.60 | | Clashavoon B 110 kV | 5.12 | 17.84 | 15.90 | 5.15 | 21.46 | 20.36 | 6.96 | 19.90 | 17.81 | 7.14 | 23.68 | 22.60 | | Cliff 110 kV | 3.80 | 8.70 | 7.80 | 4.55 | 7.32 | 7.09 | 4.42 | 8.99 | 8.08 | 5.52 | 7.47 | 7.24 | | Cloghboola 110 kV | 3.40 | 7.73 | 7.22 | 4.01 | 7.94 | 7.74 | 5.17 | 8.23 | 7.81 | 6.77 | 8.21 | 8.07 | | Cloghboola 110 kV | 3.40 | 7.73 | 7.22 | 4.01 | 7.94 | 7.74 | 5.17 | 8.23 | 7.81 | 6.77 | 8.21 | 8.07 | | Clogher 110 kV | 4.13 | 10.40 | 8.88 | 4.66 | 10.91 | 10.29 | 4.75 | 10.62 | 9.10 | 5.51 | 11.05 | 10.4 | | Cloghran 110 kV | 2.88 | 22.13 | 19.91 | 2.62 | 28.54 | 27.30 | 5.25 | 27.87 | 25.40 | 5.07 | 34.44 | 33.20 | | Cloncreen 110 kV | 3.72 | 10.94 | 10.33 | 3.96 | 13.19 | 12.81 | 6.58 | 14.66 | 13.55 | 7.27 | 16.20 | 15.7 | | Clonee 220 kV | 4.09 | 20.39 | 17.97 | 2.18 | 22.03 | 21.14 | 6.14 | 30.74 | 28.33 | 3.95 | 29.33 | 28.6 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | TI | hree pha | se | Si | ngle pha | ise | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Clonfad 110 kV | 3.39 | 7.82 | 7.61 | 3.19 | 8.50 | 8.41 | 4.71 | 8.72 | 8.37 | 4.36 | 9.25 | 9.12 | | Clonkeen A 110 kV | 3.72 | 6.32 | 6.02 | 4.21 | 4.39 | 4.34 | 4.83 | 6.75 | 6.42 | 5.70 | 4.60 | 4.55 | | Clonkeen B 110 kV | 3.34 | 10.30 | 9.04 | 2.41 | 11.76 | 11.15 | 3.98 | 11.30 | 10.07 | 2.75 | 12.69 | 12.12 | | Cloon 110 kV | 3.23 | 8.31 | 7.92 | 3.71 | 8.93 | 8.78 | 4.27 | 9.15 | 8.70 | 5.22 | 9.59 | 9.42 | | Clutterland 110 kV | 2.76 | 21.25 | 18.52 | 2.25 | 29.14 | 27.49 | 5.31 | 26.99 | 23.88 | 4.60 | 36.51 | 34.47 | | Codling 1 220 kV | 3.55 | 11.50 | 10.74 | 1.93 | 14.34 | 13.95 | 6.33 | 14.95 | 14.36 | 2.98 | 17.94 | 17.64 | | Codling 2 220 kV | 3.46 | 11.29 | 10.58 | 1.66 | 14.31 | 13.99 | 5.23 | 14.37 | 13.78 | 2.57 | 17.63 | 17.33 | | Codling 3 220 kV | 3.46 | 11.29 | 10.58 | 1.66 | 14.31 | 13.99 | 5.23 | 14.37 | 13.78 | 2.57 | 17.63 | 17.33 | | College Park 110 kV | 2.74 | 20.22 | 18.40 | 2.16 | 25.01 | 24.17 | 4.91 | 25.02 | 23.05 | 3.46 | 29.79 | 28.70 | | Cookstown 110 kV | 1.96 | 8.40 | 8.11 | 1.89 | 6.97 | 6.86 | 3.11 | 9.53 | 9.15 | 2.81 | 7.65 | 7.56 | | Cookstown A 110 kV | 1.71 | 6.50 | 6.20 | 1.84 | 5.02 | 4.93 | 2.63 | 8.10 | 7.42 | 2.90 | 5.75 | 5.62 | | Coolderrig 110 kV | 2.36 | 12.35 | 11.35 | 2.18 | 15.20 | 14.52 | 5.32 | 17.39 | 15.58 | 4.44 | 20.03 | 19.34 | | Coolnabacky 110 kV | 3.62 | 16.76 | 16.19 | 3.61 | 21.04 | 20.82 | 5.85 | 18.58 | 17.87 | 5.90 | 23.20 | 22.82 | | Coolnabacky 400 kV | 3.17 | 10.14 | 9.47 | 2.23 | 10.30 | 10.12 | 3.59 | 12.53 | 12.18 | 3.39 | 11.64 | 11.60 | | Coolnanoonag 110 kV | 4.50 | 19.07 | 17.64 | 4.10 | 23.49 | 22.67 | 7.98 | 21.71 | 20.25 | 7.39 | 26.17 | 25.51 | | Coolroe 110 kV | 2.86 | 10.12 | 9.48 | 3.66 | 9.26 | 9.07 | 3.29 | 11.11 | 10.41 | 4.49 | 9.86 | 9.67 | | Coolshamroge 110 kV | 2.54 | 9.54 | 8.91 | 3.11 | 9.14 | 8.92 | 3.04 | 10.16 | 9.44 | 3.94 | 9.44 | 9.22 | | Coomagearlahy 110 kV | 3.69 | 8.15 | 6.97 | 3.76 | 8.90 | 8.37 | 4.49 | 8.84 | 7.67 | 4.65 | 9.55 | 9.04 | | Coomataggart 110 kV | 5.48 | 7.17 | 6.70 | 5.32 | 5.72 | 5.62 | 7.85 | 7.73 | 7.32 | 7.54 | 5.96 | 5.87 | | Coomataggart 110 kV | 5.48 | 7.17 | 6.70 | 5.32 | 5.72 | 5.62 | 7.85 | 7.73 | 7.32 | 7.54 | 5.96 | 5.87 | | Coomnaclohy 110 kV | 3.97 | 9.23 | 8.45 | 3.37 | 11.42 | 10.98 | 5.07 | 10.07 | 9.34 | 4.14 | 12.25 | 11.87 | | Corbetstown 110 kV | 3.55 | 9.57 | 9.39 | 3.51 | 12.68 | 12.53 | 5.73 | 12.16 | 11.59 | 5.53 | 15.52 | 15.20 | | Cordal 110 kV | 5.50 | 9.48 | 8.48 | 4.27 | 10.71 | 10.24 | 9.09 | 10.37 | 9.47 | 6.11 | 11.48 | 11.09 | | Corderry 110 kV | 3.34 | 9.16 | 8.22 | 3.78 | 9.57 | 9.20 | 4.06 | 9.85 | 8.91 | 4.80 | 10.12 | 9.76 | | Corduff 110 kV | 3.00 | 23.81 | 21.32 | 2.67 | 30.34 | 28.99 | 5.48 | 30.61 | 27.71 | 5.34 | 37.22 | 35.89 | | Corduff 220 kV | 5.04 | 23.66 | 20.36 | 2.71 | 31.00 | 29.09 | 7.96 | 41.04 | 36.71 | 5.46 | 49.77 | 47.53 | | Corkagh 110 kV | 2.75 | 21.05 | 18.36 | 2.30 | 28.71 | 27.10 | 5.30 | 26.67 | 23.61 | 4.77 | 35.81 | 33.84 | | Corraclassy 110 kV | 3.24 | 7.08 | 6.59 | 3.83 | 5.18 | 5.09 | 3.94 | 7.40 | 6.91 | 4.88 | 5.37 | 5.28 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Cow Cross 110 kV | 3.20 | 12.45 | 11.77 | 3.52 | 10.87 | 10.68 | 3.79 | 14.46 | 13.57 | 4.35 | 12.08 | 11.86 | | Crane 110 kV | 3.81 | 10.02 | 9.58 | 3.64 | 10.67 | 10.50 | 5.67 | 10.89 | 10.35 | 5.35 | 11.54 | 11.33 | | Croaghaun 110 kV | 4.00 | 5.32 | 5.11 | 4.56 | 7.48 | 7.35 | 6.81 | 8.07 | 7.51 | 7.57 | 9.67 | 9.39 | | Cromcastle A 110 kV | 2.59 | 11.36 | 10.69 | 2.19 | 12.18 | 11.96 | 4.87 | 13.40 | 12.38 | 3.67 | 13.94 | 13.52 | | Cromcastle B 110 kV | 2.59 | 11.36 | 10.69 | 2.19 | 12.18 | 11.96 | 4.87 | 13.40 | 12.38 | 3.67 | 13.94 | 13.52 | | Crory 110 kV | 4.01 | 9.84 | 9.46 | 3.97 | 11.69 | 11.49 | 6.35 | 10.74 | 10.29 | 6.30 | 12.74 | 12.52 | | Cruiserath 220 kV | 4.83 | 23.06 | 19.90 | 2.64 | 30.18 | 28.37 | 7.49 | 39.48 | 35.44 | 5.18 | 47.97 | 45.88 | | Cuilleen 110 kV | 3.17 | 7.23 | 6.96 | 3.55 | 8.12 | 8.01 | 5.28 | 9.89 | 9.27 | 6.27 | 9.83 | 9.62 | | Cullenagh 110 kV | 4.15 | 14.57 | 13.97 | 4.23 | 16.19 | 15.90 | 6.17 | 16.83 | 15.98 | 6.46 | 18.42 | 18.07 | | Cullenagh 220 kV | 4.13 | 9.03 | 8.82 | 4.08 | 8.89 | 8.78 | 6.44 | 11.18 | 10.87 | 6.46 | 10.55 | 10.45 | | Cunghill 110 kV | 2.63 | 6.12 | 5.70 | 2.93 | 5.52 | 5.39 | 3.09 | 6.88 | 6.43 | 3.55 | 5.91 | 5.80 | | Cureeny 110 kV | 3.65 | 6.17 | 5.93 | 3.60 | 5.06 | 5.00 | 4.75 | 6.59 | 6.34 | 4.69 | 5.26 | 5.21 | | Cureeny T 110 kV | 3.62 | 7.68 | 7.30 | 4.13 | 5.74 | 5.66 | 4.70 | 8.24 | 7.84 | 5.64 | 5.97 | 5.90 | | Cushaling 110 kV | 3.75 | 11.11 | 10.48 | 4.03 | 13.65 | 13.24 | 6.71 | 14.93 | 13.77 | 7.61 | 16.84 | 16.32 | |
Dallow 110 kV | 2.47 | 5.43 | 5.21 | 2.89 | 3.78 | 3.75 | 3.17 | 6.14 | 5.88 | 3.92 | 4.08 | 4.04 | | Dalton 110 kV | 3.67 | 5.11 | 4.69 | 4.16 | 4.06 | 3.96 | 4.79 | 5.69 | 5.18 | 5.81 | 4.28 | 4.17 | | Dardistown 110 kV | 2.74 | 11.53 | 10.84 | 2.54 | 12.66 | 12.42 | 5.45 | 13.62 | 12.57 | 4.79 | 14.55 | 14.10 | | Darndale 110 kV | 2.94 | 13.02 | 11.75 | 2.73 | 17.27 | 16.69 | 6.38 | 14.79 | 13.62 | 5.93 | 19.42 | 18.94 | | Deenes 110 kV | 2.70 | 11.43 | 10.90 | 2.92 | 10.95 | 10.75 | 4.34 | 13.30 | 12.67 | 4.94 | 12.32 | 12.14 | | Dennistown 110 kV | 3.33 | 7.11 | 6.79 | 3.24 | 9.14 | 8.96 | 4.37 | 7.52 | 7.12 | 4.25 | 9.65 | 9.42 | | Derrybrien 110 kV | 2.25 | 4.70 | 4.19 | 3.03 | 4.23 | 4.08 | 2.69 | 5.09 | 4.57 | 3.90 | 4.56 | 4.41 | | Derrygreenag 220 kV | 3.48 | 8.76 | 8.51 | 3.26 | 11.15 | 11.12 | 7.15 | 11.05 | 10.96 | 6.91 | 13.75 | 13.66 | | Derryiron 110 kV | 3.56 | 9.78 | 9.59 | 3.59 | 13.01 | 12.85 | 5.79 | 12.51 | 11.90 | 5.81 | 16.00 | 15.66 | | Derrylahan 110 kV | 3.31 | 12.90 | 12.45 | 3.48 | 14.50 | 14.20 | 5.81 | 18.15 | 17.13 | 6.08 | 18.63 | 18.25 | | Donore 110 kV | 2.83 | 12.19 | 11.47 | 2.94 | 14.57 | 14.15 | 4.99 | 15.71 | 14.56 | 5.30 | 17.81 | 17.29 | | Doon 110 kV | 3.24 | 7.64 | 7.21 | 3.38 | 5.51 | 5.44 | 4.04 | 8.30 | 7.76 | 4.29 | 5.75 | 5.66 | | Dromada 110 kV | 4.10 | 8.64 | 7.66 | 3.20 | 8.02 | 7.70 | 6.97 | 9.27 | 8.39 | 4.75 | 8.34 | 8.08 | | Drombeg 110 kV | 3.75 | 9.38 | 8.92 | 3.97 | 9.59 | 9.42 | 5.65 | 10.06 | 9.64 | 6.19 | 10.13 | 9.98 | | | | | Sum | mer | | | | | Wir | iter | | | |-------------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Drumkeen 110 kV | 3.39 | 8.59 | 7.55 | 4.05 | 7.16 | 6.89 | 3.81 | 8.87 | 7.78 | 4.71 | 7.29 | 7.02 | | Drumline 110 kV | 2.49 | 9.28 | 8.72 | 3.08 | 8.16 | 8.00 | 2.97 | 9.90 | 9.24 | 3.89 | 8.43 | 8.26 | | Drybridge 110 kV | 2.77 | 15.27 | 14.26 | 2.87 | 15.61 | 15.16 | 4.64 | 19.81 | 18.21 | 4.90 | 18.74 | 18.22 | | Dublin Array 220 kV | 3.44 | 15.81 | 14.47 | 1.72 | 19.82 | 19.21 | 5.00 | 23.08 | 21.50 | 2.90 | 26.99 | 26.3 | | Dundalk 110 kV | 2.05 | 9.08 | 8.71 | 2.41 | 8.12 | 7.97 | 2.62 | 10.01 | 9.43 | 3.25 | 8.67 | 8.52 | | Dunfirth 110 kV | 3.56 | 3.72 | 3.59 | 3.83 | 4.25 | 4.20 | 4.91 | 4.10 | 3.85 | 5.46 | 4.59 | 4.48 | | Dungarvan 110 kV | 4.13 | 6.97 | 6.59 | 4.28 | 7.54 | 7.39 | 5.42 | 7.61 | 7.12 | 5.71 | 8.09 | 7.89 | | Dunmanway 110 kV | 3.82 | 9.53 | 8.58 | 4.46 | 8.89 | 8.59 | 4.64 | 10.42 | 9.38 | 5.67 | 9.45 | 9.14 | | Dunstown 220 kV | 5.09 | 22.20 | 19.93 | 2.49 | 24.75 | 23.98 | 5.87 | 29.77 | 28.13 | 4.68 | 30.37 | 29.92 | | Dunstown 400 kV | 4.59 | 13.00 | 11.75 | 2.55 | 15.56 | 15.07 | 5.52 | 17.90 | 17.08 | 4.59 | 19.61 | 19.32 | | Effernoge 110 kV | 3.86 | 9.88 | 9.46 | 3.77 | 10.61 | 10.45 | 5.84 | 10.74 | 10.24 | 5.69 | 11.45 | 11.25 | | Ennis 110 kV | 3.08 | 13.07 | 11.73 | 3.62 | 11.61 | 11.19 | 3.86 | 14.21 | 12.59 | 4.82 | 12.31 | 11.86 | | Fassaroe East 110 kV | 1.73 | 7.79 | 7.58 | 1.83 | 5.88 | 5.80 | 2.59 | 8.89 | 8.53 | 2.67 | 6.42 | 6.34 | | Fassaroe West 110 kV | 1.75 | 7.95 | 7.74 | 1.84 | 6.07 | 5.99 | 2.64 | 9.09 | 8.72 | 2.69 | 6.64 | 6.56 | | Ferry View 110 kV | 3.20 | 5.78 | 5.58 | 3.54 | 7.80 | 7.68 | 4.22 | 6.27 | 5.99 | 4.85 | 8.13 | 7.97 | | Finglas 220 kV | 5.19 | 23.35 | 20.10 | 2.80 | 31.00 | 29.07 | 8.45 | 41.05 | 36.65 | 5.81 | 50.75 | 48.38 | | Finglas A 110 kV | 3.06 | 13.41 | 12.49 | 2.94 | 14.53 | 14.14 | 7.00 | 16.21 | 14.88 | 6.60 | 16.83 | 16.26 | | Finglas B 110 kV | 3.11 | 13.13 | 12.37 | 2.95 | 16.69 | 16.48 | 7.56 | 17.02 | 15.79 | 7.14 | 21.22 | 20.72 | | Firlough 110 kV | 3.43 | 6.03 | 5.75 | 3.91 | 7.30 | 7.16 | 4.80 | 7.67 | 7.28 | 5.60 | 8.62 | 8.45 | | Flagford 110 kV | 3.79 | 13.83 | 13.01 | 4.10 | 16.25 | 15.75 | 5.15 | 15.72 | 14.64 | 5.82 | 17.96 | 17.46 | | Flagford 220 kV | 3.91 | 7.68 | 7.35 | 4.28 | 6.90 | 6.79 | 6.00 | 8.43 | 8.14 | 7.03 | 7.43 | 7.35 | | Fortunestown 110 kV | 1.79 | 7.51 | 7.12 | 1.90 | 6.31 | 6.17 | 2.83 | 9.52 | 8.74 | 3.05 | 7.38 | 7.19 | | Francis Street A 110 kV | 2.32 | 12.75 | 11.93 | 1.79 | 14.99 | 14.46 | 3.94 | 14.97 | 13.67 | 2.66 | 16.95 | 16.54 | | Francis Street B 110 kV | 2.24 | 12.58 | 11.81 | 1.82 | 15.26 | 14.72 | 4.04 | 14.68 | 13.67 | 2.90 | 17.28 | 16.99 | | Gallanstown 110 kV | 2.69 | 12.61 | 12.00 | 2.89 | 12.20 | 11.95 | 4.50 | 14.49 | 13.94 | 5.11 | 13.71 | 13.52 | | Galway 110 kV | 3.95 | 14.37 | 13.32 | 3.37 | 17.23 | 16.57 | 5.90 | 16.37 | 14.76 | 4.73 | 19.01 | 18.23 | | Garballagh 110 kV | 2.96 | 12.53 | 11.90 | 3.10 | 13.86 | 13.54 | 5.16 | 15.94 | 14.93 | 5.57 | 16.44 | 16.06 | | Garrintaggar 110 kV | 3.27 | 8.82 | 8.74 | 3.54 | 9.00 | 8.92 | 4.84 | 9.54 | 9.32 | 5.48 | 9.54 | 9.47 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Garrow 110 kV | 5.70 | 12.05 | 10.61 | 5.03 | 14.88 | 14.07 | 8.45 | 13.33 | 11.96 | 7.07 | 16.21 | 15.49 | | Garvagh 110 kV | 3.57 | 7.33 | 6.56 | 4.02 | 8.33 | 7.98 | 4.39 | 7.82 | 7.06 | 5.15 | 8.81 | 8.46 | | Gilra 110 kV | 2.39 | 6.85 | 6.55 | 2.84 | 5.03 | 4.98 | 2.89 | 7.46 | 7.16 | 3.60 | 5.38 | 5.32 | | Glanagow 220 kV | 6.51 | 13.65 | 12.68 | 6.35 | 17.58 | 17.01 | 12.59 | 20.96 | 18.96 | 11.72 | 25.12 | 24.0 | | Glanlee 110 kV | 3.60 | 8.03 | 6.87 | 3.52 | 8.72 | 8.21 | 4.35 | 8.70 | 7.56 | 4.29 | 9.35 | 8.87 | | Glansillagh 220 kV | 3.65 | 16.85 | 15.53 | 3.27 | 22.57 | 21.78 | 8.11 | 28.79 | 26.52 | 6.54 | 34.88 | 33.68 | | Glasmore A 110 kV | 1.95 | 7.11 | 6.84 | 2.05 | 4.79 | 4.72 | 2.98 | 8.08 | 7.58 | 3.19 | 5.21 | 5.12 | | Glen 110 kV | 3.56 | 7.31 | 6.55 | 4.02 | 8.32 | 7.96 | 4.37 | 7.80 | 7.04 | 5.14 | 8.79 | 8.45 | | Glenart 220 kV | 2.71 | 8.09 | 7.84 | 2.67 | 10.14 | 9.99 | 4.45 | 9.32 | 9.07 | 4.42 | 11.55 | 11.43 | | Glencloosagh 220 kV | 3.69 | 18.33 | 16.75 | 3.56 | 9.33 | 9.17 | 7.48 | 31.13 | 28.56 | 7.20 | 10.71 | 10.60 | | Glenlara A 110 kV | 2.65 | 3.33 | 3.15 | 3.49 | 2.80 | 2.76 | 3.07 | 3.52 | 3.32 | 4.23 | 2.93 | 2.88 | | Glenlara B 110 kV | 4.98 | 8.69 | 7.42 | 3.56 | 9.71 | 9.11 | 7.40 | 9.35 | 8.15 | 4.65 | 10.30 | 9.77 | | Glenree 110 kV | 3.32 | 5.89 | 5.62 | 3.64 | 6.70 | 6.58 | 4.52 | 7.31 | 6.95 | 4.95 | 7.72 | 7.58 | | Golagh 110 kV | 3.40 | 8.15 | 7.20 | 3.94 | 6.93 | 6.68 | 3.82 | 8.36 | 7.39 | 4.55 | 7.11 | 6.85 | | Gorman 110 kV | 2.96 | 15.91 | 15.00 | 3.07 | 18.96 | 18.44 | 4.57 | 19.27 | 18.00 | 4.97 | 22.27 | 21.68 | | Gorman 220 kV | 2.98 | 11.92 | 11.32 | 2.87 | 9.80 | 9.80 | 4.69 | 13.76 | 13.36 | 4.77 | 10.86 | 10.76 | | Gorman ESS 110 kV | 2.93 | 15.62 | 14.75 | 3.02 | 18.49 | 18.00 | 4.49 | 18.87 | 17.66 | 4.82 | 21.67 | 21.13 | | Gortawee 110 kV | 3.29 | 6.69 | 6.21 | 4.01 | 5.25 | 5.15 | 4.09 | 7.03 | 6.55 | 5.30 | 5.39 | 5.29 | | Grahomick 110 kV | 2.94 | 6.09 | 5.85 | 2.83 | 7.83 | 7.70 | 3.73 | 6.40 | 6.11 | 3.57 | 8.22 | 8.06 | | Grange 110 kV | 2.65 | 11.69 | 10.96 | 1.76 | 11.50 | 11.46 | 5.08 | 13.85 | 12.74 | 2.64 | 13.32 | 12.93 | | Grange Castle 110 kV | 2.39 | 12.69 | 11.64 | 2.19 | 16.36 | 15.76 | 5.49 | 18.05 | 16.12 | 4.60 | 22.27 | 21.22 | | Great Island 110 kV | 4.45 | 17.42 | 16.84 | 4.32 | 22.54 | 22.09 | 7.66 | 20.86 | 19.89 | 7.49 | 26.99 | 26.44 | | Great Island 220 kV | 4.15 | 11.21 | 10.87 | 4.07 | 13.38 | 13.27 | 8.02 | 15.95 | 15.43 | 8.14 | 18.57 | 18.31 | | Greenlink | 4.47 | 14.55 | 14.11 | 6.33 | 5.00 | 4.98 | 9.05 | 20.40 | 19.77 | 17.46 | 5.44 | 5.43 | | Griffinrath A 110 kV | 2.63 | 11.21 | 10.91 | 2.72 | 10.87 | 10.73 | 3.99 | 12.39 | 12.06 | 4.16 | 11.90 | 11.77 | | Griffinrath B 110 kV | 2.71 | 11.63 | 11.31 | 2.74 | 10.87 | 10.73 | 4.19 | 12.88 | 12.57 | 4.21 | 11.91 | 11.78 | | Harolds Cross 110 kV | 2.33 | 12.79 | 11.97 | 1.74 | 14.94 | 14.42 | 3.97 | 15.02 | 13.72 | 2.56 | 16.88 | 16.48 | | Harristown 110 kV | 3.49 | 6.65 | 6.46 | 3.72 | 7.78 | 7.68 | 4.89 | 7.50 | 7.16 | 5.37 | 8.57 | 8.42 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | Т | nree pha | se | Si | ngle pha | ise | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Heuston 110 kV | 2.27 | 12.84 | 12.03 | 1.92 | 15.75 | 15.35 | 4.15 | 15.01 | 13.96 | 3.19 | 17.89 | 17.57 | | Huntstown A 220 kV | 4.96 | 23.11 | 19.93 | 2.74 | 14.78 | 14.40 | 7.54 | 39.96 | 35.78 | 6.80 | 15.90 | 15.67 | | Huntstown B 220 kV | 4.89 | 23.04 | 19.88 | 2.08 | 15.62 | 15.22 | 7.51 | 39.95 | 35.78 | 3.70 | 18.21 | 17.90 | | lkerrin 110 kV | 4.13 | 6.01 | 5.45 | 4.52 | 7.10 | 6.82 | 5.48 | 6.46 | 5.86 | 6.16 | 7.47 | 7.18 | | Inchicore 220 kV | 4.29 | 21.71 | 19.02 | 2.17 | 28.57 | 27.02 | 6.31 | 35.95 | 32.26 | 3.86 | 43.85 | 41.93 | | Inchicore A 110 kV | 2.55 | 14.19 | 13.20 | 2.38 | 17.78 | 17.46 | 5.08 | 16.79 | 15.58 | 4.78 | 20.90 | 20.21 | | Inchicore B 110 kV | 2.57 | 13.73 | 12.57 | 2.41 | 17.99 | 17.49 | 6.20 | 19.40 | 17.31 | 5.62 | 24.77 | 23.67 | | Inniscarra 110 kV | 2.87 | 10.05 | 9.39 | 3.62 | 8.93 | 8.74 | 3.30 | 10.98 | 10.28 | 4.43 | 9.43 | 9.25 | | Irishtown 220 kV | 3.93 | 18.59 | 16.71 | 1.94 | 24.53 | 23.45 | 6.45 | 31.86 | 28.88 | 3.57 | 38.87 | 37.31 | | Kellis 110 kV | 3.11 | 10.68 | 10.28 | 3.34 | 12.94 | 12.69 | 4.52 | 11.73 | 11.15 | 5.07 | 14.03 | 13.75 | | Kellis 220 kV | 3.09 | 8.39 | 8.17 | 3.36 | 7.05 | 6.97 | 4.87 | 9.46 | 9.26 | 5.60 | 7.71 |
7.67 | | Kellystown 220 kV | 3.83 | 18.57 | 16.69 | 2.19 | 19.65 | 19.08 | 4.52 | 24.71 | 23.38 | 3.87 | 23.73 | 23.41 | | Kilbarry 110 kV | 4.18 | 16.59 | 15.32 | 4.60 | 15.88 | 15.44 | 5.24 | 19.49 | 17.67 | 6.07 | 17.80 | 17.25 | | Kilcarbery 110 kV | 2.74 | 20.89 | 18.25 | 2.29 | 28.08 | 26.55 | 5.27 | 26.49 | 23.48 | 4.72 | 34.98 | 33.09 | | Kildonan 110 kV | 2.43 | 15.49 | 14.47 | 2.09 | 13.95 | 13.81 | 4.01 | 18.37 | 17.30 | 3.21 | 15.97 | 15.65 | | Kilkenny 110 kV | 3.46 | 12.02 | 11.75 | 2.93 | 15.25 | 15.03 | 5.18 | 13.17 | 12.66 | 4.12 | 16.59 | 16.32 | | Kill Hill 110 kV | 3.85 | 6.80 | 6.24 | 4.59 | 5.77 | 5.62 | 4.85 | 7.26 | 6.66 | 6.05 | 6.05 | 5.90 | | Killinskiduf 110 kV | 2.96 | 12.36 | 11.88 | 2.89 | 16.97 | 16.71 | 4.93 | 14.04 | 13.46 | 4.66 | 19.24 | 18.83 | | Killonan 110 kV | 4.15 | 21.44 | 19.53 | 4.25 | 25.39 | 24.42 | 5.69 | 23.81 | 21.61 | 6.00 | 27.74 | 26.67 | | Killonan 220 kV | 4.05 | 11.34 | 10.76 | 4.47 | 10.52 | 10.35 | 5.94 | 12.87 | 12.35 | 7.39 | 11.53 | 11.38 | | Killoteran 110 kV | 3.95 | 13.75 | 13.20 | 3.91 | 14.40 | 14.17 | 5.85 | 15.97 | 15.12 | 5.81 | 16.36 | 16.05 | | Kilmahud 110 kV | 2.74 | 20.97 | 18.31 | 2.27 | 28.13 | 26.59 | 5.25 | 26.55 | 23.54 | 4.64 | 34.98 | 33.11 | | Kilmore 110 kV | 2.72 | 11.89 | 11.17 | 2.38 | 12.90 | 12.58 | 5.38 | 14.15 | 13.02 | 4.25 | 14.76 | 14.30 | | Kilnap 110 kV | 4.16 | 17.45 | 16.13 | 4.56 | 16.41 | 15.96 | 5.19 | 20.38 | 18.60 | 5.99 | 18.27 | 17.75 | | Kilpaddoge 110 kV | 4.56 | 19.33 | 17.86 | 4.24 | 24.42 | 23.54 | 8.16 | 22.05 | 20.55 | 7.93 | 27.43 | 26.63 | | Kilpaddoge 220 kV | 3.77 | 18.45 | 16.86 | 3.43 | 25.02 | 24.06 | 8.11 | 31.50 | 28.87 | 7.08 | 38.82 | 37.38 | | Kilpaddoge 400 kV | 2.80 | 9.91 | 9.21 | 2.39 | 12.38 | 12.05 | 4.24 | 15.03 | 14.21 | 3.94 | 16.79 | 16.43 | | Kilteel 110 kV | 2.38 | 8.56 | 8.34 | 2.69 | 8.56 | 8.45 | 3.36 | 9.61 | 9.18 | 4.02 | 9.29 | 9.15 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | ise | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Kilvinoge 110 kV | 3.59 | 8.50 | 8.41 | 3.86 | 8.92 | 8.86 | 5.13 | 9.22 | 9.06 | 5.75 | 9.42 | 9.37 | | Kinnegad 110 kV | 3.44 | 8.19 | 7.93 | 3.54 | 9.05 | 8.94 | 4.84 | 9.38 | 8.95 | 5.07 | 10.05 | 9.88 | | Kishoge 110 kV | 2.70 | 20.51 | 17.96 | 2.24 | 26.73 | 25.36 | 5.13 | 25.84 | 22.98 | 4.46 | 32.91 | 31.3 | | Knockacummer 110 kV | 4.74 | 7.57 | 6.43 | 4.06 | 7.25 | 6.84 | 6.75 | 8.08 | 6.98 | 5.49 | 7.52 | 7.17 | | Knockalough 110 kV | 3.24 | 5.13 | 4.97 | 3.03 | 6.81 | 6.71 | 4.29 | 5.54 | 5.33 | 3.96 | 7.10 | 6.98 | | Knockanure 220 kV | 3.91 | 15.67 | 14.40 | 2.89 | 20.28 | 19.55 | 7.92 | 22.30 | 20.83 | 4.52 | 26.71 | 25.95 | | Knockanure A 110 kV | 5.03 | 13.06 | 11.90 | 4.47 | 14.52 | 13.92 | 11.28 | 14.55 | 13.34 | 8.91 | 15.58 | 15.08 | | Knockanure B 110 kV | 2.87 | 9.15 | 8.61 | 3.14 | 7.39 | 7.26 | 3.83 | 9.78 | 9.25 | 4.36 | 7.72 | 7.59 | | Knockdrin 110 kV | 3.56 | 9.72 | 9.53 | 3.59 | 12.93 | 12.77 | 5.77 | 12.40 | 11.81 | 5.79 | 15.88 | 15.5 | | Knockearagh 110 kV | 3.54 | 5.94 | 5.58 | 4.26 | 4.84 | 4.76 | 4.64 | 6.41 | 5.97 | 5.99 | 5.13 | 5.03 | | Knocknamona 110 kV | 4.07 | 6.73 | 6.33 | 3.98 | 10.04 | 9.73 | 5.24 | 7.32 | 6.84 | 5.10 | 10.87 | 10.5 | | Knockraha 380 kV | 8.31 | 5.33 | 5.14 | 9.05 | 5.36 | 5.28 | 15.83 | 6.13 | 5.91 | 19.47 | 6.06 | 5.99 | | Knockraha A 110 kV | 5.28 | 21.64 | 19.94 | 5.39 | 23.37 | 22.58 | 7.34 | 26.00 | 23.62 | 7.74 | 27.00 | 26.08 | | Knockraha A 220 kV | 6.10 | 15.99 | 14.78 | 5.84 | 18.74 | 18.15 | 9.78 | 21.72 | 19.92 | 9.30 | 24.28 | 23.4 | | Knockraha B 110 kV | 5.28 | 21.64 | 19.94 | 5.39 | 23.37 | 22.58 | 7.34 | 26.00 | 23.62 | 7.74 | 27.00 | 26.08 | | Knockraha B 220 kV | 6.10 | 15.99 | 14.78 | 5.84 | 18.74 | 18.15 | 9.78 | 21.72 | 19.92 | 9.30 | 24.28 | 23.4 | | Knockranny 110 kV | 4.24 | 8.92 | 8.03 | 3.57 | 11.20 | 10.70 | 6.25 | 9.65 | 8.68 | 4.95 | 11.92 | 11.3 | | Knockranny A 110 kV | 3.18 | 5.94 | 5.73 | 3.52 | 8.01 | 7.87 | 4.17 | 6.45 | 6.16 | 4.82 | 8.34 | 8.17 | | Knockranny B 110 kV | 4.24 | 8.92 | 8.03 | 3.57 | 11.20 | 10.70 | 6.25 | 9.65 | 8.68 | 4.95 | 11.92 | 11.39 | | Knockumber 110 kV | 2.13 | 8.65 | 8.41 | 2.39 | 6.50 | 6.42 | 2.84 | 9.88 | 9.42 | 3.38 | 7.09 | 7.01 | | Laghtanvack 110 kV | 3.98 | 5.90 | 5.65 | 4.45 | 9.11 | 8.90 | 7.45 | 9.61 | 8.81 | 8.06 | 12.66 | 12.1 | | Lanesboro 110 kV | 3.35 | 10.22 | 9.84 | 3.75 | 10.33 | 10.19 | 4.54 | 11.65 | 11.07 | 5.36 | 11.24 | 11.06 | | Lenalea 110 kV | 3.45 | 6.75 | 6.13 | 4.14 | 7.28 | 7.03 | 3.92 | 7.04 | 6.36 | 4.85 | 7.50 | 7.23 | | Letterkenny110 kV | 3.69 | 10.27 | 8.85 | 4.26 | 9.59 | 9.12 | 4.22 | 10.76 | 9.20 | 5.02 | 9.91 | 9.42 | | Liberty A 110 kV | 3.92 | 16.79 | 15.52 | 3.47 | 18.12 | 17.56 | 4.81 | 19.81 | 17.98 | 4.18 | 20.52 | 19.8 | | Liberty B 110 kV | 3.87 | 16.78 | 15.51 | 3.39 | 18.08 | 17.52 | 4.73 | 19.78 | 17.96 | 4.06 | 20.45 | 19.7 | | Lickny 110 kV | 2.46 | 5.22 | 5.13 | 2.31 | 6.03 | 5.99 | 3.12 | 5.48 | 5.34 | 2.90 | 6.28 | 6.22 | | Limerick 110 kV | 3.40 | 17.95 | 16.49 | 3.63 | 16.20 | 15.70 | 4.33 | 19.82 | 17.98 | 4.82 | 17.41 | 16.9 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Lisdrum 110 kV | 2.08 | 5.72 | 5.48 | 2.30 | 8.12 | 7.96 | 2.55 | 6.11 | 5.80 | 2.89 | 8.60 | 8.39 | | Lisdrumdoagh 110 kV | 2.08 | 5.70 | 5.47 | 2.31 | 8.14 | 7.98 | 2.55 | 6.09 | 5.79 | 2.91 | 8.62 | 8.41 | | Lisheen 110 kV | 3.17 | 5.17 | 4.34 | 3.59 | 8.23 | 7.46 | 3.73 | 5.47 | 4.61 | 4.29 | 8.64 | 7.86 | | Lislea 110 kV | 2.25 | 6.24 | 5.89 | 2.64 | 4.77 | 4.70 | 2.75 | 6.60 | 6.23 | 3.36 | 4.99 | 4.92 | | Lodgewood 110 kV | 4.01 | 9.84 | 9.46 | 3.97 | 11.69 | 11.49 | 6.35 | 10.74 | 10.29 | 6.30 | 12.74 | 12.5 | | Lodgewood 220 kV | 3.28 | 7.88 | 7.68 | 3.37 | 7.42 | 7.33 | 5.34 | 9.17 | 8.94 | 5.53 | 8.39 | 8.32 | | Longpoint 220 kV | 6.58 | 14.09 | 13.05 | 6.15 | 17.89 | 17.29 | 12.27 | 21.27 | 19.23 | 10.32 | 25.06 | 24.0 | | Loughtown 220 kV | 4.11 | 11.14 | 10.80 | 3.96 | 13.20 | 13.09 | 7.78 | 15.80 | 15.29 | 7.51 | 18.24 | 17.9 | | Louth 220 kV | 3.54 | 17.65 | 16.23 | 3.01 | 20.31 | 19.71 | 5.57 | 21.30 | 20.27 | 5.03 | 23.05 | 22.6 | | Louth A 110 kV | 3.27 | 14.44 | 13.59 | 3.37 | 17.91 | 17.45 | 4.95 | 15.85 | 15.05 | 5.27 | 19.60 | 19.1 | | Louth A 275 kV | 3.96 | 10.33 | 9.70 | 3.35 | 11.99 | 11.85 | 6.74 | 12.47 | 12.05 | 5.64 | 14.03 | 13.8 | | Louth B 110 kV | 2.95 | 14.81 | 14.02 | 3.04 | 17.98 | 17.51 | 4.32 | 16.36 | 15.56 | 4.56 | 19.77 | 19.4 | | Louth B 275 kV | 3.87 | 10.34 | 9.70 | 3.18 | 12.24 | 12.08 | 6.47 | 12.48 | 12.06 | 5.14 | 14.44 | 14.2 | | Lumcloon 110 kV | 3.50 | 8.42 | 8.16 | 3.79 | 9.92 | 9.79 | 5.22 | 9.64 | 9.37 | 5.92 | 10.90 | 10.7 | | Lysaghtstown 110 kV | 3.14 | 12.29 | 11.65 | 3.45 | 14.24 | 13.92 | 3.64 | 13.78 | 12.99 | 4.14 | 15.52 | 15.1 | | Macetown 110 kV | 2.49 | 17.35 | 16.04 | 2.33 | 17.26 | 17.22 | 4.22 | 20.93 | 19.52 | 3.84 | 20.16 | 19.6 | | Macroom 110 kV | 4.71 | 16.89 | 15.14 | 4.58 | 17.11 | 16.42 | 6.14 | 18.81 | 16.92 | 6.02 | 18.66 | 17.9 | | Mallow 110 kV | 3.83 | 6.95 | 6.63 | 4.68 | 6.04 | 5.96 | 4.76 | 7.56 | 7.15 | 6.18 | 6.43 | 6.32 | | Marina 110 kV | 4.44 | 18.77 | 17.19 | 4.80 | 20.37 | 19.66 | 5.68 | 22.49 | 20.17 | 6.45 | 23.32 | 22.4 | | Maynooth A 110 kV | 3.10 | 14.37 | 13.92 | 3.12 | 17.16 | 17.09 | 5.23 | 16.26 | 15.67 | 5.29 | 19.27 | 18.9 | | Maynooth A 220 kV | 3.95 | 21.05 | 18.76 | 1.97 | 21.57 | 20.91 | 4.44 | 29.66 | 27.79 | 3.26 | 26.97 | 26.5 | | Maynooth B 110 kV | 2.54 | 16.42 | 15.47 | 2.69 | 15.31 | 15.32 | 4.26 | 18.60 | 17.87 | 4.70 | 16.99 | 16.7 | | Maynooth B 220 kV | 3.77 | 19.52 | 17.62 | 2.03 | 19.12 | 18.67 | 4.08 | 25.77 | 24.27 | 3.22 | 22.87 | 22.4 | | McDermott 110 kV | 2.79 | 11.96 | 11.32 | 2.02 | 14.07 | 13.74 | 5.76 | 15.28 | 14.13 | 3.22 | 17.38 | 16.8 | | Meath Hill 110 kV | 2.26 | 9.63 | 9.30 | 2.63 | 9.51 | 9.33 | 2.98 | 10.73 | 10.20 | 3.69 | 10.22 | 10.0 | | Meentycat 110 kV | 3.18 | 7.02 | 6.26 | 4.08 | 5.82 | 5.63 | 3.55 | 7.21 | 6.43 | 4.72 | 5.83 | 5.6 | | Metro Airport 110 kV | 2.67 | 12.10 | 10.98 | 2.32 | 15.66 | 15.19 | 5.31 | 13.65 | 12.62 | 4.22 | 17.57 | 17.0 | | Metro North 110 kV | 2.50 | 11.76 | 10.69 | 2.17 | 14.91 | 14.27 | 4.65 | 13.24 | 12.27 | 3.73 | 16.68 | 16.1 | | | | | Sum | mer | | | | | Wir | iter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Midleton 110 kV | 2.95 | 10.79 | 10.24 | 3.38 | 11.73 | 11.50 | 3.39 | 12.04 | 11.37 | 4.06 | 12.71 | 12.4 | | Milltown A 110 kV | 2.49 | 13.88 | 12.92 | 1.97 | 16.55 | 15.94 | 4.50 | 16.45 | 14.95 | 3.09 | 19.14 | 18.4 | | Milltown B 110 kV | 2.06 | 11.31 | 10.66 | 1.50 | 13.44 | 13.00 | 3.47 | 13.08 | 12.23 | 2.19 | 15.08 | 14.8 | | Misery Hill 110 kV | 2.44 | 13.53 | 12.61 | 2.04 | 16.30 | 15.69 | 4.32 | 15.99 | 14.55 | 3.26 | 18.58 | 18.09 | | Monatooreen 110 kV | 4.05 | 20.11 | 18.63 | 4.07 | 21.61 | 20.94 | 4.99 | 23.88 | 21.85 | 5.14 | 24.75 | 23.9 | | Moneteen 110 kV | 3.50 | 11.99 | 11.16 | 3.81 | 8.62 | 8.47 | 4.50 | 12.85 | 11.99 | 5.11 | 9.09 | 8.94 | | Moneypoint 110 kV | 4.37 | 9.92 | 9.59 | 4.58 | 9.76 | 9.59 | 8.40 | 10.73 | 10.34 | 9.09 | 10.29 | 10.1 | | Moneypoint 220 kV | 3.78 |
18.18 | 16.64 | 3.35 | 24.62 | 23.70 | 8.01 | 30.35 | 27.95 | 6.68 | 37.51 | 36.19 | | Moneypoint G1 400 kV | 3.11 | 10.05 | 9.34 | 2.77 | 13.37 | 12.99 | 5.43 | 15.35 | 14.49 | 5.46 | 18.70 | 18.3 | | Moneypoint G2 400 kV | 3.11 | 10.05 | 9.34 | 2.77 | 13.37 | 12.99 | 5.43 | 15.35 | 14.49 | 5.46 | 18.70 | 18.3 | | Moneypoint G3 400 kV | 3.11 | 10.05 | 9.34 | 2.77 | 13.37 | 12.99 | 5.43 | 15.35 | 14.49 | 5.46 | 18.70 | 18.3 | | Monread 110 kV | 2.33 | 8.50 | 8.30 | 2.60 | 8.32 | 8.21 | 3.22 | 9.55 | 9.11 | 3.76 | 9.04 | 8.91 | | Mooretown 220 kV | 5.07 | 23.27 | 20.05 | 2.70 | 30.58 | 28.70 | 8.17 | 40.47 | 36.20 | 5.33 | 49.43 | 47.19 | | Mount Lucas 110 kV | 3.27 | 8.06 | 7.76 | 3.23 | 8.77 | 8.65 | 4.51 | 9.60 | 9.21 | 4.50 | 9.98 | 9.83 | | Moy 110 kV | 3.64 | 6.76 | 6.39 | 3.87 | 8.26 | 8.07 | 6.04 | 10.24 | 9.47 | 6.07 | 10.89 | 10.5 | | Mulgeeth 110 kV | 3.60 | 4.22 | 4.08 | 3.86 | 5.18 | 5.11 | 4.99 | 4.65 | 4.39 | 5.53 | 5.62 | 5.48 | | Mullagharlin 110 kV | 2.10 | 9.24 | 8.92 | 2.46 | 9.26 | 9.08 | 2.69 | 10.13 | 9.64 | 3.34 | 9.86 | 9.70 | | Mullingar 110 kV | 3.08 | 8.11 | 7.88 | 3.12 | 9.22 | 9.12 | 4.17 | 8.79 | 8.41 | 4.30 | 9.81 | 9.65 | | Mulreavy 110 kV | 4.19 | 9.17 | 7.82 | 4.68 | 9.88 | 9.30 | 4.83 | 9.36 | 8.02 | 5.52 | 9.99 | 9.42 | | Mungret A 110 kV | 3.33 | 11.31 | 10.56 | 3.69 | 7.97 | 7.83 | 4.24 | 12.10 | 11.32 | 4.90 | 8.39 | 8.26 | | Mungret B 110 kV | 3.33 | 11.34 | 10.58 | 3.69 | 7.98 | 7.84 | 4.24 | 12.12 | 11.35 | 4.89 | 8.40 | 8.27 | | Nangor 110 kV | 2.33 | 12.38 | 11.38 | 2.07 | 15.84 | 15.11 | 5.14 | 17.47 | 15.65 | 3.98 | 21.15 | 20.38 | | Navan 110 kV | 2.79 | 13.85 | 13.07 | 2.92 | 14.11 | 13.77 | 4.13 | 16.46 | 15.42 | 4.51 | 16.11 | 15.7 | | Nenagh 110 kV | 2.50 | 3.98 | 3.78 | 3.15 | 2.36 | 2.34 | 3.00 | 4.24 | 4.02 | 3.98 | 2.47 | 2.44 | | Newbridge 110 kV | 2.60 | 11.32 | 10.85 | 2.79 | 10.62 | 10.44 | 3.71 | 13.14 | 12.38 | 4.14 | 11.85 | 11.6 | | Newbury 110 kV | 2.82 | 12.57 | 11.38 | 2.51 | 16.59 | 16.05 | 5.88 | 14.25 | 13.15 | 4.92 | 18.67 | 18.2 | | Nisa Belcamp 220 kV | 3.63 | 13.61 | 12.48 | 2.02 | 17.42 | 16.89 | 6.39 | 18.45 | 17.52 | 3.11 | 22.68 | 22.29 | | North Quays 110 kV | 2.59 | 14.18 | 13.18 | 1.92 | 16.58 | 15.96 | 4.82 | 16.85 | 15.29 | 2.96 | 19.15 | 18.4 | | | | | Sum | mer | | | | | Wir | nter | | | |-----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | North Wall 220 kV | 4.72 | 21.76 | 18.94 | 2.53 | 27.98 | 26.44 | 7.29 | 37.69 | 33.97 | 4.76 | 44.49 | 42.68 | | Oaklands 110 kV | 3.02 | 10.11 | 9.85 | 3.03 | 11.20 | 11.03 | 4.79 | 11.20 | 10.90 | 4.72 | 12.15 | 11.99 | | Oldbridge 110 kV | 2.82 | 14.46 | 13.47 | 2.93 | 16.70 | 16.16 | 5.04 | 19.52 | 17.81 | 5.39 | 20.91 | 20.21 | | Oldcourt A 110 kV | 2.90 | 10.36 | 9.87 | 3.32 | 8.12 | 8.02 | 3.37 | 11.83 | 11.22 | 4.05 | 8.90 | 8.78 | | Oldcourt B 110 kV | 2.92 | 10.43 | 9.93 | 3.33 | 8.21 | 8.10 | 3.40 | 11.91 | 11.30 | 4.07 | 9.00 | 8.88 | | Oldstreet 220 kV | 3.23 | 9.14 | 8.84 | 3.12 | 10.51 | 10.54 | 6.97 | 13.25 | 12.68 | 6.42 | 13.99 | 13.74 | | Oldstreet 400 kV | 2.85 | 8.26 | 7.79 | 2.25 | 8.36 | 8.22 | 4.06 | 10.96 | 10.63 | 3.67 | 9.83 | 9.72 | | Oriel 220 kV | 2.98 | 12.87 | 12.16 | 2.40 | 13.30 | 13.19 | 4.48 | 14.89 | 14.46 | 3.67 | 14.70 | 14.54 | | Oriel Offshore 220 kV | 3.00 | 8.66 | 8.35 | 2.33 | 9.77 | 9.78 | 4.44 | 9.54 | 9.41 | 3.50 | 10.62 | 10.53 | | Oriel onshore 220 kV | 3.10 | 9.35 | 9.00 | 2.37 | 10.39 | 10.40 | 4.72 | 10.42 | 10.23 | 3.59 | 11.37 | 11.27 | | Oughtragh 110 kV | 2.57 | 4.85 | 4.55 | 3.09 | 3.06 | 3.02 | 3.19 | 5.15 | 4.79 | 4.04 | 3.16 | 3.11 | | Pelletstown 110 kV | 2.71 | 11.31 | 10.73 | 2.25 | 12.12 | 11.94 | 5.38 | 14.24 | 13.25 | 3.87 | 14.73 | 14.33 | | Philipstown 110 kV | 3.68 | 10.59 | 10.04 | 3.88 | 12.06 | 11.75 | 6.34 | 13.96 | 12.98 | 6.82 | 14.58 | 14.20 | | Platin 110 kV | 2.86 | 14.22 | 13.31 | 2.95 | 15.98 | 15.51 | 5.65 | 20.48 | 18.57 | 5.76 | 20.66 | 19.96 | | Pollahoney 110 kV | 3.04 | 11.47 | 11.10 | 3.05 | 15.59 | 15.37 | 5.11 | 13.02 | 12.52 | 5.06 | 17.49 | 17.15 | | Pollaphuca 110 kV | 2.12 | 3.09 | 3.00 | 2.73 | 2.62 | 2.60 | 2.68 | 3.24 | 3.13 | 3.68 | 2.64 | 2.61 | | Poolbeg A 110 kV | 2.74 | 14.83 | 13.76 | 2.56 | 18.35 | 17.82 | 5.34 | 17.71 | 16.07 | 4.91 | 21.45 | 20.60 | | Poolbeg A 220 kV | 4.72 | 21.57 | 18.80 | 2.40 | 27.12 | 25.68 | 7.24 | 37.29 | 33.65 | 4.23 | 42.57 | 40.92 | | Poolbeg B 110 kV | 2.73 | 14.81 | 13.75 | 2.56 | 18.33 | 17.80 | 5.34 | 17.69 | 16.05 | 4.91 | 21.43 | 20.58 | | Poolbeg B 220 kV | 4.35 | 21.11 | 18.58 | 2.18 | 27.73 | 26.28 | 6.23 | 34.30 | 30.96 | 3.86 | 41.81 | 40.10 | | Poppintree 110 kV | 2.75 | 12.26 | 11.50 | 2.38 | 13.27 | 12.94 | 5.52 | 14.65 | 13.46 | 4.29 | 15.23 | 14.74 | | Portan 260 kV | 4.36 | 15.74 | 14.49 | 4.47 | 0.00 | 0.00 | 7.39 | 20.81 | 20.11 | 10.93 | 3.54 | 3.54 | | Portan 400 kV | 4.95 | 13.92 | 12.43 | 3.25 | 10.22 | 10.00 | 5.95 | 20.78 | 19.70 | 8.00 | 12.91 | 12.81 | | Portlaoise 110 kV | 3.27 | 14.11 | 13.64 | 3.44 | 12.38 | 12.22 | 4.88 | 15.78 | 15.18 | 5.32 | 13.41 | 13.26 | | Pottery 110 kV | 2.28 | 10.99 | 10.53 | 1.72 | 10.93 | 10.86 | 4.18 | 12.98 | 12.27 | 2.59 | 12.48 | 12.33 | | Prospect 220 kV | 3.54 | 15.08 | 14.06 | 2.86 | 16.72 | 16.31 | 6.76 | 22.54 | 21.25 | 4.69 | 21.63 | 21.20 | | Raffeen 220 kV | 6.37 | 13.58 | 12.62 | 5.86 | 16.88 | 16.31 | 11.53 | 19.75 | 18.00 | 9.49 | 22.95 | 22.08 | | Raffeen A 110 kV | 3.96 | 14.48 | 13.55 | 4.33 | 16.90 | 16.44 | 5.05 | 17.17 | 15.93 | 5.77 | 19.48 | 18.92 | | | | | Sum | mer | | | | | Wir | iter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | TI | nree pha | se | Si | ngle pha | se | TI | ree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Raffeen B 110 kV | 5.48 | 14.64 | 13.68 | 5.69 | 17.70 | 17.19 | 7.93 | 17.07 | 15.84 | 8.44 | 20.09 | 19.49 | | Rappareehill 110 kV | 3.42 | 7.80 | 7.58 | 3.88 | 8.44 | 8.36 | 4.64 | 8.63 | 8.32 | 5.56 | 9.08 | 8.97 | | Rathcobican 220 kV | 3.37 | 9.38 | 9.07 | 3.33 | 12.31 | 12.19 | 6.97 | 11.85 | 11.73 | 7.08 | 15.00 | 14.89 | | Rathcobican 380 kV | 3.14 | 9.21 | 8.59 | 2.55 | 10.81 | 10.59 | 4.77 | 12.37 | 12.02 | 4.55 | 13.31 | 13.23 | | Rathkeale 110 kV | 2.40 | 7.82 | 7.31 | 3.02 | 5.89 | 5.79 | 3.04 | 8.49 | 7.89 | 4.05 | 6.19 | 6.08 | | Rathnaskillo 110 kV | 4.03 | 7.96 | 7.65 | 4.43 | 8.36 | 8.24 | 5.42 | 8.67 | 8.31 | 6.23 | 8.87 | 8.74 | | Ratrussan 110 kV | 3.03 | 8.27 | 7.15 | 3.52 | 8.82 | 8.34 | 3.92 | 8.75 | 7.66 | 4.79 | 9.04 | 8.62 | | Reamore 110 kV | 2.57 | 9.49 | 8.67 | 2.68 | 8.12 | 7.90 | 3.20 | 10.13 | 9.24 | 3.41 | 8.40 | 8.17 | | Richmond A 110 kV | 2.60 | 6.91 | 6.71 | 3.19 | 6.19 | 6.13 | 3.26 | 7.72 | 7.37 | 4.27 | 6.67 | 6.58 | | Richmond B 110 kV | 2.60 | 6.91 | 6.71 | 3.19 | 6.19 | 6.13 | 3.26 | 7.72 | 7.37 | 4.27 | 6.67 | 6.58 | | Rinawade 110 kV | 2.38 | 9.55 | 9.18 | 2.54 | 6.79 | 6.71 | 3.81 | 10.29 | 10.00 | 4.10 | 7.29 | 7.24 | | Ringaskiddy 110 kV | 4.16 | 12.04 | 11.39 | 4.25 | 11.77 | 11.55 | 5.29 | 13.80 | 12.98 | 5.49 | 13.07 | 12.81 | | Ringsend 110 kV | 2.75 | 14.95 | 13.84 | 2.58 | 18.51 | 17.95 | 5.37 | 17.91 | 16.17 | 4.99 | 21.68 | 20.78 | | Rossiple 110 kV | 3.95 | 9.17 | 8.85 | 4.07 | 9.67 | 9.55 | 5.57 | 9.97 | 9.59 | 5.88 | 10.25 | 10.11 | | Ryebrook 110 kV | 2.18 | 14.35 | 13.30 | 2.36 | 12.43 | 12.07 | 3.32 | 16.09 | 15.20 | 3.77 | 13.53 | 13.28 | | Salthill 110 kV | 3.51 | 13.72 | 12.77 | 2.77 | 16.15 | 15.57 | 4.92 | 15.54 | 14.08 | 3.62 | 17.72 | 17.04 | | Screeb 110 kV | 2.79 | 2.70 | 2.63 | 3.28 | 1.87 | 1.86 | 3.57 | 2.95 | 2.82 | 4.40 | 1.98 | 1.96 | | Seal Rock A 110 kV | 4.61 | 10.55 | 9.56 | 4.71 | 12.21 | 11.73 | 6.33 | 10.94 | 10.00 | 6.59 | 12.51 | 12.08 | | Seal Rock B 110 kV | 4.62 | 10.56 | 9.56 | 4.72 | 12.22 | 11.73 | 6.35 | 10.95 | 10.01 | 6.60 | 12.52 | 12.08 | | Shankill 110 kV | 3.01 | 9.48 | 8.48 | 3.41 | 8.28 | 7.99 | 3.85 | 10.17 | 9.12 | 4.58 | 8.70 | 8.42 | | Shannonbridge 110 kV | 3.34 | 14.48 | 13.76 | 3.53 | 18.81 | 18.31 | 6.17 | 21.07 | 19.70 | 6.81 | 25.87 | 25.15 | | Shannonbridge 220 kV | 3.30 | 7.35 | 7.15 | 3.60 | 8.27 | 8.15 | 5.89 | 8.88 | 8.72 | 6.87 | 9.61 | 9.55 | | Shanonagh 110 kV | 3.14 | 7.63 | 7.43 | 3.36 | 8.63 | 8.54 | 4.27 | 8.22 | 7.91 | 4.72 | 9.11 | 8.99 | | Shellybanks A 220 kV | 4.60 | 21.41 | 18.68 | 2.22 | 25.10 | 23.88 | 6.87 | 36.93 | 33.34 | 3.74 | 37.95 | 36.65 | | Shellybanks B 220 kV | 3.82 | 17.81 | 16.08 | 1.78 | 23.02 | 22.12 | 6.30 | 30.23 | 27.51 | 3.19 | 35.83 | 34.52 | | Shelton Abbey 110 kV | 3.00 | 11.15 | 10.80 | 2.98 | 14.48 | 14.39 | 5.00 | 12.55 | 12.14 | 4.84 | 16.17 | 15.88 | | Singland 110 kV | 4.01 | 17.43 | 16.14 | 4.19 | 16.90 | 16.39 | 5.37 | 19.13 | 17.53 | 5.82 | 18.06 | 17.5 | | SKERD ROCK 220 kV | 3.28 | 9.53 | 9.11 | 2.07 | 12.72 | 12.60 | 4.51 | 11.78 | 11.39 | 2.57 | 15.44 | 15.23 | | | | | Sum | mer | | | | | Wir | nter | | | |----------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | nree pha | se | Si | ngle pha | se | TI | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Sliabh Bawn 110 kV | 3.48 | 9.32 | 8.98 | 3.96 | 9.11 | 9.00 | 4.69 | 10.42 | 10.01 | 5.66 | 9.58 | 9.46 | | Slievecallan 110 kV | 4.57 | 7.00 | 6.06 | 5.29 | 6.91 | 6.57 | 6.35 | 7.34 | 6.39 | 7.89 | 7.08 | 6.76 | | Sligo 110 kV | 2.89 | 10.02 | 9.22 | 3.23 | 9.06 | 8.83 | 3.44 | 11.13 | 10.22 | 4.00 | 9.71 | 9.47 | | Snugborough 110 kV | 2.92 | 22.16 | 19.95 | 2.62 |
28.30 | 27.09 | 5.43 | 27.92 | 25.44 | 5.03 | 34.11 | 32.96 | | Somerset 110 kV | 2.12 | 7.32 | 7.04 | 2.60 | 4.84 | 4.80 | 2.62 | 8.58 | 8.27 | 3.47 | 5.30 | 5.26 | | Sorne Hill 110 kV | 3.07 | 3.75 | 3.15 | 3.81 | 3.51 | 3.32 | 3.37 | 3.87 | 3.25 | 4.30 | 3.62 | 3.41 | | Southbank 220 kV | 4.66 | 21.49 | 18.74 | 2.72 | 9.75 | 9.71 | 7.08 | 37.13 | 33.52 | 6.35 | 11.40 | 11.28 | | Srahnakilly 110 kV | 4.02 | 5.71 | 5.48 | 4.54 | 8.81 | 8.62 | 7.06 | 8.95 | 8.27 | 7.84 | 11.87 | 11.45 | | Srananagh 110 kV | 3.49 | 11.88 | 10.82 | 3.84 | 12.45 | 12.03 | 4.30 | 13.05 | 11.91 | 4.92 | 13.41 | 12.98 | | Srananagh 220 kV | 4.14 | 4.81 | 4.62 | 4.63 | 3.78 | 3.73 | 6.04 | 5.21 | 5.03 | 7.22 | 4.00 | 3.96 | | Stevenstown 110 kV | 1.90 | 5.86 | 5.70 | 2.02 | 3.76 | 3.72 | 2.88 | 6.48 | 6.13 | 3.11 | 4.03 | 3.98 | | Stonestown 110 kV | 3.50 | 8.98 | 8.65 | 3.78 | 10.16 | 10.02 | 5.30 | 10.47 | 10.13 | 5.96 | 11.42 | 11.28 | | Stratford 110 kV | 2.10 | 4.53 | 4.39 | 2.53 | 3.34 | 3.31 | 2.67 | 4.88 | 4.66 | 3.39 | 3.49 | 3.45 | | Taney 110 kV | 1.99 | 9.50 | 9.15 | 1.34 | 9.17 | 9.22 | 3.29 | 11.04 | 10.51 | 1.84 | 10.31 | 10.13 | | Tarbert 110 kV | 4.45 | 7.81 | 7.73 | 4.60 | 5.79 | 5.75 | 11.35 | 8.56 | 8.43 | 11.67 | 6.05 | 6.02 | | Tarbert 220 kV | 3.63 | 17.14 | 15.78 | 3.29 | 22.24 | 21.47 | 7.84 | 29.34 | 27.00 | 6.73 | 33.62 | 32.51 | | Tawnaghmore A 110 kV | 2.88 | 4.90 | 4.71 | 3.40 | 4.92 | 4.86 | 4.12 | 7.06 | 6.69 | 5.02 | 6.05 | 5.96 | | Tawnaghmore B 110 kV | 2.91 | 4.86 | 4.67 | 3.40 | 5.52 | 5.44 | 4.68 | 7.42 | 6.94 | 5.61 | 7.18 | 7.02 | | Thornsberry 110 kV | 3.25 | 7.31 | 7.09 | 3.54 | 6.84 | 6.77 | 4.62 | 8.75 | 8.37 | 5.27 | 7.81 | 7.71 | | Thurles 110 kV | 3.88 | 6.54 | 5.64 | 4.42 | 7.68 | 7.22 | 4.90 | 7.04 | 6.06 | 5.74 | 8.13 | 7.65 | | Tievebrack 110 kV | 3.63 | 4.93 | 4.57 | 4.50 | 3.42 | 3.36 | 4.14 | 5.16 | 4.74 | 5.33 | 3.54 | 3.47 | | Timahoe 110 kV | 3.05 | 8.56 | 8.45 | 2.73 | 8.53 | 8.46 | 4.59 | 9.55 | 9.33 | 3.89 | 9.25 | 9.18 | | Timoney 110 kV | 4.15 | 6.06 | 5.51 | 4.57 | 7.34 | 7.05 | 5.53 | 6.51 | 5.92 | 6.27 | 7.72 | 7.42 | | Tipperary 110 kV | 3.90 | 7.87 | 7.22 | 4.33 | 4.76 | 4.67 | 4.95 | 8.45 | 7.73 | 5.68 | 4.98 | 4.88 | | Tonroe 110 kV | 3.63 | 6.32 | 5.95 | 2.80 | 6.89 | 6.74 | 4.95 | 7.81 | 7.33 | 3.42 | 7.94 | 7.77 | | Trabeg 110 kV | 4.38 | 18.67 | 17.11 | 4.74 | 20.28 | 19.58 | 5.61 | 22.38 | 20.09 | 6.36 | 23.24 | 22.34 | | Tralee 110 kV | 3.21 | 10.15 | 9.24 | 3.44 | 8.72 | 8.47 | 4.25 | 10.89 | 9.91 | 4.72 | 9.04 | 8.79 | | Trien A 110 kV | 2.83 | 8.65 | 8.11 | 3.11 | 7.68 | 7.52 | 3.73 | 9.21 | 8.65 | 4.26 | 7.97 | 7.81 | | | | | Sum | mer | | | | | Wir | nter | | | |---------------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------| | | Т | hree pha | se | Si | ngle pha | se | T | nree pha | se | Si | ngle pha | se | | Station | X/R
ratio | lk"
[kA] | lk'
[kA] | | Trien B 110 kV | 4.32 | 10.32 | 9.55 | 3.78 | 7.90 | 7.70 | 7.97 | 11.21 | 10.42 | 6.22 | 8.22 | 8.06 | | Trillick 110 kV | 3.11 | 4.08 | 3.42 | 3.86 | 3.51 | 3.33 | 3.43 | 4.22 | 3.53 | 4.36 | 3.62 | 3.43 | | Trinity 110 kV | 2.38 | 13.14 | 12.27 | 1.92 | 15.67 | 15.10 | 4.11 | 15.47 | 14.11 | 2.96 | 17.80 | 17.34 | | Tullabeg 110 kV | 3.24 | 7.72 | 7.55 | 3.31 | 10.10 | 9.97 | 4.58 | 8.25 | 8.00 | 4.77 | 10.69 | 10.54 | | Tullabrack 110 kV | 3.32 | 7.56 | 7.19 | 3.49 | 5.60 | 5.53 | 4.90 | 7.97 | 7.67 | 5.29 | 5.78 | 5.72 | | Turlough 220 kV | 3.05 | 13.26 | 12.26 | 3.02 | 11.46 | 11.26 | 4.93 | 14.90 | 14.16 | 5.21 | 12.13 | 11.94 | | Tynagh 220 kV | 3.33 | 8.72 | 8.44 | 3.44 | 10.46 | 10.49 | 8.09 | 14.03 | 13.17 | 9.17 | 15.07 | 14.71 | | Uggool 110 kV | 4.29 | 8.55 | 7.67 | 3.77 | 10.74 | 10.24 | 6.33 | 9.22 | 8.27 | 5.32 | 11.41 | 10.88 | | Walterstown 110 kV | 3.44 | 2.37 | 2.26 | 3.89 | 2.52 | 2.48 | 4.69 | 2.61 | 2.40 | 5.57 | 2.71 | 2.62 | | Waterford 110 kV | 4.02 | 14.58 | 14.02 | 4.05 | 15.09 | 14.84 | 6.05 | 17.04 | 16.11 | 6.16 | 17.22 | 16.88 | | Wexford 110 kV | 3.96 | 8.54 | 8.05 | 3.16 | 10.10 | 9.86 | 5.57 | 9.16 | 8.55 | 4.14 | 10.76 | 10.46 | | Whitebank 110 kV | 2.71 | 14.89 | 13.80 | 2.53 | 18.40 | 17.85 | 5.21 | 17.83 | 16.11 | 4.79 | 21.54 | 20.65 | | Whitegate 110 kV | 3.34 | 9.73 | 9.29 | 3.75 | 9.95 | 9.79 | 4.03 | 11.03 | 10.53 | 4.70 | 10.95 | 10.78 | | Wolfe Tone 110 kV | 2.72 | 11.73 | 11.09 | 1.94 | 13.59 | 13.27 | 5.45 | 14.88 | 13.78 | 3.03 | 16.68 | 16.17 | | Woodhouse 110 kV | 4.22 | 6.94 | 6.51 | 3.80 | 10.14 | 9.82 | 5.50 | 7.55 | 7.04 | 4.81 | 10.99 | 10.61 | | Woodland 220 kV | 4.88 | 24.27 | 21.31 | 2.44 | 29.25 | 27.88 | 6.60 | 36.40 | 33.79 | 4.63 | 39.64 | 38.66 | | Woodland 400 kV | 5.16 | 14.06 | 12.54 | 2.62 | 16.63 | 16.00 | 6.38 | 21.05 | 19.94 | 5.02 | 22.19 | 21.80 | | Yellowmeadow 110 kV | 2.48 | 12.90 | 11.84 | 2.35 | 16.48 | 15.89 | 5.76 | 18.04 | 16.17 | 5.23 | 22.08 | 21.07 | ### E.4 Short Circuit Currents in Northern Ireland #### Methodology used in Northern Ireland Short circuit current levels are calculated in accordance with the UK Engineering Recommendation G74, which is a computer based analysis, based on the International Standard IEC60909. Compliance with G74 includes: - Short circuit current contributions from all synchronous and non-synchronous rotating plant including induction motors embedded in the general load; - Comprehensive plant parameters including time-dependent impedances, transformer winding and earthing configurations; - Pre-fault voltage levels at each node which should be obtained from a credible, pre-fault load flow study; and - Pre-fault transformer tap settings should also be obtained from the load flow study. The short circuit current level network model includes the following component parameters: - Transformer impedance variation with tap position; - Zero sequence mutual coupling effect; - Unsaturated generator reactance values; and - Power station auxiliaries fault level contributions. The calculation of the X/R ratios, used by SONI, is undertaken in accordance with IEC60909-0 Method C, which is known as the equivalent frequency method. The equivalent frequency method is considered to be the most appropriate general purpose method for calculating the DC component of short circuit currents on the Northern Ireland transmission system. The Northern Ireland transmission system is designed and operated to maintain short circuit current levels below the ratings of equipment at each substation. Table E-5 below, indicates the range of circuit breaker RMS ratings that are currently installed on the Northern Ireland transmission system, for the respective voltage levels currently operated. #### Table E-5: Northern Ireland Station Equipment Rating Range by Voltage Level | Voltage Level | Short Circuit Current
Levels (kA) | |---------------|--------------------------------------| | 275² | 31.5 – 40 | | 110 | 18.4 – 40 | #### **Analysis** The total RMS break current at a busbar is an indication of the short circuit current level that one could expect at that point in the transmission system. However, they do not necessarily represent the short circuit current that could flow through each individual breaker, which may be lower. ² The switchgear ratings at Castlereagh, Coolkeeragh, Magherafelt, Tandragee and Kells 275 kV substations have been temporarily reduced to 10 kA by NIE Networks following review of the capability of concrete structures to withstand mechanical loading under fault conditions. This is under constant review and projects will be brought forward to address this issue. ### Northern Ireland Short Circuit Current Level Results Tables E-6 to E-11 contain the following three-phase and single-phase short circuit current level results for maximum winter peak and minimum summer valley system demand conditions for 2024, 2027 and 2030: #### Initial Short Circuit Current (I") This is the initial RMS value of the AC component of the short circuit current, prior to contact separation time. It is calculated using generator subtransient reactances. #### Peak Make Current (ip) The largest peak current occurs around 10ms, and is the short circuit current that equipment must be able to withstand, for example, when a circuit breaker is closed directly onto an earthed section of network, thus energising a fault. All equipment in the fault current path will be subjected to the peak make current, and therefore should be rated to withstand this. #### RMS Break Current (IB) This is the RMS value of the AC component of the short circuit current at the time of circuit breaker contact separation. The break time at which contact separation occurs varies from circuit to circuit, and depends on protection settings, fault location, circuit breaker design etc. For the purposes of this report, we have used a short circuit current break time of 50ms for all 275 kV and 110 kV calculations. In the Northern Ireland results tables, the RMS Break and Peak Make ratings of the existing nodes are shown. It should be noted that the Ballylumford 110 kV node (highlighted in the tables with *) currently has separate ratings for three-phase and single-phase faults; these are indicated in the tables. All ratings are in kA. Single phase to earth short circuit currents tend to be larger than three phase short circuit currents in heavily meshed transmission networks. This is due to the multiplicity of zero phase sequence paths available to earth fault currents. In all tables, any nodes where short circuit currents exceed 90% of the corresponding existing rating are highlighted in orange. Any nodes where short circuit currents exceed the corresponding existing ratings are highlighted in red. The results presented in the following section are indicative only. They are based on intact network conditions and are representative of the assumed generation dispatch and transmission system conditions. #### Northern Ireland
Short Circuit Currents for Minimum Demand in 2024 | Node | Rat | ing | | TI | nree phas | e | | | Siı | ngle phas | e | | |-------------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | <u>"</u> | ip | IB | X/R | X/R | J" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | (AC) | (DC) | 27 | 75 kV | | (AC) | (DC) | | | | | Ballylumford | 31.5 | 79 | 12.03 | 19.17 | 11.47 | 28.93 | 10.21 | 13.97 | 23.22 | 13.37 | 34.23 | 12.46 | | Castlereagh | 10 | 79 | 10.19 | 14.91 | 10.48 | 25.94 | 9.38 | 8.89 | 16.04 | 9.28 | 22.56 | 8.80 | | Coolkeeragh | 10 | 79 | 12.90 | 18.71 | 10.06 | 25.57 | 9.04 | 14.01 | 22.71 | 8.67 | 22.21 | 8.29 | | Hannahstown | 31.5 | 79 | 10.37 | 15.35 | 10.38 | 25.75 | 9.30 | 9.23 | 17.90 | 9.15 | 22.37 | 8.69 | | Kells | 10 | 79 | 11.03 | 15.93 | 11.07 | 27.66 | 9.89 | 9.23 | 15.14 | 11.70 | 28.88 | 10.97 | | Kilroot | 31.5 | 79 | 10.70 | 14.77 | 10.03 | 24.98 | 9.05 | 11.78 | 16.36 | 13.14 | 33.06 | 12.23 | | Magherafelt | 10 | 79 | 11.59 | 17.07 | 12.30 | 30.90 | 10.89 | 9.97 | 19.22 | 11.12 | 27.46 | 10.50 | | Moyle | 31.5 | 79 | 11.94 | 18.85 | 11.31 | 28.52 | 10.08 | 13.82 | 22.72 | 13.17 | 33.69 | 12.29 | | Tandragee | 10 | 79 | 10.37 | 14.81 | 12.89 | 31.98 | 11.43 | 9.13 | 17.92 | 11.83 | 28.87 | 11.16 | | Tamnamore | 40 | 100 | 10.37 | 15.47 | 12.28 | 30.63 | 10.89 | 9.15 | 16.82 | 10.52 | 25.67 | 9.97 | | laminamore | 40 | 100 | 10.00 | 15.47 | | 10 kV | 10.69 | 9.15 | 10.02 | 10.52 | 25.07 | 9.97 | | Aghyoule | 40 | 100 | 3.98 | 8.73 | 4.20 | 8.80 | 3.69 | 5.36 | 12.09 | 4.11 | 9.19 | 3.88 | | Antrim | 40 | 100 | 4.38 | 6.97 | 8.80 | 18.84 | 8.42 | 3.67 | 16.04 | 8.85 | 18.19 | 8.60 | | Aught | 40 | 100 | 4.47 | 5.96 | 10.29 | 22.13 | 9.57 | 4.98 | 6.96 | 13.21 | 29.07 | 12.66 | | Ballylumford | 21.9 | 55 | 9.96 | 22.05 | 16.92 | 41.75 | 15.61 | 11.21 | 24.94 | 16.66 | 41.69 | 15.97 | | Ballymena | 40 | 100 | 4.61 | 8.28 | 8.07 | 17.47 | 7.72 | 5.43 | 11.09 | 8.53 | 19.11 | 8.14 | | Banbridge | 18.4 | 46.8 | 3.95 | 6.31 | 6.34 | 13.25 | 6.15 | 5.41 | 10.60 | 6.28 | 14.05 | 6.19 | | Ballyvallagh | 21.9 | 46.8 | 5.05 | 6.30 | 13.32 | 29.40 | 12.43 | 5.28 | 8.69 | 12.55 | 27.96 | 12.08 | | | | | | | | | | | 12.66 | | | 5.37 | | Ballynahinch
Belfast | 18.4 | 46.8 | 4.10 | 6.85 | 5.36 | 11.31 | 5.18 | 3.88 | | 5.47 | 11.40 | | | Central | n/a | n/a | 7.78 | 11.79 | 12.30 | 29.35 | 11.47 | 5.79 | 12.32 | 14.66 | 33.24 | 14.00 | | Belfast North | n/a | n/a | 4.76 | 7.31 | 12.21 | 26.62 | 11.47 | 3.58 | 11.79 | 12.07 | 24.65 | 11.68 | | Brockaghboy | 40 | 100 | 5.94 | 8.15 | 4.63 | 10.54 | 4.02 | 6.22 | 8.64 | 4.90 | 11.26 | 4.58 | | Carnmoney | 31.5 | 79 | 4.04 | 7.02 | 8.04 | 16.90 | 7.70 | 3.11 | 8.41 | 8.09 | 15.94 | 7.90 | | Castlereagh | 31.5 | 79 | 10.26 | 18.74 | 14.94 | 37.01 | 13.75 | 10.28 | 16.34 | 18.43 | 45.66 | 17.41 | | Coleraine | 40 | 100 | 4.18 | 5.83 | 8.72 | 18.46 | 7.79 | 4.85 | 7.91 | 9.99 | 21.86 | 9.33 | | Coolkeeragh | 31.5 | 79 | 9.62 | 20.37 | 19.76 | 48.54 | 17.25 | 10.08 | 21.32 | 22.39 | 55.33 | 20.79 | | Creagh | 31.5 | 79 | 3.50 | 4.27 | 7.84 | 15.92 | 7.44 | 4.43 | 6.86 | 8.24 | 17.68 | 7.97 | | Node | Rat | ing | | TI | nree phas | e | | | Si | ngle phas | e | | |------------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Cregagh | 26.2 | 65 | 8.61 | 13.93 | 13.61 | 32.94 | 12.60 | 7.63 | 14.23 | 16.47 | 39.17 | 15.65 | | Culmore Road | 26.2 | 65 | 7.95 | 14.22 | 17.92 | 42.88 | 15.83 | 8.63 | 15.96 | 20.76 | 50.27 | 19.39 | | Donegall
North | 31.5 | 79 | 8.12 | 12.78 | 13.90 | 33.36 | 12.96 | 6.51 | 11.97 | 15.41 | 35.71 | 14.77 | | Donegall
South | n/a | n/a | 5.92 | 8.30 | 11.07 | 25.22 | 10.46 | 5.22 | 3.76 | 11.45 | 25.44 | 11.09 | | Dromore | 31.5 | 79 | 4.39 | 6.32 | 12.64 | 27.08 | 11.00 | 4.51 | 6.44 | 12.36 | 26.63 | 11.54 | | Drumnakelly | 31.5 | 79 | 7.05 | 11.53 | 18.05 | 42.40 | 16.55 | 7.70 | 16.72 | 17.94 | 42.72 | 17.15 | | Dungannon | 40 | 100 | 6.57 | 11.22 | 16.92 | 39.26 | 15.35 | 7.44 | 16.59 | 15.64 | 37.03 | 14.93 | | Eden | 25 | 62.5 | 4.08 | 6.39 | 8.76 | 18.45 | 8.36 | 3.59 | 6.01 | 8.70 | 17.78 | 8.49 | | Enniskil | 31.5 | 79 | 3.91 | 5.06 | 8.94 | 18.65 | 7.79 | 4.84 | 6.62 | 10.47 | 22.91 | 9.69 | | Enniskillen | 31.5 | 79 | 10.19 | 11.83 | 3.22 | 7.97 | 3.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Finaghy | 31.5 | 79 | 9.25 | 15.27 | 14.40 | 35.20 | 13.40 | 7.47 | 14.66 | 16.09 | 38.13 | 15.39 | | Glengormley | 18.4 | 46.8 | 4.06 | 6.11 | 6.05 | 12.73 | 5.87 | 4.92 | 10.33 | 5.66 | 12.43 | 5.56 | | Gort Cluster | 40 | 100 | 7.26 | 9.34 | 7.96 | 18.79 | 7.45 | 6.61 | 13.63 | 7.45 | 17.31 | 7.15 | | Hannahstown | 31.5 | 79 | 10.53 | 19.35 | 15.75 | 39.13 | 14.56 | 10.25 | 18.12 | 17.55 | 43.48 | 16.7 | | Kells | 40 | 100 | 8.57 | 16.64 | 17.19 | 41.59 | 15.78 | 8.12 | 14.80 | 18.61 | 44.67 | 17.48 | | Killymallaght | 40 | 100 | 6.14 | 8.68 | 12.61 | 28.91 | 11.16 | 5.61 | 10.18 | 11.49 | 25.91 | 10.93 | | Knock | n/a | n/a | 4.85 | 7.33 | 13.03 | 28.53 | 12.11 | 3.49 | 11.30 | 13.62 | 27.63 | 13.0 | | Larne | 18.4 | 46.8 | 4.37 | 5.43 | 8.59 | 18.38 | 8.19 | 4.77 | 14.95 | 8.37 | 18.26 | 8.15 | | Limavady | 40 | 100 | 3.77 | 4.56 | 7.58 | 15.69 | 6.93 | 4.54 | 7.26 | 7.99 | 17.24 | 7.61 | | Lisburn | 18.4 | 46.8 | 5.54 | 7.59 | 11.03 | 24.81 | 10.43 | 5.57 | 9.88 | 10.63 | 23.92 | 10.33 | | Lisaghmore | 31.5 | 79 | 4.39 | 6.90 | 9.60 | 20.57 | 8.90 | 4.29 | 11.83 | 9.23 | 19.67 | 8.93 | | Loguestown | 26.2 | 65 | 3.64 | 5.07 | 6.07 | 12.44 | 5.60 | 3.98 | 7.15 | 6.57 | 13.75 | 6.27 | | Magherakeel
Cluster | 40 | 100 | 5.41 | 9.58 | 4.44 | 9.94 | 4.18 | 7.15 | 12.39 | 4.86 | 11.43 | 4.68 | | Moyle | 40 | 100 | 33.94 | 48.16 | 10.05 | 27.26 | 9.64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 4.57 | 6.80 | 7.27 | 15.71 | 6.96 | 5.98 | 10.10 | 7.07 | 16.13 | 6.91 | | Newry | 18.4 | 46.8 | 3.82 | 6.55 | 5.36 | 11.13 | 5.20 | 3.70 | 11.93 | 5.36 | 11.04 | 5.28 | | Omagh | 40 | 100 | 5.10 | 7.64 | 15.83 | 35.02 | 13.69 | 5.50 | 9.84 | 16.18 | 36.34 | 14.9 | | Rasharkin | 40 | 100 | 4.58 | 6.95 | 7.67 | 16.58 | 6.93 | 4.71 | 8.61 | 7.83 | 17.05 | 7.40 | | Node | Rat | ing | | TI | nree phas | e | | | Si | ngle phas | e | | |-------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l'' | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Rathgael | 26.2 | 65 | 4.14 | 6.59 | 5.72 | 12.10 | 5.52 | 3.94 | 12.88 | 5.78 | 12.08 | 5.67 | | Rosebank | 40 | 100 | 9.36 | 15.71 | 13.99 | 34.24 | 12.93 | 11.01 | 19.97 | 17.06 | 42.62 | 16.18 | | Slieve Kirk | 40 | 100 | 4.78 | 7.34 | 9.24 | 20.17 | 8.25 | 5.73 | 12.79 | 7.35 | 16.65 | 7.08 | | Springtown | n/a | n/a | 4.53 | 7.08 | 9.71 | 20.95 | 9.05 | 4.34 | 12.87 | 9.53 | 20.36 | 9.23 | | Strabane | 18.4 | 46.8 | 4.93 | 6.46 | 15.50 | 34.05 | 13.70 | 5.76 | 9.54 | 16.34 | 37.03 | 15.37 | | Tandragee | 31.5 | 79 | 8.60 | 17.19 | 19.33 | 46.78 | 17.65 | 8.06 | 15.63 | 19.49 | 46.73 | 18.59 | | Tremoge | 40 | 100 | 4.24 | 6.11 | 9.27 | 19.70 | 8.51 | 4.77 | 9.75 | 8.39 | 18.30 | 8.07 | | Tamnamore | 40 | 100 | 7.84 | 16.07 | 19.96 | 47.66 | 17.94 | 7.19 | 14.06 | 17.61 | 41.49 | 16.78 | | Waringstown | 18.4 | 46.8 | 4.81 | 7.40 | 7.94 | 17.36 | 7.63 | 4.87 | 16.06 | 7.59 | 16.64 | 7.45 | #### Northern Ireland Short Circuit Currents for Maximum Demand in 2024 | Table E-7: N | lorthe | rn Irel | land Sh | nort Cir | cuit Cu | urrents | for Mi | inimum |) Dema | nd in 2 | 2024 | | |--------------|--------|---------|---------------|---------------|-----------|---------|--------|---------------|---------------|-----------|-------|-------| | Node | Rat | ing | | TI | nree phas | e | | | Si | ngle phas | e | | | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 27 | 75 kV | | | | | | | | Ballylumford | 31.5 | 79 | 13.61 | 20.64 | 18.13 | 46.30 | 16.17 | 15.51 | 25.24 | 18.56 | 47.96 | 17.45 | | Castlereagh | 10 | 79 | 10.87 | 15.02 | 15.75 | 39.28 | 14.02 | 8.66 | 15.88 | 11.52 | 27.92 | 10.98 | | Coolkeeragh | 10 | 79 | 13.30 | 17.93 | 12.60 | 32.10 | 11.55 | 14.09 | 22.35 | 9.75 | 24.98 | 9.43 | | Hannahstown | 31.5 | 79 | 10.93 | 15.30 | 15.61 | 38.95 | 13.94 | 9.00 | 17.92 | 11.35 | 27.65 | 10.84 | | Kells | 10 | 79 | 13.26 | 18.91 | 19.00 | 48.41 | 16.96 | 9.89 | 14.92 | 16.49 | 40.65 | 15.61 | | Kilroot | 31.5 | 79 | 15.47 | 23.81 | 19.78 | 51.12 | 17.61 | 14.66 | 20.33 | 23.09 | 59.38 | 21.44 | | Magherafelt | 10 | 79 | 12.37 | 16.89 | 18.39 | 46.53 | 16.46 | 9.66 | 19.03 | 13.84 | 34.02 | 13.23 | | Moyle | 31.5 | 79 | 13.40 | 20.05 | 17.75 | 45.28 | 15.86 | 15.24 | 24.44 | 18.19 | 46.93 | 17.12 | | Tandragee | 10 | 79 | 10.76 | 14.39 | 19.23 | 47.90 | 17.18 | 8.83 | 17.86 | 14.78 | 35.90 | 14.09 | | Tamnamore | 40 | 100 | 11.23 | 14.87 | 17.95 | 44.93 | 16.09 | 8.80 | 16.49 | 12.78 | 31.04 | 12.25 | | Node | Rat | ing | | TI | nree phas | е | | | Siı | ngle phas | e | | |--------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] |
ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 1: | LO kV | | | | | | | | Aghyoule | 40 | 100 | 3.99 | 8.81 | 4.26 | 8.93 | 3.74 | 5.41 | 12.27 | 4.15 | 9.29 | 3.91 | | Antrim | 40 | 100 | 4.17 | 6.79 | 9.91 | 20.99 | 9.56 | 3.52 | 16.41 | 9.50 | 19.32 | 9.31 | | Aught | 40 | 100 | 4.26 | 5.57 | 11.18 | 23.79 | 10.48 | 4.79 | 6.61 | 14.16 | 30.91 | 13.61 | | Ballylumford | 21.9 | 55 | 12.90 | 26.00 | 21.15 | 53.73 | 19.55 | 13.19 | 27.64 | 18.85 | 47.99 | 18.18 | | Ballymena | 40 | 100 | 4.41 | 8.08 | 9.02 | 19.33 | 8.65 | 5.30 | 11.02 | 9.13 | 20.35 | 8.77 | | Banbridge | 18.4 | 46.8 | 3.77 | 6.09 | 6.90 | 14.27 | 6.66 | 5.32 | 10.57 | 6.64 | 14.81 | 6.52 | | Ballyvallagh | 21.9 | 46.8 | 4.78 | 5.49 | 15.87 | 34.63 | 14.88 | 5.12 | 8.32 | 13.86 | 30.68 | 13.42 | | Ballynahinch | 18.4 | 46.8 | 4.18 | 6.85 | 5.62 | 11.90 | 5.34 | 3.89 | 12.87 | 5.64 | 11.75 | 5.48 | | Belfast
Central | n/a | n/a | 9.11 | 12.14 | 13.49 | 32.92 | 12.26 | 6.50 | 12.74 | 15.58 | 36.09 | 14.57 | | Belfast North | n/a | n/a | 4.27 | 6.57 | 14.70 | 31.31 | 13.73 | 3.29 | 11.41 | 13.53 | 27.05 | 13.04 | | Brockaghboy | 40 | 100 | 5.95 | 8.49 | 4.84 | 11.03 | 4.26 | 6.31 | 9.22 | 5.12 | 11.79 | 4.81 | | Carnmoney | 31.5 | 79 | 4.05 | 7.49 | 5.29 | 11.14 | 5.13 | 2.60 | 9.25 | 5.48 | 10.30 | 5.38 | | Castlereagh | 31.5 | 79 | 14.31 | 22.96 | 16.71 | 42.88 | 14.92 | 13.20 | 17.62 | 19.86 | 50.58 | 18.33 | | Coleraine | 40 | 100 | 4.02 | 5.72 | 9.43 | 19.79 | 8.40 | 4.75 | 7.89 | 10.63 | 23.16 | 9.89 | | Coolkeeragh | 31.5 | 79 | 9.86 | 21.77 | 23.53 | 58.00 | 20.63 | 10.19 | 22.16 | 25.43 | 62.93 | 23.68 | | Creagh | 31.5 | 79 | 3.30 | 3.98 | 8.70 | 17.40 | 8.22 | 4.31 | 6.62 | 8.86 | 18.90 | 8.56 | | Cregagh | 26.2 | 65 | 10.68 | 15.02 | 15.08 | 37.54 | 13.58 | 9.17 | 15.16 | 17.65 | 43.10 | 16.39 | | Culmore Road | 26.2 | 65 | 7.85 | 13.99 | 20.95 | 50.03 | 18.61 | 8.55 | 15.85 | 23.33 | 56.42 | 21.85 | | Drumquin | 40 | 100 | 5.43 | 7.63 | 6.98 | 15.64 | 6.26 | 5.88 | 12.13 | 6.44 | 14.65 | 6.13 | | Donegall
North | 31.5 | 79 | 7.70 | 12.13 | 17.27 | 41.13 | 15.97 | 6.08 | 11.35 | 18.02 | 41.24 | 17.17 | | Donegall
South | n/a | n/a | 5.48 | 7.59 | 13.12 | 29.45 | 12.34 | 4.90 | 3.20 | 12.85 | 28.18 | 12.4 | | Dromore | 31.5 | 79 | 4.16 | 6.05 | 13.42 | 28.40 | 11.76 | 4.31 | 6.21 | 12.84 | 27.39 | 12.0 | | Drumnakelly | 31.5 | 79 | 6.55 | 10.77 | 22.52 | 52.22 | 20.56 | 7.38 | 16.54 | 20.62 | 48.77 | 19.6 | | Dungannon | 40 | 100 | 6.14 | 10.78 | 19.76 | 45.31 | 18.06 | 7.18 | 16.57 | 17.26 | 40.65 | 16.5 | | Eden | 25 | 62.5 | 4.18 | 6.45 | 7.72 | 16.36 | 7.41 | 3.08 | 4.83 | 7.79 | 15.31 | 7.62 | | Enniskil | 31.5 | 79 | 3.83 | 4.91 | 9.55 | 19.83 | 8.32 | 4.70 | 6.37 | 11.01 | 23.94 | 10.1 | | Enniskillen | 31.5 | 79 | 10.57 | 12.18 | 3.24 | 8.06 | 3.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Node | Rat | ing | | TI | hree phas | e | | | Si | ngle phas | e | | |------------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Finaghy | 31.5 | 79 | 8.98 | 15.05 | 18.03 | 43.91 | 16.65 | 7.09 | 14.26 | 18.96 | 44.56 | 18.03 | | Glengormley | 18.4 | 46.8 | 3.83 | 5.33 | 6.50 | 13.50 | 6.32 | 4.79 | 9.51 | 5.94 | 12.96 | 5.84 | | Gort Cluster | 40 | 100 | 7.10 | 9.17 | 8.30 | 19.52 | 7.82 | 7.57 | 13.61 | 8.62 | 20.46 | 8.22 | | Hannahstown | 31.5 | 79 | 10.54 | 20.51 | 20.17 | 50.13 | 18.48 | 10.10 | 18.09 | 21.02 | 51.98 | 19.91 | | Kells | 40 | 100 | 8.80 | 18.62 | 21.80 | 52.93 | 20.17 | 8.00 | 14.79 | 21.69 | 51.96 | 20.61 | | Killymallaght | 40 | 100 | 5.90 | 8.22 | 13.61 | 30.98 | 12.17 | 5.46 | 10.04 | 12.06 | 27.04 | 11.51 | | Knock | n/a | n/a | 5.13 | 7.04 | 14.33 | 31.74 | 12.97 | 3.68 | 11.55 | 14.35 | 29.50 | 13.52 | | Larne | 18.4 | 46.8 | 4.17 | 4.96 | 9.58 | 20.29 | 9.16 | 4.63 | 14.93 | 8.93 | 19.36 | 8.72 | | Limavady | 40 | 100 | 3.63 | 4.39 | 8.01 | 16.40 | 7.33 | 4.43 | 7.15 | 8.28 | 17.77 | 7.89 | | Lisburn | 18.4 | 46.8 | 5.18 | 7.20 | 13.05 | 28.97 | 12.32 | 5.34 | 9.73 | 11.86 | 26.48 | 11.50 | | Lisaghmore | 31.5 | 79 | 4.21 | 6.57 | 10.39 | 22.05 | 9.69 | 4.16 | 11.74 | 9.69 | 20.50 | 9.39 | | Loguestown | 26.2 | 65 | 3.54 | 5.00 | 6.41 | 13.06 | 5.89 | 3.89 | 7.52 | 6.84 | 14.25 | 6.51 | | Magherakeel
Cluster | 40 | 100 | 5.35 | 9.59 | 4.46 | 9.95 | 4.21 | 7.07 | 12.37 | 4.88 | 11.46 | 4.70 | | Moyle | 40 | 100 | 52.13 | 70.91 | 11.47 | 31.56 | 11.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 4.68 | 6.70 | 7.67 | 16.67 | 7.23 | 6.15 | 10.16 | 7.31 | 16.76 | 7.06 | | Newry | 18.4 | 46.8 | 3.71 | 6.59 | 5.82 | 11.99 | 5.60 | 3.61 | 12.16 | 5.64 | 11.55 | 5.52 | | Omagh | 40 | 100 | 4.76 | 7.21 | 17.09 | 37.26 | 14.91 | 5.20 | 9.44 | 17.17 | 38.13 | 15.91 | | Rasharkin | 40 | 100 | 4.52 | 7.40 | 8.26 | 17.81 | 7.54 | 4.71 | 9.20 | 8.32 | 18.09 | 7.91 | | Rathgael | 26.2 | 65 | 4.19 | 6.46 | 5.98 | 12.68 | 5.68 | 3.93 | 12.89 | 5.95 | 12.42 | 5.77 | | Rosebank | 40 | 100 | 12.17 | 17.78 | 15.53 | 39.22 | 13.96 | 12.90 | 21.65 | 18.29 | 46.47 | 16.96 | | Slieve Kirk | 40 | 100 | 4.60 | 7.10 | 9.70 | 21.00 | 8.73 | 5.67 | 12.48 | 7.59 | 17.16 | 7.33 | | Springtown | n/a | n/a | 4.36 | 6.84 | 10.56 | 22.59 | 9.89 | 4.21 | 13.54 | 10.08 | 21.38 | 9.77 | | Strabane | 18.4 | 46.8 | 4.65 | 6.01 | 17.07 | 37.04 | 15.23 | 5.54 | 9.17 | 17.47 | 39.30 | 16.49 | | Tandragee | 31.5 | 79 | 8.24 | 17.47 | 24.63 | 59.25 | 22.37 | 7.74 | 15.32 | 22.80 | 54.33 | 21.65 | | Tremoge | 40 | 100 | 4.05 | 5.85 | 9.68 | 20.35 | 8.98 | 4.62 | 9.57 | 8.59 | 18.62 | 8.30 | | Tamnamore | 40 | 100 | 7.40 | 16.31 | 24.10 | 57.03 | 21.85 | 6.83 | 13.66 | 19.70 | 46.01 | 18.85 | | Waringstown | 18.4 | 46.8 | 4.57 | 7.12 | 8.82 | 19.07 | 8.45 | 4.70 | 16.14 | 8.13 | 17.67 | 7.94 | #### Northern Ireland Short Circuit Currents for Minimum Demand in 2027 | Node | Rat | ing | | TI | nree phas | e | | | Sir | ngle phas | e | | |--------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | I | l | | I | 40 | 00 kV | | | | I | | | | Turleena | 31.5 | 79 | 14.88 | 19.55 | 8.19 | 21.10 | 7.65 | 10.58 | 22.07 | 9.36 | 23.28 | 9.00 | | | | | | | 27 | 75 kV | | | | | | | | Ballylumford | 31.5 | 79 | 12.09 | 18.45 | 12.82 | 32.35 | 11.62 | 14.18 | 22.95 | 14.45 | 37.04 | 13.6 | | Castlereagh | 10 | 79 | 10.41 | 14.56 | 11.50 | 28.53 | 10.48 | 8.84 | 15.80 | 9.76 | 23.71 | 9.33 | | Coolkeeragh | 10 | 79 | 13.05 | 18.17 | 10.96 | 27.88 | 10.03 | 14.09 | 22.62 | 9.06 | 23.21 | 8.73 | | Hannahstown | 31.5 | 79 | 10.46 | 14.88 | 11.47 | 28.49 | 10.45 | 9.15 | 17.75 | 9.63 | 23.50 | 9.22 | | Kells | 10 | 79 | 11.17 | 15.54 | 12.51 | 31.31 | 11.39 | 9.89 | 14.92 | 12.68 | 31.27 | 11.9 | | Kilroot | 31.5 | 79 | 10.83 | 14.41 | 11.20 | 27.92 | 10.28 | 12.00 | 16.22 | 14.30 | 36.05 | 13.4 | | Magherafelt | 10 | 79 | 11.98 | 17.14 | 14.44 | 36.41 | 13.02 | 10.04 | 20.35 | 12.37 | 30.56 | 11.7 | | Moyle | 31.5 | 79 | 11.99 | 18.13 | 12.63 | 31.84 | 11.46 | 14.02 | 22.43 | 14.22 | 36.41 | 13.3 | | Tandragee | 10 | 79 | 10.83 | 15.28 | 15.23 | 37.98 | 13.72 | 9.12 | 18.85 | 13.53 | 33.03 | 12.8 | | Tamnamore | 40 | 100 | 11.55 | 16.28 | 15.12 | 37.98 | 13.63 | 9.45 | 21.72 | 12.57 | 30.82 | 11.9 | | Turleena | 40 | 100 | 11.51 | 16.26 | 15.31 | 38.44 | 13.80 | 9.42 | 21.68 | 13.12 | 32.16 | 12.49 | | | | | | | 11 | LO kV | | | | | | | | Aghyoule | 40 | 100 | 4.00 | 8.79 | 4.23 | 8.86 | 3.72 | 5.39 | 12.21 | 4.13 | 9.24 | 3.90 | | Antrim | 40 | 100 | 4.33 | 7.00 | 8.97 | 19.16 | 8.63 | 3.59 | 16.10 | 8.97 | 18.34 | 8.74 | | Aught | 40 | 100 | 4.40 | 5.84 | 10.41 | 22.32 | 9.79 | 4.91 | 6.85 | 13.36 | 29.31 | 12.8 | | Airport Road | 40 | 100 | 5.16 | 7.17 | 7.11 | 15.77 | 6.85 | 5.81 | 10.29 | 7.24 | 16.44 | 7.09 | | Ballylumford | 40 | 100 | 11.67 | 23.31 | 16.17 | 40.65 | 15.17 | 12.46 | 25.97 | 16.09 | 40.73 | 15.5 | | Ballymena | 40 | 100 | 4.58 | 8.32 | 8.17 | 17.67 | 7.87 | 5.41 | 11.17 | 8.60 | 19.25 | 8.24 | | Banbridge | 18.4 | 46.8 | 3.89 | 7.06 | 6.35 | 13.23 | 6.18 | 5.25 | 10.62 | 6.02 | 13.39 | 5.94 | | Ballyvallagh | 21.9 | 46.8 | 5.21 | 6.19 | 13.58 | 30.18 | 12.82 | 5.70 | 9.13 | 13.51 | 30.55 | 13.0 | | Ballynahinch | 18.4 | 46.8 | 4.48 | 7.10 | 5.11 | 11.00 | 4.96 | 4.03 | 12.66 | 5.33 | 11.19 | 5.24 | | Belfast
Central | n/a | n/a | 11.44 | 14.84 | 12.29 | 30.82 | 11.52 | 7.13 | 13.40 | 14.67 | 34.51 | 14.0 | | Belfast North | n/a | n/a | 4.70 | 7.30 | 12.41 | 26.99 | 11.79 | 3.55 | 11.92 | 12.13 | 24.73 | 11.8 | | Brockaghboy | 40 | 100 | 6.26 | 9.10 | 4.83 | 11.11 | 4.23 | 6.42 | 9.56 | 5.40 | 12.48 | 5.03 | | Carnmoney | 31.5 | 79 | 3.84 | 6.44 | 4.54 | 9.44 | 4.43 | 2.62 | 8.15 | 4.90 | 9.22 | 4.83 | | Node | Rat | ing | | Ti | ree phas | е | | | Sir | ngle phas | е | | |------------------------|------|------|---------------|---------------|----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Castlereagh | 31.5 | 79 | 14.88 | 21.28 | 13.55 | 34.91 | 12.66 | 12.95 | 16.24 | 17.04 | 43.30 | 16.22 | | Coleraine | 40 | 100 | 4.16 | 5.90 | 8.88 | 18.80 | 8.00 | 4.82 | 7.38 | 10.95 | 23.93 | 10.22 | | Coolkeeragh | 31.5 | 79 | 9.60 | 20.45 | 20.48 | 50.30 | 18.18 | 10.03 | 21.42 | 23.07 | 56.98 | 21.61 | | Creagh | 31.5 | 79 | 3.42 | 4.15 | 7.94 | 16.05 | 7.59 | 4.36 | 6.72 | 8.31 | 17.79 | 8.07 | |
Cregagh | 26.2 | 65 | 12.04 | 15.96 | 12.64 | 31.89 | 11.85 | 9.59 | 14.11 | 15.55 | 38.19 | 14.80 | | Culmore Road | 26.2 | 65 | 7.87 | 14.04 | 18.48 | 44.16 | 16.57 | 8.55 | 15.85 | 21.32 | 51.56 | 20.0 | | Drumquin | 40 | 100 | 5.96 | 9.33 | 7.37 | 16.81 | 6.64 | 6.56 | 11.45 | 7.67 | 17.80 | 7.27 | | Donegall
North | 31.5 | 79 | 8.14 | 13.03 | 14.23 | 34.18 | 13.47 | 6.46 | 12.09 | 15.66 | 36.23 | 15.1 | | Donegall
South | n/a | n/a | 5.88 | 8.29 | 11.21 | 25.49 | 10.68 | 5.16 | 3.60 | 11.50 | 25.49 | 11.19 | | Dromore | 31.5 | 79 | 4.47 | 6.86 | 13.27 | 28.55 | 11.68 | 4.41 | 6.41 | 13.05 | 27.98 | 12.2 | | Drumnakelly | 31.5 | 79 | 7.02 | 11.43 | 19.58 | 45.94 | 18.18 | 7.69 | 16.97 | 18.82 | 44.81 | 18.1 | | Dungannon | 40 | 100 | 6.54 | 11.08 | 18.22 | 42.24 | 16.84 | 7.23 | 15.03 | 17.39 | 41.01 | 16.6 | | Eden | 25 | 62.5 | 4.21 | 6.44 | 6.61 | 14.02 | 6.39 | 3.17 | 5.43 | 6.98 | 13.83 | 6.86 | | Enniskil | 31.5 | 79 | 3.92 | 5.10 | 9.15 | 19.10 | 8.03 | 4.75 | 6.52 | 10.63 | 23.17 | 9.86 | | Enniskillen | 31.5 | 79 | 10.45 | 12.14 | 3.21 | 7.97 | 3.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Finaghy | 31.5 | 79 | 9.34 | 15.75 | 14.78 | 36.17 | 13.96 | 7.43 | 14.99 | 16.38 | 38.78 | 15.7 | | Glengormley | 18.4 | 46.8 | 3.72 | 5.77 | 5.61 | 11.56 | 5.47 | 3.55 | 11.32 | 5.54 | 11.30 | 5.45 | | Gort Cluster | 40 | 100 | 7.33 | 9.41 | 8.15 | 19.26 | 7.67 | 7.71 | 13.83 | 8.56 | 20.39 | 8.16 | | Hannahstown | 31.5 | 79 | 10.72 | 20.47 | 16.26 | 40.48 | 15.28 | 10.32 | 18.68 | 17.95 | 44.50 | 17.2 | | Kells | 40 | 100 | 8.58 | 16.90 | 18.03 | 43.62 | 16.82 | 8.04 | 14.99 | 19.56 | 46.87 | 18.5 | | Killymallaght | 40 | 100 | 6.17 | 8.99 | 12.96 | 29.74 | 11.64 | 5.63 | 10.54 | 11.70 | 26.39 | 11.1 | | Knock | n/a | n/a | 5.75 | 7.64 | 11.94 | 27.04 | 11.22 | 3.97 | 12.05 | 12.78 | 26.76 | 12.3 | | Larne | 18.4 | 46.8 | 4.43 | 5.35 | 8.64 | 18.56 | 8.30 | 4.58 | 5.24 | 8.60 | 18.59 | 8.41 | | Limavady | 40 | 100 | 3.74 | 4.53 | 7.65 | 15.78 | 7.04 | 4.30 | 6.05 | 8.04 | 17.14 | 7.69 | | Lisburn | 18.4 | 46.8 | 5.48 | 7.52 | 11.23 | 25.20 | 10.71 | 5.53 | 9.93 | 10.69 | 24.03 | 10.4 | | Lisaghmore | 31.5 | 79 | 4.33 | 6.79 | 9.69 | 20.70 | 9.08 | 4.24 | 11.79 | 9.25 | 19.67 | 8.99 | | Loguestown | 26.2 | 65 | 3.62 | 5.10 | 6.12 | 12.53 | 5.68 | 3.87 | 7.15 | 6.75 | 14.05 | 6.46 | | Magherakeel
Cluster | 40 | 100 | 5.46 | 9.80 | 4.47 | 10.02 | 4.22 | 7.17 | 12.57 | 4.92 | 11.59 | 4.74 | | Node | Rat | ing | | TI | nree phas | e | | | Sir | ngle phas | e | | |-------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Moyle | 40 | 100 | 36.41 | 49.74 | 10.32 | 28.05 | 9.95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 5.01 | 6.96 | 6.81 | 15.00 | 6.56 | 6.16 | 10.10 | 6.73 | 15.43 | 6.59 | | Newry | 18.4 | 46.8 | 3.84 | 6.71 | 5.44 | 11.29 | 5.30 | 3.70 | 12.04 | 5.39 | 11.09 | 5.31 | | Omagh | 40 | 100 | 5.07 | 7.68 | 16.59 | 36.65 | 14.51 | 5.32 | 9.73 | 16.94 | 37.81 | 15.74 | | Omagh South | 40 | 100 | 4.47 | 6.86 | 13.27 | 28.55 | 11.68 | 4.41 | 6.41 | 13.05 | 27.98 | 12.22 | | Rasharkin | 40 | 100 | 4.73 | 7.73 | 7.97 | 17.34 | 7.28 | 4.78 | 9.46 | 8.33 | 18.17 | 7.88 | | Rathgael | 26.2 | 65 | 4.46 | 6.72 | 5.41 | 11.63 | 5.24 | 4.04 | 12.73 | 5.57 | 11.70 | 5.47 | | Rosebank | 40 | 100 | 12.85 | 17.33 | 12.73 | 32.34 | 11.94 | 13.04 | 18.90 | 15.87 | 40.36 | 15.16 | | Slieve Kirk | 40 | 100 | 4.76 | 7.44 | 9.38 | 20.46 | 8.47 | 5.75 | 12.92 | 7.42 | 16.80 | 7.16 | | Springtown | n/a | n/a | 4.48 | 7.05 | 9.83 | 21.14 | 9.24 | 4.30 | 13.56 | 9.60 | 20.46 | 9.33 | | Strabane | 40 | 100 | 4.86 | 6.41 | 15.95 | 34.94 | 14.31 | 5.71 | 9.56 | 16.67 | 37.69 | 15.79 | | Tandragee | 31.5 | 79 | 8.78 | 17.91 | 21.13 | 51.30 | 19.58 | 8.07 | 15.82 | 20.46 | 49.08 | 19.64 | | Tremoge | 40 | 100 | 4.17 | 5.99 | 9.43 | 19.98 | 8.74 | 4.68 | 9.70 | 8.51 | 18.50 | 8.22 | | Tamnamore | 40 | 100 | 7.98 | 16.61 | 22.05 | 52.80 | 20.18 | 7.65 | 14.38 | 20.89 | 49.68 | 19.95 | | Waringstown | 18.4 | 46.8 | 4.77 | 7.45 | 8.13 | 17.73 | 7.84 | 4.82 | 16.30 | 7.68 | 16.80 | 7.55 | #### Northern Ireland Short Circuit Currents for Maximum Demand in 2027 | Node | Rat | ing | | TI | nree phas | e | | | Siı | ngle phas | е | | |--------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 40 | 00 kV | | | | | | | | Turleena | 31.5 | 79 | 16.14 | 19.91 | 10.23 | 26.52 | 9.83 | 10.36 | 22.11 | 11.19 | 27.76 | 10.90 | | | | | | | 27 | 75 kV | | | | | | | | Ballylumford | 31.5 | 79 | 13.28 | 19.30 | 19.51 | 49.72 | 17.76 | 15.50 | 24.67 | 19.42 | 50.19 | 18.47 | | Castlereagh | 10 | 79 | 10.70 | 14.27 | 17.01 | 42.34 | 15.42 | 8.52 | 15.59 | 12.01 | 29.02 | 11.53 | | Coolkeeragh | 10 | 79 | 13.61 | 17.82 | 13.67 | 34.93 | 12.80 | 14.33 | 22.69 | 10.10 | 25.91 | 9.85 | | Hannahstown | 31.5 | 79 | 10.76 | 14.50 | 16.80 | 41.84 | 15.27 | 8.89 | 17.73 | 11.76 | 28.60 | 11.32 | | Node | Rat | ing | | TI | hree phas | е | | | Siı | ngle phas | e | | |--------------------|------|------|---------------|---------------|-----------|---------------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Kells | 10 | 79 | 13.01 | 17.77 | 20.70 | 52.65 | 18.89 | 9.74 | 14.70 | 17.34 | 42.67 | 16.59 | | Kilroot | 31.5 | 79 | 15.09 | 22.17 | 21.23 | 54.73 | 19.27 | 14.66 | 19.82 | 24.30 | 62.50 | 22.83 | | Magherafelt | 10 | 79 | 12.54 | 16.41 | 21.06 | 53.34 | 19.34 | 9.71 | 20.14 | 15.11 | 37.16 | 14.60 | | Moyle | 31.5 | 79 | 13.08 | 18.77 | 19.08 | 48.54 | 17.40 | 15.22 | 23.86 | 19.01 | 49.06 | 18.10 | | Tandragee | 10 | 79 | 10.96 | 14.25 | 22.28 | 55.63 | 20.40 | 8.73 | 18.60 | 16.82 | 40.79 | 16.18 | | Tamnamore | 40 | 100 | 11.67 | 15.01 | 21.66 | 54.47 | 19.93 | 9.02 | 21.52 | 15.26 | 37.17 | 14.75 | | Turleena | 40 | 100 | 11.62 | 14.97 | 22.01 | 55.32 | 20.24 | 8.97 | 21.44 | 16.06 | 39.09 | 15.50 | | | | | | | 11 | l 0 kV | | | | | | | | Aghyoule | 40 | 100 | 4.02 | 8.89 | 4.30 | 9.04 | 3.78 | 5.46 | 12.40 | 4.19 | 9.40 | 3.94 | | Airport Road | 40 | 100 | 4.71 | 6.70 | 8.09 | 17.60 | 7.62 | 5.49 | 9.94 | 7.89 | 17.70 | 7.61 | | Agivey | 40 | 100 | 6.27 | 9.60 | 5.86 | 13.48 | 5.30 | 6.68 | 10.61 | 6.73 | 15.65 | 6.34 | | Aught | 40 | 100 | 4.17 | 5.44 | 11.41 | 24.15 | 10.83 | 4.70 | 6.49 | 14.39 | 31.29 | 13.94 | | Antrim | 40 | 100 | 4.15 | 7.02 | 10.22 | 21.61 | 9.86 | 3.46 | 16.72 | 9.74 | 19.72 | 9.50 | | Ballylumford | 40 | 100 | 12.46 | 25.74 | 21.44 | 54.29 | 19.98 | 12.87 | 27.59 | 19.05 | 48.40 | 18.45 | | Ballymena | 40 | 100 | 4.34 | 8.08 | 9.13 | 19.51 | 8.80 | 5.24 | 11.05 | 9.19 | 20.44 | 8.84 | | Banbridge | 18.4 | 46.8 | 3.70 | 6.77 | 6.86 | 14.12 | 6.66 | 5.14 | 10.46 | 6.30 | 13.97 | 6.21 | | Ballyvallagh | 21.9 | 46.8 | 4.72 | 5.43 | 16.47 | 35.83 | 15.56 | 5.38 | 8.67 | 15.27 | 34.13 | 14.82 | | Ballynahinch | 18.4 | 46.8 | 4.13 | 6.79 | 5.65 | 11.93 | 5.36 | 3.82 | 12.83 | 5.64 | 11.70 | 5.47 | | Belfast
Central | n/a | n/a | 10.49 | 14.42 | 15.37 | 38.18 | 13.85 | 6.51 | 12.83 | 17.39 | 40.30 | 16.16 | | Belfast North | n/a | n/a | 4.21 | 6.59 | 14.95 | 31.73 | 14.08 | 3.12 | 11.53 | 13.94 | 27.49 | 13.50 | | Brockaghboy | 40 | 100 | 6.39 | 9.33 | 5.24 | 12.09 | 4.68 | 6.65 | 10.05 | 5.79 | 13.46 | 5.45 | | Carnmoney | 31.5 | 79 | 3.68 | 6.19 | 4.96 | 10.19 | 4.80 | 2.50 | 7.92 | 5.21 | 9.69 | 5.11 | | Castlereagh | 31.5 | 79 | 14.13 | 22.60 | 17.29 | 44.31 | 15.45 | 12.24 | 15.89 | 20.78 | 52.53 | 19.12 | | Coleraine | 40 | 100 | 5.52 | 13.12 | 12.50 | 28.09 | 11.49 | 6.44 | 15.82 | 14.21 | 32.87 | 13.47 | | Coolkeeragh | 31.5 | 79 | 9.66 | 21.44 | 24.88 | 61.16 | 22.31 | 10.02 | 21.97 | 26.43 | 65.27 | 24.94 | | Creagh | 31.5 | 79 | 3.25 | 3.91 | 8.82 | 17.59 | 8.38 | 4.25 | 6.57 | 8.94 | 19.01 | 8.64 | | Cregagh | 26.2 | 65 | 11.11 | 15.73 | 15.90 | 39.75 | 14.30 | 8.89 | 13.61 | 18.65 | 45.36 | 17.2 | | Culmore Road | 26.2 | 65 | 7.65 | 13.62 | 21.98 | 52.29 | 19.95 | 8.38 | 15.59 | 24.15 | 58.24 | 22.90 | | Drumquin | 40 | 100 | 5.82 | 9.13 | 7.48 | 16.98 | 6.78 | 6.45 | 11.30 | 7.72 | 17.86 | 7.34 | | Node | Rat | ing | | TI | nree phas | е | | | Sir | ngle phas | e | | |------------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Donegall
North | 31.5 | 79 | 7.64 | 12.29 | 17.64 | 41.97 | 16.47 | 5.66 | 10.80 | 19.06 | 43.05 | 18.27 | | Donegall
South | n/a | n/a | 5.42 | 7.57 | 13.30 | 29.78 | 12.60 | 4.69 | 3.05 | 13.23 | 28.75 | 12.83 | | Dromore | 31.5 | 79 | 4.26 | 6.58 | 13.99 | 29.76 | 12.43 | 4.25 | 6.22 | 13.48 | 28.67 | 12.67 | | Drumnakelly | 31.5 | 79 | 6.47 | 10.60 | 23.78 | 55.02 | 22.03 | 7.32 | 16.66 | 21.32 | 50.37 | 20.47 | | Dungannon | 40 | 100 | 6.12 | 10.61 | 20.93 | 47.95 | 19.42 | 6.97 | 14.83 | 19.05 | 44.65 | 18.33 | | Eden | 25 | 62.5 | 3.95 | 5.98 | 7.45 | 15.57 | 7.15 | 2.99 | 4.67 | 7.57 | 14.76 | 7.39 | | Enniskil | 31.5 | 79 | 3.85 | 4.97 | 9.77 | 20.31 | 8.57 | 4.72 | 6.45 | 11.20 | 24.37 | 10.35 | | Enniskillen | 31.5 | 79 | 10.84 | 12.49 | 3.24 | 8.09 | 3.12 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Finaghy | 31.5 | 79 | 8.93 | 15.29 | 18.45 | 44.89 | 17.19 | 6.74 | 13.35 | 20.21 | 47.10 | 19.34 | | Glengormley | 18.4 | 46.8 | 3.57 | 5.57 | 6.07 | 12.39 | 5.93 | 3.45 | 11.37 | 5.82 | 11.77 | 5.73 | | Gort Cluster | 40 | 100 | 7.13 | 9.15 | 8.40 | 19.76 | 7.98 | 7.85 | 12.24 | 9.31 | 22.25 | 8.89 | | Hannahstown | 31.5 | 79 | 10.54 | 21.21 | 20.72 | 51.50 | 19.19 | 10.33 | 18.60 | 22.66 | 56.17 | 21.60 | | Kells | 40 | 100 | 8.51 | 18.52 | 22.84 | 55.20 | 21.33 | 7.79 | 14.95 | 22.75 | 54.28 | 21.66 | | Killymallaght | 40 | 100 | 5.88 | 8.48 | 14.04 | 31.93 | 12.75 | 5.44 | 10.24 | 12.27 | 27.51 | 11.80 | | Knock | n/a | n/a | 4.99 | 6.86 | 14.71 | 32.41 | 13.34 | 3.59 | 11.58 | 14.68 | 29.98 | 13.82 | | Larne | 18.4 | 46.8 | 4.14 | 4.92 | 9.78 | 20.67 | 9.39 | 4.35 | 5.10 | 9.34 | 19.98 | 9.14 | | Limavady | 40 | 100 | 3.75 | 4.78 | 8.88 | 18.35 | 8.30 | 4.38 | 6.46 | 8.92 | 19.09 | 8.60 | | Lisburn | 18.4 | 46.8 | 5.11 | 7.12 | 13.27 | 29.36 | 12.62 | 5.18 | 9.51 | 12.08 | 26.81 | 11.76 | | Lisaghmore | 31.5 | 79 | 4.12 | 6.46 | 10.58 | 22.34 | 9.99 | 4.10 | 11.69 | 9.77 | 20.60 | 9.51 | | Loguestown | 26.2 | 65 | 4.05 | 7.37 | 7.70 | 16.20 | 7.27 | 4.27 | 8.88 | 7.91 | 16.84 | 7.64 | | Magherakeel
Cluster | 40 | 100 | 5.37 | 9.71 | 4.49 | 10.04 | 4.26 | 7.08 | 12.47 | 4.93 | 11.59 | 4.76 | | Moyle | 40 | 100 | 54.66 | 71.18 | 11.55 | 31.82 | 11.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 4.62 | 6.61 | 7.74 | 16.76 | 7.29 | 5.89 | 9.90 | 7.33 | 16.69 | 7.08 | | Newry | 18.4 | 46.8 | 3.68 | 6.54 | 5.85 | 12.03 | 5.65 | 3.62 | 12.17 | 5.64 | 11.54 | 5.52 | | Omagh | 40 | 100 | 4.76 | 7.32 | 17.74 | 38.69 | 15.72 | 5.07 | 9.45 | 17.78 | 39.28 | 16.60 | | Omagh South | 40 | 100 | 4.26 | 6.58 | 13.99 | 29.76 | 12.43 | 4.25 | 6.22 | 13.48 | 28.67 | 12.67 | | Rasharkin | 40 | 100 | 4.83 | 8.28 | 9.28 | 20.31 | 8.68 | 4.89 | 10.22 | 9.26 | 20.30 | 8.89 | | Rathgael | 26.2 | 65 | 4.14 | 6.40 | 6.00 | 12.70 | 5.70 | 3.85 | 12.84 | 5.94 | 12.35 | 5.76 | | Node | Rat | ing | | TI | hree phas | e | | | Sir | ngle phas | е | | |-------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Rosebank | 40 | 100 | 11.99 | 17.49 | 16.03 | 40.42 | 14.42 | 12.49 | 19.03 | 19.12 | 48.43 | 17.69 | | Slieve Kirk | 40 | 100 | 4.56 | 7.16 | 9.89 | 21.36 | 9.00 | 5.65 | 12.62 | 7.66 | 17.29 | 7.42 | | Springtown | n/a | n/a | 4.27 | 6.72 | 10.77 | 22.92 | 10.21 | 4.14 | 13.50 | 10.17 | 21.50 | 9.91 | | Strabane | 40 | 100 | 4.58 | 5.98 | 17.56 | 37.97 | 15.94 | 5.50 | 9.19 | 17.86 | 40.12 | 17.00 | | Tandragee | 31.5 | 79 | 8.25 | 17.70 | 26.15 | 62.90 | 24.11 | 7.67 | 15.40 | 23.48 | 55.87 | 22.48 | | Tremoge | 40 | 100 | 4.02 | 5.90 | 9.86 | 20.71 | 9.24 | 4.55 | 9.62 | 8.75 | 18.88 | 8.48 | | Tamnamore | 40 | 100 | 7.49 | 16.57 | 25.98 | 61.62 | 24.00 | 7.28 | 14.02 | 23.27 | 54.92 | 22.34 | | Waringstown | 18.4 | 46.8 | 4.52 | 7.04 | 8.95 | 19.30 | 8.62 | 4.66 | 16.17 | 8.16 | 17.71 | 7.99 | #### Northern Ireland Short Circuit Currents for Minimum Demand in 2030 | Node | Rat | ing | | Ti | nree phas | е | | | Sir | ngle phas | e | | |--------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | 400 kV | | | | | | | | | | | | | | Turleenan | 50 | 125 | 13.67 | 17.61 | 8.53 | 21.79 | 7.92 | 9.96 | 20.75 | 9.89 | 24.42 | 9.46 | | | | | | | 27 | 75 kV | | | | | | | | Ballylumford | 31.5 | 79 | 11.23 | 17.06 | 12.31 | 30.83 | 11.13 | 13.19 | 21.32 | 14.05 | 35.77 | 13.30 | | Castlereagh | 10 | 79 | 10.12 | 14.31 | 11.51 | 28.47 | 10.45 | 8.71 | 15.67 | 9.78 | 23.70 | 9.31 | | Coolkeeragh | 10 | 79 | 10.49 | 13.63 | 9.22 | 22.91 | 8.48 | 12.20 | 18.31 | 8.20 | 20.71 | 7.84 | | Hannahstown | 31.5 | 79 | 10.21 | 14.60 | 11.34 | 28.08 | 10.30 | 9.03 | 17.48 | 9.59 | 23.36 | 9.14 | | Kells | 10 | 79 | 10.74 | 14.93 | 12.10 | 30.13 | 10.97 | 9.68 | 14.69 | 12.43 | 30.55 | 11.83 | | Kilroot | 31.5 | 79 | 10.48 | 14.02 | 10.94 | 27.17 | 10.02 | 11.55 | 15.76 | 14.08 | 35.36 | 13.32 | | Magherafelt | 10 | 79 | 10.85 | 15.06 | 13.47 | 33.58 | 12.12 | 9.60 | 19.21 | 11.94 | 29.34 | 11.44 | | Moyle | 31.5 | 79 | 11.23 | 17.01 | 12.25 | 30.67 | 11.08 | 13.12 | 21.16 | 13.98 | 35.59 | 13.24 | | Tandragee | 10 | 79 | 10.38 | 14.68 | 15.01 | 37.23 | 13.46 | 8.86 | 18.42 | 13.56 | 32.96 | 12.99 | | Tamnamore | 40 | 100 | 10.88 | 15.15 | 14.67 | 36.59 | 13.16 | 9.03 | 20.85 | 12.53 | 30.54 | 12.03 | | Turleenan | 40 | 100 | 10.89 | 15.27 | 14.96 | 37.32 | 13.42 | 8.96 | 20.80 | 13.15 | 32.00 | 12.60 | | Node | Rat | ing | | TI | ree phas | е | | | Sir | ngle phas | е | | |--------------------|------|------|---------------|---------------|----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 11 | l0 kV | | | | | | | | Aghyoule | 40 | 100 | 3.97 | 8.71 | 4.22 | 8.83 | 3.71 | 5.36 | 12.13 | 4.11 | 9.19 | 3.88 | | Agivey | 40 | 100 | 6.66 | 9.30 | 6.13 | 14.26 | 5.51 | 7.08 | 10.20 | 7.33 | 17.22 | 6.84 | | Antrim | 40 | 100 | 4.44 | 7.18 | 9.11 | 19.55 | 8.73 | 3.63 | 16.69 | 9.10 | 18.64 | 8.82 | | Aught | 40 | 100 | 4.38 | 6.04 | 9.57 | 20.49 | 8.95 | 4.87 | 7.00 | 12.42 | 27.22 | 11.86 | | Airport Road | 40 | 100 | 4.28 | 6.40 | 8.40 | 17.89 | 8.05 | 5.19 | 9.68 | 8.20 | 18.20 | 8.00 | | Ballylumford | 40 | 100 | 10.27 | 20.41 | 14.37 | 35.60 | 13.64 | 11.36 | 23.41 | 14.92 | 37.40 | 14.36 | | Ballymena | 40 | 100 | 4.61 | 8.32 | 8.21 | 17.78 | 7.88 | 5.44 | 11.20 | 8.60 | 19.28 | 8.23 | | Banbridge | 18.4 | 46.8 | 3.82 | 6.94 | 6.39 | 13.26 | 6.22 | 5.20 | 10.55 | 6.01 | 13.35 | 5.92 | | Ballyvallagh | 21.9 | 46.8 | 5.30 | 6.40 | 12.99 | 28.96 | 12.35 | 5.78 | 9.22 | 13.18 | 29.88 | 12.70 | | Ballynahinch | 18.4 | 46.8 | 3.94 | 6.59 | 5.72 | 11.95 | 5.53 | 3.68 | 12.22 | 5.77 | 11.86 | 5.67 | | Belfast
Central | 40 | 100 | 9.18 | 14.06 | 19.66 | 48.03 | 18.07 | 9.29 | 15.34 | 24.84 | 60.77 | 23.34 | | Belfast North | 40 | 100 | 9.13 | 13.91 | 19.46 | 47.48 | 17.89 | 9.19 | 15.08 | 24.47 | 59.76 | 23.0 | | Brockaghboy | 40 | 100 | 6.73 | 9.03 | 5.43 | 12.65 | 4.82 | 6.84 | 9.65 | 6.11 | 14.28 | 5.71 | | CAM | 40 | 100 | 3.67 | 6.51 | 9.11 | 18.71 | 8.35 | 4.05 | 7.25 | 10.63 | 22.35 | 10.00 | | Carnmoney | 31.5 | 79 | 4.70 | 7.49 | 4.87 | 10.58 | 4.72 | 2.81 | 9.10 | 5.14 | 9.87 | 5.05 | | Castlereagh | 31.5 | 79 | 9.70 | 16.03 | 19.75 | 48.58 | 18.11 | 7.70 | 12.27 | 24.88 | 59.24 | 23.34 | | Coleraine | 40 | 100 | 3.91 | 6.71 | 9.09 | 18.96 | 8.26 | 4.52 | 8.01 | 11.45 | 24.70 | 10.67 | | Coolkeeragh | 31.5 | 79 | 7.88 | 15.85 | 17.40 | 41.57 | 15.61 | 8.59 | 17.49 | 20.33 | 49.19 | 18.86 | | Creagh | 31.5 | 79 | 3.92 | 4.79 | 9.00 | 18.79 | 8.51 | 5.57 | 7.40 | 9.20 | 20.70 | 8.87 | | Cregagh | 26.2 | 65 | 8.87 | 13.43 | 19.03 | 46.26 | 17.51 | 8.57 | 13.59 | 23.73 | 57.42 | 22.34 | | Culmore Road | 40 | 100 | 6.92 | 12.40 | 15.94 | 37.32 | 14.43 | 7.67 | 14.13 | 18.96 | 45.12 | 17.68 | | Drumquin | 40 | 100 | 5.92 | 9.20 | 7.31 | 16.65 | 6.57 | 6.50 | 11.37 | 7.57 | 17.54 | 7.17 | | Donegall
North | 31.5 | 79 | 8.80 | 13.59 | 19.41 | 47.14 | 17.89 | 8.46 | 13.76 | 23.88 | 57.65 | 22.5 | | Donegall
South | n/a | n/a | 5.25 | 7.13 | 13.11 | 29.16 | 12.48 | 4.33 | 2.99 | 13.71 | 29.28 | 13.2 | | Drumnakelly | 31.5 | 79 | 6.65 | 11.22 | 20.02 | 46.55 | 18.58 | 7.34 | 16.66 | 19.05 | 45.02 | 18.2 | | Dungannon | 40 | 100 | 6.41 | 10.89 | 18.42 | 42.56 | 16.96 | 7.09 | 14.75 | 17.46 | 41.04 | 16.6 | | Eden | 25 | 62.5 | 4.30 | 7.04 | 6.29 | 13.42 | 6.06 | 3.22 | 5.06 | 6.75 | 13.43 | 6.61 | | Node | Rat | ing | | TI | ree phas | е | | | Sir | ngle phas | e | | |------------------------|------|------|---------------|---------------|----------|-------|-------|---------------|---------------|-----------|-------|------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Enniskil | 31.5 | 79 | 3.93 | 5.15 | 9.10 | 19.00 | 7.97 | 4.78 | 6.61 | 10.56 | 23.04 | 9.78 | | Enniskillen | 31.5 | 79 | 10.38 | 12.10 | 3.22 | 7.98 | 3.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Finaghy | 31.5 | 79 | 8.32 | 12.81 | 18.40 | 44.33 | 17.05 | 5.73 | 11.53 | 22.16 | 50.15 | 21.0 | | Glengormley | 18.4 | 46.8 | 3.74 | 5.74 | 5.64 | 11.63 | 5.48 | 3.57 | 11.42 | 5.56 | 11.35 | 5.46 | | Gort Cluster | 40 | 100 | 7.30 | 9.42 | 8.14 | 19.21 | 7.63 | 7.98 | 12.46 | 9.14 | 21.89 | 8.66 | | Gowangis | 40 | 100 | 5.49 | 7.49 | 11.80 | 26.49 | 11.15 | 8.33 | 11.82 | 10.52 | 25.35 | 10.1 | | Hannahstown | 31.5 | 79 | 9.60 | 16.24 | 20.71 | 50.88 | 19.02 | 8.60 | 14.68 | 25.45 | 61.60 | 23.9 | | Kells | 40 | 100 | 9.05 | 16.86 | 18.30 | 44.60 | 16.97 | 8.88 | 17.03 | 19.72 | 47.94 | 18.5 | | Killymallaght | 40 | 100 | 6.03 | 9.17 | 12.14 | 27.75 | 10.85 | 5.56 | 10.46 | 11.23 | 25.27 | 10.6 | | Knock | n/a | n/a | 4.11 | 6.19 | 16.38 | 34.58 | 15.23 | 2.78 | 10.95 | 16.09 | 30.78 | 15.4 | | Larne | 18.4 | 46.8 | 4.50 | 5.47 | 8.41 | 18.12 | 8.05 | 4.64 | 5.31 | 8.49 | 18.41 | 8.27 | | Limavady | 40 | 100 | 2.73 | 3.92 | 6.56 | 12.49 | 6.11 | 3.19 | 4.92 | 7.49 | 14.86 | 7.17 | | Lisburn | 18.4 | 46.8 | 5.07 | 7.08 | 12.62 | 27.88 | 12.07 | 4.97 | 9.34 | 12.01 | 26.42 | 11.6 |
 Lisaghmore | 31.5 | 79 | 4.32 | 6.90 | 8.97 | 19.15 | 8.36 | 4.25 | 11.65 | 8.83 | 18.77 | 8.51 | | Loguestown | 26.2 | 65 | 3.42 | 5.08 | 6.19 | 12.51 | 5.78 | 3.60 | 6.55 | 6.84 | 13.99 | 6.54 | | Magherakeel
Cluster | 40 | 100 | 5.40 | 9.56 | 4.44 | 9.95 | 4.19 | 7.13 | 12.39 | 4.85 | 11.41 | 4.67 | | Moyle | 40 | 100 | 34.73 | 46.86 | 10.10 | 27.42 | 9.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 4.21 | 6.30 | 7.98 | 16.93 | 7.66 | 5.55 | 9.58 | 7.54 | 16.97 | 7.38 | | Newry | 18.4 | 46.8 | 3.78 | 6.71 | 5.48 | 11.34 | 5.32 | 3.71 | 12.26 | 5.41 | 11.14 | 5.32 | | Omagh | 40 | 100 | 5.10 | 7.77 | 16.29 | 36.03 | 14.33 | 5.30 | 9.71 | 16.81 | 37.48 | 15.5 | | Omagh South | 40 | 100 | 4.50 | 6.89 | 13.09 | 28.20 | 11.50 | 4.43 | 6.45 | 12.97 | 27.84 | 12.1 | | Rasharkin | 40 | 100 | 5.45 | 8.58 | 10.65 | 23.87 | 9.78 | 5.68 | 11.60 | 10.85 | 24.52 | 10.2 | | Rathgael | 26.2 | 65 | 3.90 | 6.19 | 6.10 | 12.71 | 5.89 | 3.67 | 12.23 | 6.06 | 12.46 | 5.95 | | Rosebank | 40 | 100 | 8.70 | 13.44 | 18.08 | 43.82 | 16.68 | 10.12 | 16.21 | 22.39 | 55.37 | 21.1 | | Slieve Kirk | 40 | 100 | 4.76 | 7.61 | 8.99 | 19.60 | 8.06 | 5.66 | 13.07 | 7.20 | 16.25 | 6.91 | | Springtown | n/a | n/a | 4.43 | 7.03 | 9.06 | 19.45 | 8.49 | 4.29 | 12.50 | 9.09 | 19.38 | 8.78 | | Strabane | 40 | 100 | 4.84 | 6.64 | 15.01 | 32.84 | 13.51 | 5.64 | 9.63 | 16.01 | 36.13 | 15.0 | | Tandragee | 31.5 | 79 | 8.19 | 17.24 | 21.59 | 51.89 | 19.95 | 7.67 | 15.61 | 20.70 | 49.27 | 19.7 | | Tremoge | 40 | 100 | 4.20 | 6.15 | 9.45 | 20.03 | 8.74 | 4.65 | 9.78 | 8.56 | 18.57 | 8.24 | | Table E-10 | North | ern Ire | eland S | hort C | ircuit C | urrent | s for M | linimur | n Demo | and in | 2030 | | |-------------|-------|---------|---------------|---------------|-----------|--------|---------|---------------|---------------|-----------|-------|-------| | Node | Rat | ing | | TI | nree phas | е | | | Sir | ngle phas | е | | | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Tamnamore | 40 | 100 | 7.73 | 15.93 | 22.26 | 53.04 | 20.32 | 7.47 | 14.10 | 21.03 | 49.83 | 19.96 | | Waringstown | 18.4 | 46.8 | 4.69 | 7.37 | 8.21 | 17.85 | 7.91 | 4.78 | 16.20 | 7.74 | 16.88 | 7.58 | | York | 18.4 | 46.8 | 9.20 | 14.21 | 19.96 | 48.75 | 18.32 | 9.36 | 15.64 | 25.28 | 61.90 | 23.73 | #### Northern Ireland Short Circuit Currents for Maximum Demand in 2030 | Node | Rat | ing | | TI | ree phas | е | | | Siı | ngle phas | е | | |--------------|------|------|---------------|---------------|----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 40 | 00 kV | | | | | | | | Turleenan | 50 | 125 | 16.05 | 19.36 | 10.73 | 27.80 | 10.31 | 10.14 | 21.82 | 11.63 | 28.76 | 11.34 | | | , | | | | 27 | 75 kV | | | | | | | | Ballylumford | 31.5 | 79 | 13.21 | 19.11 | 19.77 | 50.35 | 17.97 | 15.49 | 24.72 | 19.63 | 50.73 | 18.67 | | Castlereagh | 10 | 79 | 10.61 | 14.17 | 17.39 | 43.25 | 15.78 | 8.46 | 15.52 | 12.13 | 29.28 | 11.66 | | Coolkeeragh | 10 | 79 | 13.51 | 17.72 | 13.77 | 35.15 | 12.90 | 14.26 | 22.64 | 10.14 | 26.01 | 9.90 | | Hannahstown | 31.5 | 79 | 10.72 | 14.46 | 17.05 | 42.45 | 15.48 | 8.85 | 17.58 | 11.84 | 28.78 | 11.40 | | Kells | 10 | 79 | 13.07 | 17.64 | 21.02 | 53.47 | 19.21 | 9.74 | 14.68 | 17.49 | 43.03 | 16.74 | | Kilroot | 31.5 | 79 | 15.08 | 21.93 | 21.47 | 55.37 | 19.52 | 14.68 | 19.74 | 24.49 | 63.00 | 23.04 | | Magherafelt | 10 | 79 | 12.51 | 16.26 | 21.38 | 54.15 | 19.69 | 9.64 | 20.11 | 15.26 | 37.51 | 14.75 | | Moyle | 31.5 | 79 | 13.17 | 18.99 | 19.60 | 49.92 | 17.84 | 15.35 | 24.43 | 19.50 | 50.37 | 18.56 | | Tandragee | 10 | 79 | 10.92 | 14.09 | 22.77 | 56.82 | 20.87 | 8.61 | 18.54 | 17.09 | 41.36 | 16.45 | | Tamnamore | 40 | 100 | 11.67 | 14.90 | 22.22 | 55.88 | 20.44 | 8.81 | 21.47 | 15.53 | 37.72 | 15.02 | | Turleenan | 40 | 100 | 11.63 | 14.87 | 22.59 | 56.77 | 20.79 | 8.71 | 21.38 | 16.39 | 39.73 | 15.84 | | Node | Rat | ing | | TI | ree phas | е | | | Siı | ngle phas | е | | |--------------------|------|------|---------------|---------------|----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | | | | | | 11 | l0 kV | | | J | | | | | Aghyoule | 40 | 100 | 4.02 | 8.89 | 4.30 | 9.03 | 3.78 | 5.46 | 12.40 | 4.19 | 9.40 | 3.94 | | Agivey | 40 | 100 | 6.63 | 9.11 | 6.64 | 15.44 | 6.08 | 7.15 | 10.15 | 7.82 | 18.39 | 7.40 | | Antrim | 40 | 100 | 4.13 | 6.91 | 10.37 | 21.92 | 10.01 | 3.46 | 16.70 | 9.85 | 19.93 | 9.61 | | Aught | 40 | 100 | 4.16 | 5.46 | 11.40 | 24.12 | 10.83 | 4.71 | 6.52 | 14.38 | 31.28 | 13.92 | | Airport Road | 40 | 100 | 3.96 | 5.95 | 9.55 | 19.98 | 9.10 | 4.98 | 9.40 | 8.88 | 19.55 | 8.65 | | Ballylumford | 40 | 100 | 12.32 | 25.58 | 21.59 | 54.61 | 20.11 | 12.80 | 27.51 | 19.16 | 48.65 | 18.55 | | Ballymena | 40 | 100 | 4.33 | 8.00 | 9.26 | 19.77 | 8.92 | 5.25 | 10.95 | 9.28 | 20.66 | 8.94 | | Banbridge | 18.4 | 46.8 | 3.67 | 6.76 | 6.92 | 14.22 | 6.72 | 5.11 | 10.45 | 6.34 | 14.04 | 6.24 | | Ballyvallagh | 21.9 | 46.8 | 4.68 | 5.37 | 16.68 | 36.25 | 15.76 | 5.38 | 8.61 | 15.41 | 34.46 | 14.96 | | Ballynahinch | 18.4 | 46.8 | 3.70 | 6.34 | 6.28 | 12.94 | 6.03 | 3.53 | 12.29 | 6.08 | 12.37 | 5.94 | | Belfast
Central | 40 | 100 | 8.68 | 13.54 | 26.01 | 63.02 | 23.31 | 8.83 | 14.87 | 31.23 | 75.86 | 28.86 | | Belfast North | 40 | 100 | 8.62 | 13.36 | 25.64 | 62.08 | 23.03 | 8.73 | 14.57 | 30.63 | 74.30 | 28.36 | | Brockaghboy | 40 | 100 | 6.69 | 8.84 | 5.82 | 13.54 | 5.25 | 6.87 | 9.57 | 6.45 | 15.08 | 6.11 | | CAM | 40 | 100 | 4.15 | 8.99 | 11.98 | 25.35 | 11.27 | 4.55 | 9.49 | 12.88 | 27.81 | 12.36 | | Carnmoney | 31.5 | 79 | 4.48 | 7.00 | 5.59 | 12.03 | 5.40 | 2.66 | 9.04 | 5.68 | 10.74 | 5.56 | | Castlereagh | 31.5 | 79 | 9.27 | 16.20 | 26.16 | 63.96 | 23.37 | 7.10 | 11.49 | 31.32 | 73.63 | 28.88 | | Coleraine | 40 | 100 | 5.10 | 13.94 | 12.85 | 28.42 | 11.94 | 5.95 | 16.19 | 14.89 | 33.95 | 14.15 | | Coolkeeragh | 31.5 | 79 | 9.44 | 21.62 | 24.86 | 60.95 | 22.31 | 10.01 | 22.40 | 26.39 | 65.17 | 24.89 | | Creagh | 31.5 | 79 | 3.68 | 4.42 | 10.14 | 20.85 | 9.60 | 5.41 | 7.07 | 9.98 | 22.33 | 9.64 | | Cregagh | 26.2 | 65 | 8.31 | 12.82 | 24.94 | 60.06 | 22.40 | 8.06 | 12.92 | 29.55 | 70.86 | 27.37 | | Culmore Road | 40 | 100 | 7.53 | 13.73 | 21.97 | 52.14 | 19.94 | 8.38 | 15.82 | 24.12 | 58.16 | 22.86 | | Drumquin | 40 | 100 | 5.81 | 9.12 | 7.49 | 16.99 | 6.79 | 6.44 | 11.30 | 7.73 | 17.87 | 7.34 | | Donegall
North | 31.5 | 79 | 8.27 | 12.96 | 25.48 | 61.32 | 22.98 | 7.96 | 13.10 | 29.62 | 70.88 | 27.5 | | Donegall
South | n/a | n/a | 4.75 | 6.37 | 15.82 | 34.49 | 14.81 | 3.99 | 2.53 | 15.49 | 32.48 | 14.9 | | Dromore | 31.5 | 79 | 4.24 | 6.57 | 14.02 | 29.81 | 12.46 | 4.24 | 6.21 | 13.50 | 28.70 | 12.6 | | Node | Rat | ing | | TI | nree phas | е | | | Siı | ngle phas | е | | |------------------------|------|------|---------------|---------------|-----------|-------|-------|---------------|---------------|-----------|-------|-------| | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Drumnakelly | 31.5 | 79 | 6.16 | 10.49 | 24.50 | 56.21 | 22.67 | 7.06 | 16.57 | 21.65 | 50.84 | 20.78 | | Dungannon | 40 | 100 | 6.01 | 10.53 | 21.30 | 48.65 | 19.78 | 6.90 | 14.78 | 19.28 | 45.11 | 18.55 | | Eden | 25 | 62.5 | 3.99 | 6.40 | 7.49 | 15.71 | 7.19 | 3.01 | 4.84 | 7.62 | 14.89 | 7.44 | | Enniskil | 31.5 | 79 | 3.85 | 4.96 | 9.80 | 20.35 | 8.59 | 4.72 | 6.45 | 11.22 | 24.41 | 10.37 | | Enniskillen | 31.5 | 79 | 10.84 | 12.49 | 3.25 | 8.10 | 3.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Finaghy | 31.5 | 79 | 7.77 | 12.06 | 23.71 | 56.55 | 21.59 | 5.16 | 10.79 | 26.92 | 59.69 | 25.26 | | Glengormley | 18.4 | 46.8 | 3.56 | 5.53 | 6.13 | 12.51 | 5.99 | 3.44 | 11.34 | 5.86 | 11.86 | 5.77 | | Gort Cluster | 40 | 100 | 7.10 | 9.13 | 8.42 | 19.80 | 8.00 | 7.83 | 12.23 | 9.34 | 22.29 | 8.91 | | Gowangis | 40 | 100 | 5.14 | 6.86 | 13.73 | 30.42 | 13.04 | 8.23 | 11.46 | 11.45 | 27.54 | 11.13 | | Hannahstown | 31.5 | 80 | 9.21 | 16.35 | 27.61 | 67.45 | 24.83 | 8.09 | 14.14 | 31.89 | 76.50 | 29.64 | | Kells | 40 | 100 | 8.70 | 18.23 | 23.57 | 57.14 | 22.00 | 8.51 | 17.28 | 23.29 | 56.28 | 22.16 | | Killymallaght | 40 | 100 | 5.86 | 8.49 | 14.03 | 31.89 | 12.75 | 5.43 | 10.26 | 12.27 | 27.48 | 11.79 | | Knock | n/a | n/a | 3.51 | 5.34 | 20.46 | 41.56 | 18.67 | 2.48 | 10.53 | 18.40 | 34.16 | 17.52 | | Larne | 18.4 | 46.8 | 4.12 | 4.89 | 9.87 | 20.85 | 9.47 | 4.34 | 5.08 | 9.41 | 20.11 | 9.20 | | Limavady | 40 | 100 | 2.53 | 3.62 | 7.31 | 13.65 | 6.91 | 3.02 | 4.69 | 8.15 | 15.94 | 7.87 | | Lisburn | 18.4 | 46.8 | 4.62 | 6.39 | 14.93 | 32.34 | 14.08 | 4.70 | 8.97 | 13.30 | 28.91 | 12.89 | | Lisaghmore | 31.5 | 79 | 4.11 | 6.48 | 10.58 | 22.32 | 9.99 | 4.10 | 11.70 | 9.76 | 20.59 | 9.51 | | Loguestown | 26.2 | 65 | 3.84 | 6.79 | 7.81 | 16.22 | 7.42 | 3.98 | 8.99 | 8.04 | 16.85 | 7.79 | | Magherakeel
Cluster | 40 | 100 | 5.33 | 9.55 | 4.47 | 9.97 | 4.24 | 7.05 | 12.35 | 4.87 | 11.45 | 4.71 | | Moyle | 40 | 100 | 56.67 | 73.94 | 11.60 | 31.97 | 11.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Newtownards | 40 | 100 | 3.90 | 5.87 | 9.04 | 18.84 | 8.62 | 5.36 | 9.32 | 8.13 | 18.16 | 7.92 | | Newry | 18.4 | 46.8 | 3.65 | 6.54 | 5.90 | 12.11 | 5.70 | 3.60 | 12.17 | 5.67 | 11.60 | 5.55 | | Omagh | 40 | 100 | 4.74 | 7.30 | 17.79 | 38.77 | 15.77 | 5.05 | 9.43 | 17.82 | 39.34
 16.63 | | Omagh South | 40 | 100 | 4.24 | 6.57 | 14.02 | 29.81 | 12.46 | 4.24 | 6.21 | 13.50 | 28.70 | 12.69 | | Rasharkin | 40 | 100 | 5.30 | 8.12 | 12.48 | 27.81 | 11.72 | 5.62 | 11.55 | 11.98 | 27.02 | 11.54 | | Rathgael | 26.2 | 65 | 3.67 | 5.90 | 6.75 | 13.87 | 6.48 | 3.52 | 12.28 | 6.45 | 13.13 | 6.30 | | Rosebank | 40 | 100 | 8.16 | 12.87 | 23.34 | 56.06 | 21.06 | 9.95 | 16.08 | 27.54 | 67.97 | 25.60 | | Table-E 11: | North | ern Ire | eland S | Short C | ircuit C | urren | ts for M | laximu | ım Dem | nand in | 2030 | | |-------------|-------|---------|---------------|---------------|----------|-------|----------|---------------|---------------|-----------|-------|-------| | Node | Rat | ing | | TI | ree phas | е | | | Siı | ngle phas | e | | | | RMS | Peak | X/R | X/R | l" | ip | IB | X/R | X/R | l" | ip | IB | | | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | ratio
(AC) | ratio
(DC) | [kA] | [kA] | [kA] | | Slieve Kirk | 40 | 100 | 4.55 | 7.15 | 9.88 | 21.33 | 9.00 | 5.63 | 12.64 | 7.64 | 17.23 | 7.40 | | Springtown | n/a | n/a | 4.26 | 6.74 | 10.76 | 22.90 | 10.20 | 4.15 | 13.36 | 10.17 | 21.50 | 9.91 | | Strabane | 40 | 100 | 4.57 | 5.99 | 17.57 | 37.98 | 15.95 | 5.48 | 9.18 | 17.88 | 40.14 | 17.01 | | Tandragee | 31.5 | 79 | 7.80 | 17.57 | 26.97 | 64.34 | 24.83 | 7.38 | 15.37 | 23.89 | 56.50 | 22.86 | | Tremoge | 40 | 100 | 4.00 | 5.89 | 9.91 | 20.78 | 9.29 | 4.53 | 9.60 | 8.77 | 18.93 | 8.50 | | Tamnamore | 40 | 100 | 7.30 | 16.44 | 26.61 | 62.83 | 24.58 | 7.18 | 13.94 | 23.63 | 55.65 | 22.69 | | Waringstown | 18.4 | 46.8 | 4.45 | 7.02 | 9.05 | 19.46 | 8.72 | 4.62 | 16.17 | 8.22 | 17.81 | 8.05 | | York | 40 | 100 | 8.70 | 13.73 | 26.50 | 64.24 | 23.72 | 8.90 | 15.22 | 31.90 | 77.57 | 29.45 | # Approaches to Consultation for Developing the Grid ### F-1 EirGrid Approach to Consultation In December 2017 EirGrid launched Have Your Say¹, which outlines our approach to consultation. It followed a review of our consultation activities, after which, we made a commitment to improve the way we engage with the public and stakeholders. <u>Have Your Say</u> outlines the way we develop our projects and how the public can engage with us at each stage of project development. #### F-2 SONI Approach to Consultation SONI has reviewed its approach to engaging and consulting with the public and stakeholders, this included independent analysis by The Consultation Institute (TCI) which made a number of recommendations. Following engagement with a range of stakeholders and in line with TCI's recommendations, SONI has developed a new Grid Development Process². This three part process puts stakeholders and the community at the heart of what we do. To find out more visit www.soni.ltd.uk and if you have any queries you can contact us at info@soni.ltd.uk. # Appendix G: References ## The following documents are referenced in this All-Island Ten Year Transmission Forecast Statement: All-Island Generation Capacity Statement 2023-2032. EirGrid and SONI issued this report in January 2024. Its main purpose is to inform market participants, regulatory agencies and policy makers of the likely minimum generation capacity required to achieve an adequate supply and demand balance for electricity for the period 2023 to 2032. Available on https://cms.eirgrid.ie/sites/ default/files/publications/19035-EirGrid-Generation-Capacity-Statement-Combined-2023-V5-Jan-2024.pdf Transmission Development Plan Ireland 2024-2033, CRU approved version published in September 2024. The main purpose of this document is to document the plan for the development of the Irish transmission system and interconnection for the following 10 year period. Available on https://cms.eirgrid.ie/sites/ default/files/publications/Transmission-Development-Plan-2024.pdf. Transmission Development Plan Northern Ireland 2023-2032, UR approved version published in January 2025. The main purpose of this document is to document the plan for the development of the Northern Ireland transmission system and interconnection for the following 10 year period. Available on https://www.soni.ltd.uk/community/projects-in-your-area/tdpni EirGrid Grid Code Version 14.3. The EirGrid Grid Code covers technical aspects relating to the operation and use of the transmission system, and to plant and apparatus connected to the transmission system or to the distribution system. Available on https://cms.eirgrid.ie/sites/default/files/publications/ GridCodeVersion14.3.pdf. #### SONI Grid Code, June 2024. The SONI Grid Code is designed to permit the development, maintenance and operation of an efficient, co-ordinated and economical Transmission System in Northern Ireland. The grid code is prepared by SONI pursuant to condition 16 of SONI's Licence. Available on https://cms.soni.ltd.uk//sites/default/files/2024-10/SONI_GridCode_ Jun_2024.pdf. Transmission System Security and Planning Standards Ireland, May 2016. This document sets out the technical standards by which the adequacy of the grid in Ireland is determined. Available on http://www.eirgridgroup.com/site-files/library/EirGrid/EirGrid-Transmission-System-Security-and-Planning-Standards-TSSPS-Final-May-2016-APPROVED.pdf. Transmission System Security and Planning Standards Northern Ireland, June 2023. This document sets out the technical standards by which the adequacy of the grid in Northern Ireland is determined. Available on https://www.soni.ltd. uk/customer-and-industry/generalcustomer-information/Transmission-System-Security-and-Planning-Standards-June-2023.pdf e Electricity Regulation Act, 1999. This act provides the regulatory framework for the introduction of competition in the generation and supply of electricity in Ireland. The Act provided for the establishment of the Commission for Regulation of Utilities (CRU) (previously called the Commission for Energy Regulation) and gave it the necessary powers to licence and regulate the generation, distribution, transmission and supply of electricity. Available on www.cru.ie. • EirGrid's TSO Licence. On June 29 2006, the CER issued a Transmission System Operator (TSO) Licence to EirGrid plc. pursuant to Section 14(1)(e) of the Electricity Regulation Act, 1999, as inserted by Regulation 32 of S.I. No. 445 of 2000 – European Communities (Internal Market in Electricity) Regulations 2001. The most recent update was issued in Mach 2017. Available on www.cru.ie. SONI's Licence to Participate in the Transmission of Electricity, updated to February 2019. Available on www.uregni.gov.uk. Condition 33 requires SONI to prepare a statement (in a form; in consultation with EirGrid; and based on methodologies approved by UREGNI) showing in respect of each of the ten succeeding financial years; circuit capacity; forecast electrical flows and loading on each part of the transmission system; and fault levels for each transmission node. Ireland's Climate Action Plan published by the Department of Communications, Climate Action and Environment. Available on www.dccae.gov.ie. Northern Ireland Energy Strategy 'Path to Net Zero Energy' published by the Department for the Economy. Available on https://www.economy-ni.gov.uk/articles/northern-ireland-energy-strategy-path-net-zero-energy # Appendix H: Power flows | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |----------------|----------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sur | nmer Va | lley | w | inter Pe | ak | | | | | | MW | MVAR | % | | Louth | Tandragee | 1 | 275 | 3.28 | -1.37 | 0.5 | 91 | 2.3 | 10.3 | -43.6 | -1.12 | 6.15 | 0.56 | -0.75 | 0.11 | | Louth | Tandragee | 2 | 275 | 3.27 | -1.41 | 0.5 | 91.1 | 1.29 | 10.3 | -43.7 | -0.63 | 6.15 | 0.55 | -0.76 | 0.11 | | Ballylumford | Hana2A | 2 | 275 | 47.6 | -0.89 | 6.71 | 103 | -13.6 | 11.8 | 72.5 | 19.2 | 10.6 | 221 | 4.46 | 25.1 | | Ballylumford | Kellis | 1 | 275 | 12.3 | 29.1 | 4.45 | -139 | 46.1 | 16.6 | 35.9 | 31.9 | 6.77 | 64.8 | 57.1 | 9.81 | | Ballylumford | Hannahstown | 1 | 275 | -14 | 17.2 | 3.12 | -65.2 | 5.57 | 7.43 | -8.04 | 15.4 | 2.45 | 54.3 | 20.7 | 6.6 | | Ballylumford | Ballycro | 1 | 275 | -30.8 | -36.8 | 6.76 | 24.6 | -50.7 | 6.39 | -2.31 | -5.34 | 0.82 | 52.1 | -11.5 | 6.06 | | Ballylumford | Ballycro | 2 | 275 | - | - | - | - | - | - | -3.69 | -13 | 1.9 | 92.4 | -20.1 | 10.7 | | Castlreagh | Hannahstown | 1 | 275 | -21.4 | -16.8 | 3.84 | -7.49 | -13.3 | 1.74 | -29.5 | -33.7 | 6.31 | -64.3 | -35.7 | 8.34 | | Castlreagh | Hannahstown | 2 | 275 | -21.4 | -16.8 | 3.84 | -7.49 | -13.3 | 1.74 | -29.5 | -33.7 | 6.31 | -64.3 | -35.7 | 8.34 | | Castlreagh | Kilroot | 1 | 275 | -23.5 | -2.91 | 3.33 | -199 | 36.4 | 22.9 | -27.5 | -16.2 | 4.5 | -159 | 21.8 | 18.2 | | Castlreagh | Tandragee | 1 | 275 | -19.7 | 34.7 | 5.63 | -122 | 32.2 | 14.4 | -8.91 | 2.61 | 1.31 | -47.6 | 13.7 | 5.62 | | Coolkeeragh | Coolkeeragh 2A | 1 | 275 | 88 | -39.6 | 12.7 | 114 | -9.44 | 13.7 | 109 | -46.6 | 15.6 | 60.8 | -56.7 | 9.93 | | Coolkeeragh | Coolkeeragh 2B | 1 | 275 | 88 | -39 | 12.7 | 114 | -8.82 | 13.7 | 109 | -46.1 | 15.6 | 60.8 | -56.1 | 9.88 | | Coolkeeragh 2A | Magherafelt | 1 | 275 | 88 | -35.3 | 12.5 | 114 | -5.28 | 13.6 | 109 | -42.7 | 15.4 | 60.8 | -52.7 | 9.63 | | Coolkeeragh 2B | Magherafelt | 2 | 275 | 88 | -35.3 | 12.5 | 114 | -5.29 | 13.6 | 109 | -42.7 | 15.4 | 60.8 | -52.7 | 9.63 | | Hannahstown |
Ballycro | 1 | 275 | -49 | -12.2 | 7.11 | -104 | 2.9 | 11.8 | -73.7 | -30.1 | 11.2 | -223 | -7.78 | 25.4 | | Kellis | Kilroot | 1 | 275 | 19.5 | -12 | 3.22 | -128 | 23.9 | 14.8 | 26.4 | -6.18 | 3.81 | -59.6 | 17.3 | 7.04 | | Kellis | Kilroot | 2 | 275 | 19.5 | -12 | 3.22 | -128 | 23.9 | 14.8 | 26.4 | -6.18 | 3.81 | -59.6 | 17.3 | 7.04 | | Kellis | Magherafelt | 1 | 275 | -43 | 13.9 | 6.36 | 17.3 | -29.6 | 3.89 | -56.5 | 6.32 | 8 | 42.1 | -10.6 | 4.93 | | Kellis | Tandragee | 1 | 275 | 8.14 | 6.3 | 1.45 | 95.2 | -21.3 | 11.1 | 17.7 | 0.8 | 2.49 | 105 | -20.3 | 12.1 | | Magherafelt | Tamnamore | 1 | 275 | 59.3 | 7.61 | 8.42 | 89.6 | 7 | 10.2 | 76.8 | -8.67 | 10.9 | 109 | -22.1 | 12.6 | | Magherafelt | Tamnamore | 2 | 275 | 59.3 | 7.61 | 8.42 | 89.6 | 7 | 10.2 | 76.8 | -8.67 | 10.9 | 109 | -22.1 | 12.6 | | Tandragee | Tamnamore | 1 | 275 | -38.3 | -17.2 | 5.91 | -42.7 | -15.8 | 5.17 | - | - | - | - | - | - | | Tandragee | Tamnamore | 2 | 275 | -38.3 | -17.2 | 5.91 | -42.7 | -15.8 | 5.17 | - | - | - | - | - | - | | Tandragee | Turleenan | 1 | 275 | - | - | - | - | - | - | -80.5 | -37.5 | 12.5 | -122 | -27 | 14.2 | | Tandragee | Turleenan | 2 | 275 | - | - | - | - | - | - | -80.5 | -37.5 | 12.5 | -122 | -27 | 14.7 | | Tamnamore | Turleenan | 1 | 275 | - | - | - | - | - | - | 50.8 | -12.3 | 7.36 | 14.4 | -23.9 | 3.10 | | Tamnamore | Turleenan | 2 | 275 | - | - | - | - | - | - | 50.8 | -12.3 | 7.36 | 14.4 | -23.9 | 3.16 | | Antrim | Kells | 1 | 110 | 1.02 | 7.8 | 9.59 | 4.29 | 5.51 | 6.78 | -5.58 | 3.47 | 8.01 | -24.2 | -0.49 | 23. | | Antrim | Kells | 2 | 110 | 0.23 | -8.11 | 9.9 | 3.72 | -7.14 | 7.82 | -6.31 | -7.36 | 11.8 | -25.6 | -13.7 | 28. | | Ballylumford | Ballyvallagh | 1 | 110 | 13 | 1.18 | 15.9 | 0.14 | 1.43 | 1.39 | 8.32 | 4.26 | 11.4 | 54.8 | -2.73 | 53 | | Ballylumford | Ballyvallagh | 2 | 110 | 13 | 1.18 | 15.9 | 0.14 | 1.43 | 1.39 | 8.32 | 4.26 | 11.4 | 54.8 | -2.73 | 53. | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------------|-------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Ballylumford | Eden | 1 | 110 | 16.5 | -21.7 | 19 | 31.9 | 2.13 | 19.2 | 12.4 | -9.16 | 10.8 | 41.9 | -2.11 | 25.3 | | Ballylumford | Eden | 2 | 110 | 16.5 | -21.8 | 19.1 | 31.9 | 2.15 | 19.3 | 12.5 | -9.19 | 10.8 | 42.1 | -2.1 | 25.4 | | Ballymena | Kells | 1 | 110 | -9.19 | 0.36 | 8.44 | -24.3 | -5.49 | 20.1 | -9.51 | -1.36 | 8.82 | -30.5 | -10.6 | 26 | | Ballymena | Kells | 2 | 110 | -8.93 | 0.41 | 8.2 | -23.7 | -5.11 | 19.5 | -9.23 | -1.26 | 8.55 | -29.7 | -10 | 25.2 | | Banbridge | Tandragee | 1 | 110 | -5.71 | -0.86 | 7.04 | -19.5 | -3.63 | 19.3 | -6.93 | -1.07 | 8.55 | -23.7 | -4.58 | 23.4 | | Banbridge | Tandragee | 2 | 110 | -5.97 | -0.94 | 7.37 | -20.4 | -4.11 | 20.2 | -7.24 | -1.2 | 8.96 | -24.7 | -5.17 | 24.5 | | Ballyvallagh | | 1 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.18 | 0.13 | 0 | -0.19 | 0.13 | | Ballyvallagh | Kells | 1 | 110 | 6.45 | 1.04 | 6 | -16.5 | -2.59 | 13.5 | 0.38 | 3.82 | 3.52 | 28 | -9.07 | 23.7 | | Ballyvallagh | Kells | 2 | 110 | 6.74 | 1.12 | 6.27 | -17.3 | -2.68 | 14.1 | 0.39 | 4.02 | 3.71 | 29.2 | -9.45 | 24.8 | | Ballyvallagh | Larne | 1 | 110 | 6.33 | 0.68 | 8.06 | 17 | 4.67 | 15.6 | 8.62 | 1.04 | 11 | 27.9 | 5.98 | 25.2 | | Ballyvallagh | Larne | 2 | 110 | 6.34 | 0.68 | 8.08 | 17.1 | 4.68 | 15.7 | 7.2 | 0.92 | 9.19 | 23.2 | 5.24 | 21.1 | | Ballynahinch | Castlereagh | 1 | 110 | -8.3 | -1.36 | 10.3 | -28.4 | -5.91 | 28.1 | -10.2 | -1.7 | 12.6 | -34.9 | -7.8 | 34.7 | | Ballynahinch | Castlereagh | 2 | 110 | -8.32 | -1.36 | 10.3 | -28.4 | -5.91 | 28.2 | -10.2 | -1.69 | 12.6 | -35 | -7.79 | 34.8 | | Belfast North Main | Donegal | 1 | 110 | -6.76 | -0.19 | 9.01 | -23.1 | -3.65 | 28.5 | - | - | - | - | - | - | | Belfast North Main | Donegal | 2 | 110 | -6.78 | -0.3 | 9.04 | -23.2 | -3.85 | 28.7 | - | - | - | - | - | - | | Beln1A | York St | 1 | 110 | - | - | - | - | - | - | -7.93 | -0.43 | 3.97 | -27.2 | -4.88 | 13.8 | | Beln1B | York St | 2 | 110 | - | - | - | - | - | - | -7.93 | -0.43 | 3.97 | -27.2 | -4.88 | 13.8 | | Brock1 | Garvagh Ni | 1 | 110 | - | - | - | 14.2 | -1.84 | 9.97 | 0 | 0 | 0 | 4.75 | 0.89 | 3.36 | | Garvagh Ni | Rashark1 | 1 | 110 | - | 0.53 | 0.28 | 41.2 | -8.67 | 21.1 | 0 | 0.47 | 0.25 | 18.5 | -1.59 | 9.27 | | Carn1A | Eden1A | 1 | 110 | -11.2 | 22 | 35.8 | -14.7 | 0.85 | 17.1 | -6.27 | -0.85 | 5.41 | -20.7 | -4.11 | 14.4 | | Carn1B | Eden1B | 2 | 110 | -11.2 | 22.1 | 36 | -14.7 | 0.85 | 17.1 | -6.29 | -0.84 | 5.43 | -20.8 | -4.11 | 14.4 | | Cast1A | Creg1A | 1 | 110 | 16.1 | -8.93 | 14 | 55.1 | 0.39 | 38 | 3.41 | 4.41 | 4.22 | 19.6 | 28 | 23.6 | | Cast1A | Creg1B | 2 | 110 | 16.1 | -8.95 | 13.9 | 54.9 | 0.34 | 37.9 | 3.36 | 4.39 | 4.19 | 19.5 | 27.9 | 23.5 | | Cast1A | Knck1A | 1 | 110 | 6.68 | -4.62 | 12.3 | 22.8 | -0.8 | 31.3 | 7.13 | -3.72 | 12.2 | 24.4 | -0.28 | 33.4 | | Cast1A | Knck1B | 2 | 110 | 6.68 | -4.54 | 12.2 | 22.8 | -0.72 | 31.3 | 7.13 | -3.65 | 12.1 | 24.4 | -0.2 | 33.4 | | Cast1B | Nard1A | 1 | 110 | 5.83 | -7.51 | 8.72 | 20.8 | -3.7 | 17.1 | 6.99 | -5.95 | 8.42 | 24.8 | -2.39 | 20.1 | | Cast1B | Nard1B | 2 | 110 | 5.72 | -7.39 | 8.57 | 20.4 | -3.74 | 16.8 | 6.84 | -5.87 | 8.27 | 24.3 | -2.48 | 19.7 | | Cast1B | Rath1A | 1 | 110 | 7.48 | 0.43 | 9.14 | 25.7 | 4.85 | 25.4 | 9.08 | 0.87 | 11.1 | 31.2 | 6.54 | 31 | | Cast1B | Rath1B | 2 | 110 | 7.85 | 0.56 | 9.6 | 26.9 | 5.35 | 26.7 | 9.51 | 1.02 | 11.7 | 32.7 | 7.16 | 32.5 | | Cast1B | Rose1A | 1 | 110 | 4.92 | -1.08 | 3.5 | 14.2 | 1.74 | 9.4 | 10.6 | -0.22 | 7.38 | 31.4 | 5.49 | 21 | | Cast1B | Rose1B | 2 | 110 | 5 | -1.07 | 3.55 | 14.4 | 1.79 | 9.56 | 10.7 | -0.21 | 7.46 | 31.7 | 5.56 | 21.2 | | Cent1A | Creg1A | 1 | 110 | -7.08 | -1.13 | 4.98 | -24.2 | -4.83 | 17.1 | - | - | _ | - | - | _ | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |---------|------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sui | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Cent1B | Creg1B | 2 | 110 | -7.09 | -1.13 | 4.99 | -24.2 | -4.83 | 17.2 | - | - | - | - | - | - | | Cole1- | Cool1- | 1 | 110 | -15.5 | 1.56 | 19 | -13.8 | -11.7 | 17.6 | - | - | - | - | - | - | | Cole1- | Lima1- | 1 | 110 | -11.1 | 1.88 | 13.7 | -6.76 | -8.01 | 10.2 | - | - | - | - | - | - | | Cent1A | Corp St | 1 | 110 | - | - | - | - | - | - | -7.4 | -1.19 | 3.75 | -25.3 | -5.11 | 12.9 | | Cent1B | Corp St | 2 | 110 | - | - | - | - | - | - | -7.41 | -1.19 | 3.75 | -25.3 | -5.1 | 12.9 | | Cole1- | Col_Hisc | 1 | 110 | - | - | - | - | - | - | 0.01 | 18.7 | 9.33 | 0.07 | -49.7 | 24.8 | | Cole1- | Cam | 1 | 110 | - | - | - | - | - | - | -19.1 | -5.51 | 24.3 | -25.7 | 7.64 | 26 | | Cole1- | Cam | 2 | 110 | - | - | - | - | - | - | -18.8 | -5.23 | 23.8 | -25.2 | 7.71 | 25.6 | | Cool1- | Cam | 1 | 110 | - | - | - | - | - | - | 24.9 | 10.5 | 32.9 | 36.3 | -4.68 | 35.5 | | Cole1- | Loge1A | 1 | 110 | 5.63 | 0.55 | 6.9 | 17.9 | 4.46 | 17.9 | 2.37 | -14.2 | 17.5 | 17 | -10.1 | 19.2 | | Cole1- | Loge1B | 2 | 110 | 5.51 | 0.54 | 6.76 | 17.5 | 4.38 | 17.5 | 11.6 | 17.4 | 25.5 | 29.5 | 22.9 | 36.3 | | Cole1- | Rashark1 | 1 | 110 | 3.91 | -3.69 | 2.89 | -22.1 | 0.22 | 11.5 | 10.2 | -10.7 | 7.91 | -32.5 | 13.6 | 18.3 | | Cool1- | Cool1 | 1 | 110 | 8.26 | -25.3 | 13.3 | -9.91 | -13.9 | 7.12 | -1.45 | -0.55 | 0.77 | -66 | 1 | 27.5 | | Cool1- | Culmore_Rd | 1 | 110 | 0 | -15.6 | 7.81 | -11.1 | -12.4 | 8.33 | 0 | -14.5 | 7.25 | -3.71 | -14.1 | 7.27 | | Cool1- | Kill1-Cl | 1 | 110 | 22.4 | -8.39 | 16.8 | 3.1 | 12.8 | 7.93 | 25.4 | -4.92 | 18.1 | 29.8 | 12.5 | 19.5 | | Cool1- | Lima1- | 1 | 110 | 17.7 | -2.62 | 21.8 | 17.8 | 12.4 | 21.1 | 21.4 | -0.43 | 26.1 | 29.9 | -6.12 | 29.6 | | Cool1- | Lsmr1A | 1 | 110 | 5.58 | 0.73 | 6.87 | 16.9 | 4.69 | 17 | 6.21 | 0.9 | 7.65 | 20.5 | 5.2 | 20.5 | | Cool1- | Lsmr1B | 2 | 110 | 5.6 | 0.74 | 6.89 | 16.9 | 4.7 | 17 | 6.23 | 0.9 | 7.67 | 20.6 | 5.21 | 20.6 | | Cool1- | Sprn1A | 1 | 110 | 4.83 | -0.57 | 5.93 | 16.5 | 1.81 | 16.1 | 5.51 | -0.36 | 6.73 | 18.8 | 2.39 | 18.4 | | Cool1- | Sprn1B | 2 | 110 | 4.83 | -0.68 | 5.94 | 16.5 | 1.69 | 16.1 | 5.5 | -0.47 | 6.73 | 18.8 | 2.28 | 18.4 | | Cool1- | Strabane | 1 | 110 | 33.7 | -13.5 | 25.4 | 28.2 | 10.2 | 18.1 | 38.9 | -8.63 | 27.9 | 58.6 | 6.48 | 35.5 | | Aught | Culmore_Rd | 1 | 110 | 0 | 0 | 0 | 11.1 | -2.7 | 5.72 | - | - | - | 3.72 | -0.8 | 1.9 | | Creagh | Kels1- | 1 | 110 | -12.5 | 4.56 | 16.3 | -36.6 | -0.45 | 35.6 | - | - | - | - | - | - | | Creagh | Tamnamor | 1 | 110 | -3.74 | -7.21 | 7.45 | -17.5 | -11.4 | 16.8 | -4.7 | -5.82 | 6.86 | -12.3 | -14.3 | 15.2 | | Corp St | Creg1A | 1 | 110 | - | - | - | - | - | - | 6.96 | -12.9 | 7.32 | 15.9 | -31.3 | 17.6 | | Corp St | Creg1B | 2 | 110 | - | - | - | - | - | - | 6.93 | -12.9 | 7.31 | 15.8 | -31.3 | 17.5 | | Corp St | York St | 1 | 110 | - | - | - | - | - | - | -14.4 | 12.1 | 9.38 | -41.1 | 26.6 | 24.5 | | Corp St | York St | 2 | 110 | - | - | - | - | - | - | -14.4 | 12.1 | 9.38 | -41.1 | 26.6 | 24.5 | | Creagh | T_Gowangis | 1 | 110 | - | - | - | - | - | - | -16.9 | 2.16 | 15.6 | -61.1 | -3.07 | 49.4 | | Done1C | York St | 1 | 110 | - | - | - | - | - | - | 22.4 | -20.1 | 15 | 68.1 | -30.4 | 37.3 | | Done1B | York St | 2 | 110 | - | - | - | - | - | - | 22.2 | -16.1 | 13.7 | 68.5 | -26.5 | 36.7 | | Done1C | Hana1A | 1 | 110 | -14.7 | 1.78 | 10.3 | -49.6 | -6.52 | 31.6 | -29 | 15.3 | 22.8 | -90.7 | 22.4 | 59.1 | | | | | | | | |)22 | | | | | | 31 | | | |----------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Done1B | Hana1A | 2 | 110 |
-11.6 | 7.5 | 9.62 | -40.3 | 1.32 | 25.5 | -28.5 | 18.8 | 23.7 | -89.8 | 25.8 | 59.1 | | Done1D | Finy1B | 1 | 110 | -6.2 | 5.36 | 11.9 | -21.9 | 2.07 | 25.5 | -7.31 | 5.69 | 13.4 | -25.8 | 0.88 | 30 | | Done1A | Finy1A | 2 | 110 | -6.99 | -7.86 | 15.3 | -23.3 | -12.4 | 30.7 | -8.23 | -8.68 | 17.3 | -27.3 | -13.8 | 35.6 | | Dromore | Drumquin | 1 | 110 | 0 | -0.95 | 0.51 | -20.2 | 4.64 | 10.4 | 0 | -4.47 | 2.39 | -16.1 | -0.72 | 8.06 | | Dromore | Enniskil | 1 | 110 | 10.8 | -4.15 | 14.1 | 20.4 | 3.63 | 20.1 | 12.9 | -1.61 | 15.9 | 39.3 | 5.84 | 38.6 | | Dromore | Enniskil | 2 | 110 | 10.8 | -4.15 | 14.1 | 20.4 | 3.63 | 20.1 | 12.9 | -1.61 | 15.9 | 39.3 | 5.84 | 38.6 | | Dromore | Omah1- | 1 | 110 | -10.7 | 4.6 | 5.87 | -10.2 | -5.93 | 5.91 | -12.9 | 3.83 | 6.75 | -31.1 | -5.47 | 15.8 | | Dromore | Omah1- | 2 | 110 | -10.8 | 4.64 | 5.92 | -10.3 | -5.97 | 5.29 | -13 | 3.86 | 6.8 | -31.4 | -5.5 | 14.2 | | Drum1- | Tand1A | 1 | 110 | -3.76 | -5.86 | 8.82 | -7.53 | -23.4 | 21.8 | -2.6 | -6.47 | 8.83 | -19.2 | -22.2 | 25.9 | | Drum1- | Tand1A | 2 | 110 | -3.76 | -5.86 | 8.82 | -7.53 | -23.4 | 21.8 | -2.6 | -6.47 | 8.83 | -19.2 | -22.2 | 25.9 | | Drum1- | Tand1A | 3 | 110 | -4.2 | -5.97 | 6.76 | -8.95 | -24.2 | 20.5 | -3.02 | -6.66 | 6.77 | -21.1 | -22.4 | 24.4 | | Drum1- | Tamnamor | 1 | 110 | -6.04 | 6.77 | 8.32 | -28.1 | 25.4 | 30.6 | -10.2 | 6.71 | 6.58 | -19 | 20 | 14.3 | | Drum1- | Tamnamor | 2 | 110 | -6.32 | 6.8 | 8.52 | -29.4 | 26.1 | 31.7 | -10.1 | 7.88 | 6.92 | -18.8 | 21.6 | 14.8 | | Drumquin | Curr_Wf | 1 | 110 | - | - | - | - | - | - | - | -1.62 | 2.03 | -4.2 | -0.67 | 8.5 | | Drumquin | Wind_Pt | 1 | 110 | - | - | - | - | - | - | - | -1.95 | 3.25 | -5.15 | -0.78 | 8.69 | | Dung1- | Tamnamor | 1 | 110 | -10.1 | -0.42 | 6.45 | -25.5 | -14.1 | 16.4 | -11.1 | 0.37 | 7.09 | -46 | -14.3 | 27.1 | | Dung1- | Tamnamor | 2 | 110 | -7.06 | 0.67 | 4.93 | -19 | -7.47 | 14.2 | -7.69 | 1.3 | 5.41 | -33.3 | -5.85 | 23.5 | | Dung1B | Omah1- | 1 | 110 | -1.85 | -3.05 | 1.92 | -24.2 | 11.4 | 13.9 | -2.9 | -5.97 | 3.57 | 12.8 | 6.32 | 7.4 | | Dung1B | Tamnamor | 3 | 110 | -8.85 | -1.69 | 4.84 | -21.6 | -14.4 | 13.4 | -9.76 | -0.97 | 5.27 | -39.6 | -15.6 | 22 | | Enniskil | Ennk_Pst | 1 | 110 | -0.25 | 0.56 | 0.49 | 0.3 | -0.86 | 0.73 | -0.15 | 4.28 | 3.42 | 0.57 | 1.08 | 0.98 | | Cam | Lima1- | 1 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | -13.4 | 0.26 | 16.4 | -7.27 | 10.3 | 12.2 | | Finy1A | Hana1A | 1 | 110 | -11.6 | -7.67 | 9.66 | -39 | -14.5 | 28.9 | -13.4 | -8.66 | 11.1 | -45 | -16.2 | 33.2 | | Finy1B | Hana1A | 2 | 110 | -10.8 | 5.41 | 8.37 | -37.5 | -0.1 | 26 | -12.4 | 5.55 | 9.44 | -43.3 | -1.72 | 30.1 | | Glen1A | Kels1- | 1 | 110 | -7.38 | -5.42 | 11.2 | -23.3 | -12.4 | 29.4 | -3.15 | -0.48 | 3.88 | -10.8 | -1.84 | 12.1 | | Glen1B | Kels1- | 2 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | -3.15 | -0.48 | 3.88 | -10.8 | -1.84 | 12.1 | | Gort | Omah1- | 1 | 110 | 0.04 | 2.06 | 1.03 | 5.62 | 4 | 3.45 | -0.13 | 0.25 | 0.14 | 16 | 8.98 | 9.17 | | Gort | Tamnamor | 1 | 110 | -0.04 | 1.68 | 0.84 | 21 | -6.03 | 10.9 | 0.13 | 3.67 | 1.84 | -7.1 | -6.88 | 4.94 | | Hana1A | Hana1B | 1 | 110 | -16.4 | -2.12 | 5.6 | -58.6 | 8.99 | 20.1 | -28 | 29.6 | 13.8 | -102 | 22 | 35.3 | | Hana1A | Lisb1A | 1 | 110 | 2.44 | -10.8 | 13.5 | 13.1 | -7.85 | 14.8 | 1.87 | -10.8 | 13.3 | 23.4 | -1.37 | 22.7 | | Hana1A | Lisb1B | 2 | 110 | 2.56 | -11.4 | 14.6 | 12.3 | -8.88 | 15.2 | 1.85 | -11.5 | 14.5 | 22.5 | -1.99 | 22.6 | | Hana1A | Colinglen_Be | 1 | 110 | - | - | - | - | - | - | - | -1.51 | 1.08 | 0 | -1.62 | 1.15 | | Kels1- | Glen1B | 2 | 110 | 0 | -3.06 | 3.73 | 0 | -2.89 | 3.21 | _ | _ | _ | _ | _ | _ | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |------------|------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|------------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sui | nmer Va | lley | W | /inter Pea | ak | | | | | | MW | MVAR | % | | Kels1- | Kell_Wind1 | 1 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1.11 | 0.77 | 0 | -1.15 | 0.8 | | Kels1- | Rashark1 | 1 | 110 | -7.38 | -3.57 | 4.43 | -34.7 | 8.04 | 18.5 | -3.29 | 0.21 | 1.78 | 13.1 | -8.36 | 8.04 | | Kels1- | T_Gowangis | 1 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 6.67 | -2.75 | 3.9 | 55.6 | -6.91 | 28.7 | | Kell_Wind1 | Kell_Wind2 | 1 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.3 | 0.24 | 0 | -0.31 | 0.2 | | Kill1-Cl | Skrk1- | 1 | 110 | 0.01 | -5.26 | 4.83 | -21.8 | 7.16 | 18.5 | 0.01 | -5.23 | 4.8 | -7.23 | 6.11 | 7.64 | | Kill1-Cl | Strabane | 1 | 110 | 22.4 | -2.78 | 15.8 | 35.6 | 3.64 | 21.6 | 25.4 | 0.55 | 17.7 | 45.8 | 2.99 | 27.7 | | Lisb1A | Tand1A | 1 | 110 | -4.09 | -10.1 | 13.3 | -19.3 | -12.4 | 22.3 | -6.77 | -10.7 | 15.4 | -16.3 | -8.3 | 17.8 | | Lisb1B | Tand1A | 2 | 110 | -3.91 | -10.7 | 14.3 | -19.9 | -13.6 | 24 | -6.72 | -11.4 | 16.6 | -16.8 | -9.07 | 19.1 | | Makl1-Cl | Omah1- | 1 | 110 | 0 | 0.92 | 0.66 | 41.3 | -9.82 | 27.1 | 0 | 0.92 | 0.66 | 13.8 | -2.12 | 8.89 | | Newy1A | Tand1B | 1 | 110 | -10.8 | -1.83 | 13.4 | -34.6 | -8.63 | 34.6 | -12.4 | -2.14 | 15.4 | -41.7 | -10.3 | 41. | | Newy1B | Tand1B | 2 | 110 | -10.8 | -1.83 | 13.4 | -34.6 | -8.64 | 34.7 | -12.5 | -2.14 | 15.4 | -41.8 | -10.3 | 41. | | Omah1- | Strabane | 1 | 110 | -20.3 | 7.77 | 20 | -16.1 | -4.04 | 13.4 | -24.7 | 2.66 | 22.8 | -29.7 | 0.58 | 23. | | Omah1- | Strabane | 2 | 110 | -20 | 7.62 | 26.1 | -15.8 | -3.99 | 15.8 | -24.3 | 2.6 | 29.8 | -29.2 | 0.55 | 28. | | Omah1- | Trem | 1 | 110 | 0.32 | -1.29 | 0.72 | 4.89 | -9.9 | 5.72 | 0.37 | 1.43 | 0.8 | -19.2 | -8.72 | 10.9 | | Rashark1 | T_Gowangis | 1 | 110 | - | - | - | - | - | - | 10.3 | -3.69 | 5.18 | 6.3 | 7.92 | 4.3 | | Strabane | Stra_Pst | 1 | 110 | 3.24 | 1.08 | 2.73 | -0.86 | 0.5 | 0.8 | 0.48 | -2.3 | 1.88 | -0.97 | 1.42 | 1.3 | | Tand1A | Warn1A | 1 | 110 | 9.09 | 1.17 | 11.6 | 32.7 | 7.1 | 29.6 | 10.6 | 1.5 | 13.5 | 37.7 | 8.85 | 34 | | Tand1A | Warn1B | 2 | 110 | 9.07 | 1.17 | 11.6 | 32.6 | 7.09 | 29.5 | 10.5 | 1.5 | 13.5 | 37.6 | 8.83 | 34.2 | | Trem | Tamnamor | 1 | 110 | 0.32 | 3.18 | 1.72 | 27.9 | -11.8 | 15.7 | 1.65 | 5.68 | 3.18 | -11.6 | -6.31 | 6.83 | | Tamnamor | Heron_Bes | 1 | 110 | - | - | - | - | - | - | 0 | -0.51 | 0.36 | 0 | -0.54 | 0.3 | | Woodland | Turleena | 1 | 400 | - | - | - | - | - | - | 59.7 | 17.4 | 4.37 | 217 | 34.3 | 12. | | Celtic | Knockraha | 1 | 400 | - | - | - | - | - | - | 200 | -56.2 | 18.9 | 700 | -79.5 | 64. | | Dunstown | Moneypoint | 1 | 400 | -249 | 41.4 | 19.7 | -173 | 36.3 | 12.1 | - | - | - | - | - | - | | Mnypg1 | Oldstreet | 1 | 400 | 132 | -55.9 | 11.2 | 82.2 | -50.5 | 6.63 | 32.2 | -57.4 | 5.13 | 136 | -92 | 11. | | Oldstreet | Woodland | 1 | 400 | 193 | -26.8 | 19.5 | 119 | 64.5 | 13.5 | - | - | - | - | - | - | | Woodland | Portan | 1 | 400 | -450 | 28.3 | 65.8 | -489 | 9.05 | 71.4 | -100 | 166 | 28.3 | -500 | 170 | 77. | | Aghada | Aghada_B | 1 | 220 | 148 | -32.6 | 25.6 | -82.8 | 9.44 | 14.1 | -47.6 | 2.29 | 8.03 | 191 | 18.2 | 32. | | Aghada | Aght2102 | 1 | 220 | 39.3 | -7.89 | 6.76 | 69.5 | -3.66 | 11.7 | 40.3 | -6.41 | 6.87 | 76.2 | -0.71 | 12. | | Aghada | Knockraha | 1 | 220 | 161 | -29.5 | 41.6 | 264 | -10.4 | 56.5 | 157 | -20.5 | 40.4 | 178 | 26.1 | 38. | | Aghada | Raffeen | 1 | 220 | 108 | -41 | 26.5 | 179 | -36.4 | 35.6 | 93.7 | -34.1 | 23 | 169 | -18.9 | 33. | | Aghada | Longpoint | 1 | 220 | -456 | 111 | 87.3 | -430 | 41.1 | 75.3 | -244 | 58.7 | 46.7 | -456 | -7.44 | 79. | | Aghada_B | Glanagow | 1 | 220 | -10.2 | -3.81 | 2.04 | -73.7 | 4.05 | 12.9 | -203 | 22.2 | 38 | 15.5 | -7.87 | 3.0 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|-----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | /inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Aghada_B | Knockraha | 2 | 220 | 158 | -28.8 | 40.9 | 260 | -9.78 | 55.7 | 155 | -19.9 | 39.8 | 176 | 26.1 | 37.9 | | Arklow | Carrickmines | 1 | 220 | 112 | -11 | 25.8 | 108 | -21.3 | 21.5 | 90.5 | -9.09 | 21 | 169 | -27.1 | 33.3 | | Arklow | Lodgewood | 1 | 220 | -137 | 14 | 31.8 | -146 | 16 | 28.6 | -108 | 13.2 | 25.2 | -221 | 32.2 | 43.6 | | Arklow | Glenart | 1 | 220 | - | - | - | - | - | - | 0.06 | -0.46 | 0.11 | 0.07 | -0.52 | 0.1 | | Ballyvouskil | Clashavoon | 1 | 220 | -66.5 | 8.4 | 9.06 | -58.7 | 21.9 | 7.91 | -173 | 36.8 | 24 | -193 | 49.4 | 25.1 | | Ballyvouskil | Ballynahulla | 1 | 220 | 66.3 | -28.8 | 9.49 | 160 | -33 | 20.5 | 175 | -59.8 | 24.3 | 272 | -45.8 | 34.8 | | Belcamp | Finglas | 1 | 220 | -118 | -26.7 | 26.4 | -118 | -19.9 | 26.1 | -104 | -19.1 | 23.2 | -13.4 | -20.6 | 5.38 | | Belcamp | Shellybanks | 1 | 220 | - | - | - | - | - | - | -82 | -44 | 16.3 | -106 | -19.9 | 18.9 | | Castlelost | Maynooth A | 1 | 220 | - | - | - | - | - | - | 48.5 | 6.66 | 13.7 | 121 | -30 | 29.7 | | Castlelost | Shannonbridg | 1 | 220 | - | - | - | - | - | - | -48.5 | -6.66 | 13.7 | -121 | 30 | 29.7 | | Clonee | Corduff | 1 | 220 | 76.8 | -11.5 | 17.9 | 1.23 | 13.4 | 2.62 | -101 | 73.3 | 28.8 | 8.14 | 87.9 | 17.2 | | Clonee | Woodland | 1 | 220 | -208 | 10.5 | 47.9 | -132 | -11.7 | 25.8 | -37.2 | -75.6 | 19.4 | -146 | -87.5 | 33.2 | | Clonee | Bracetown | 1 | 220 | 0 | -8.26 | 1.47 | 0 | -9.32 | 1.47 | - | -8.35 | 1.48 | - | -9.4 | 1.48 | | Clonee | Bracetown | 2 | 220 | 0 | -8.26 | 1.47 | 0 | -9.32 | 1.47 | - | -8.35 | 1.48 | - | -9.4 | 1.48 | | Clashavoon | Knockraha | 1 | 220 | -107 | 26.1 | 17.1 | -118 | 15.3 | 15.8 | -191 | 44.9 | 30.4 | -260 | 46.3 | 35.2 | | Cashla | Flagford | 1 | 220 | 131 | -27.3 | 38.2 | 104 | 0.3 | 23.9 | 87.6 | -30.6 | 26.5 | 72 | 2.57 | 16.5 | | Cashla | Prospect | 1 | 220 | -73 | -0.44 | 18.6 | -82.1 | 9.58 | 17.7 | -39.2 | -15.3 | 10.7 | -75.8 | 18.3 | 16.7 | | Cashla | Tynagh | 1 | 220 | -199 | 91.2 | 28.8 | -126 | -5.28 | 15.9 | -136 | 84.3 | 21.1 | -90.9 | -5 | 11.5 | | Carrickmines | Dunstown | 1 | 220 | -95.4 | -2.66 | 22 | -97 | 21 | 19.4 | 2.75 | -45.2 | 10.4 |
-120 | 13.4 | 23.5 | | Carrickmines | Irishtown | 1 | 220 | -90.1 | -64.9 | 18.7 | -263 | -35.7 | 44.8 | -212 | -30.3 | 36.1 | -188 | -63.6 | 33.5 | | Carrickmines | Ckmn_Pst | 1 | 220 | 206 | -20.5 | 59.3 | 248 | -8.21 | 70.9 | 211 | -13.3 | 60.3 | 248 | 3.16 | 70.9 | | Cullenagh | Great Island | 1 | 220 | 29.3 | -2.21 | 3.93 | 69.6 | -36.1 | 9.89 | 84.4 | -14.2 | 11.5 | 156 | -65.4 | 21.3 | | Cullenagh | Knockraha | 1 | 220 | -90.3 | 10.4 | 14.1 | -180 | 33.7 | 23.9 | -126 | 21 | 19.8 | -261 | 64.1 | 35.1 | | Corduff | Cruiserath | 1 | 220 | 31 | -6.72 | 4.92 | 31 | -7.89 | 4.38 | 79.5 | -1.21 | 12.4 | 79.5 | -2.54 | 10.9 | | Corduff | Cruiserath | 2 | 220 | 36 | -6.98 | 5.7 | 36 | -8.12 | 5.05 | 92.5 | -1.88 | 14.4 | 92.5 | -3.22 | 12.7 | | Corduff | Finglas | 1 | 220 | 149 | -86.4 | 39.7 | 64.7 | -40.5 | 14.9 | -84.2 | 18.9 | 19.9 | -46.2 | 21.9 | 9.97 | | Corduff | Huntstown 2 | 1 | 220 | -289 | 153 | 59 | -399 | 57.8 | 72.6 | - | - | - | - | - | - | | Corduffb | Finglas220B | 2 | 220 | 149 | -86.4 | 39.7 | 64.7 | -40.5 | 14.9 | -84.2 | 18.9 | 19.9 | -46.2 | 21.9 | 9.97 | | Corduffb | Woodland | 2 | 220 | -179 | 11 | 41.2 | -99.9 | -13.4 | 19.6 | 1.08 | -78.3 | 18 | -112 | -91.6 | 28.2 | | Corduff | Mooretown | 1 | 220 | - | - | - | - | - | - | -333 | 93.9 | 58.3 | -272 | 49.6 | 46.6 | | Huntstown | Mooretown | 1 | 220 | - | - | - | - | - | - | 352 | -125 | 63 | 352 | -36.3 | 59.7 | | Huntstown 2 | Mooretown | 1 | 220 | _ | _ | _ | _ | _ | _ | 399 | -130 | 70.8 | 399 | -49.6 | 67.8 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Dunstown | Kellis | 1 | 220 | -85.3 | 15 | 22 | -63.9 | 25.2 | 14.7 | -102 | 43.1 | 28.3 | -149 | 49.1 | 33.4 | | Dunstown | Maynooth A | 1 | 220 | 119 | -11.1 | 34.2 | 141 | -24.8 | 32.8 | 84 | 16.6 | 19.7 | 143 | -24.4 | 28. | | Dunstown | Maynooth B | 2 | 220 | 99.9 | -27.2 | 29.6 | 129 | -15.7 | 29.8 | 86.7 | 7.27 | 20.1 | 178 | -11.5 | 34. | | Dunstown | Turlough Hil | 1 | 220 | 19.1 | -22.5 | 8.42 | -131 | 4.79 | 37.3 | 36.5 | 0.02 | 10.4 | 8.96 | -11.1 | 4.0 | | Flagford | Louth | 1 | 220 | 21.7 | 10.7 | 6.31 | 81.9 | 1.79 | 17.3 | -5.96 | 22.1 | 5.96 | 109 | -5.4 | 23 | | Flagford | Srananagh | 1 | 220 | 48.8 | -25.4 | 12.7 | -21.3 | -0.12 | 4.16 | 43.4 | -28.4 | 12 | -31.6 | 4.42 | 6.2 | | Finglas | Huntstown | 1 | 220 | 0 | -3.84 | 0.72 | -337 | 52.6 | 60.9 | - | - | - | - | - | - | | Finglas | Shellybanks | 1 | 220 | -2.45 | -33.6 | 6.28 | -48.6 | -55.1 | 13.2 | - | - | - | - | - | - | | Finglas220B | North Wall | 1 | 220 | -3.63 | -62.1 | 18.7 | -52 | -83 | 29.5 | -45.4 | -30.4 | 10.2 | -129 | 11.2 | 23. | | Great Island | Kellis | 1 | 220 | 141 | -15.9 | 36.1 | 171 | 6.58 | 36.6 | 117 | -14.4 | 15.5 | 226 | 3.11 | 28. | | Great Island | Lodgewood | 1 | 220 | 161 | -23.7 | 37.4 | 180 | -16.1 | 35.3 | 109 | -19.3 | 25.6 | 261 | -14.7 | 50. | | Great Island | Loughtown | 1 | 220 | 0 | -1.1 | 0.19 | -400 | -29 | 67.6 | -200 | 43.8 | 34.5 | -500 | -60.9 | 84. | | Gorman | Louth | 1 | 220 | -0.79 | -4.13 | 0.97 | 47.9 | -1.66 | 10.1 | -18.2 | -14.7 | 5.4 | -33.7 | -7.18 | 7.2 | | Gorman | Maynooth B | 1 | 220 | -56.9 | 7.53 | 16.4 | -142 | -15.8 | 32.8 | -41.5 | 6.48 | 12 | -69.9 | -20.6 | 16. | | Glanagow | Raffeen | 1 | 220 | 207 | -62.5 | 39.6 | 360 | -46.8 | 57.9 | 241 | -54.2 | 45.1 | 312 | -13.8 | 49. | | Inchicore | Irishtown | 1 | 220 | -195 | 104 | 39.4 | -452 | 32.9 | 71.5 | -503 | 120 | 92 | -517 | -34.7 | 81. | | lrishtown | Shellybanks | 1 | 220 | 0 | -3.56 | 0.6 | -313 | 12.1 | 52.8 | -313 | 48.3 | 53.4 | -313 | -29.2 | 53 | | Knockanure | Ballynahulla | 1 | 220 | -65.6 | 50.9 | 11.2 | -244 | 58.8 | 31.7 | -173 | 105 | 27.3 | -328 | 76.7 | 42. | | Knockanure | Kilpaddoge | 1 | 220 | 19.7 | -13.4 | 3.26 | 96 | -21.5 | 12.9 | 51.8 | -31.9 | 8.32 | 115 | -24.5 | 15. | | Knockanure | Kilpaddoge | 2 | 220 | 45.9 | -66.7 | 12.3 | 217 | -73.5 | 34.7 | 121 | -103 | 24 | 261 | -76.1 | 41. | | Knockraha | Killonan | 1 | 220 | 156 | -32.1 | 31.2 | 260 | -11.4 | 46.1 | 220 | -54.6 | 44.2 | 361 | -19.8 | 64. | | Knockraha | Raffeen | 1 | 220 | -151 | 24.3 | 43.7 | -248 | 9 | 56.8 | -155 | 16.3 | 44.3 | -141 | -36.9 | 33. | | Killonan | Shannonbridg | 1 | 220 | 94.6 | -25 | 36.4 | 114 | -31.9 | 33.4 | 79.1 | -19.7 | 30.3 | 137 | -34.6 | 39. | | Killonan | Kilpaddoge | 1 | 220 | -44.5 | -28.5 | 12.2 | -22.5 | -44.2 | 9.67 | 51.6 | -48.9 | 16.4 | 56.2 | -44.9 | 14 | | Kellystown | Maynooth A | 1 | 220 | 54.7 | -39.1 | 9.26 | 72.2 | -5.44 | 8.83 | 8.84 | -0.35 | 1.22 | 81 | 46.9 | 11. | | Kellystown | Woodland | 1 | 220 | -169 | -3.31 | 38.9 | -189 | -37.9 | 23.5 | -126 | -43.2 | 17.8 | -198 | -90.3 | 26 | | Kilpaddoge | Mnyp B | 1 | 220 | -53.7 | 12.5 | 8.36 | 76.6 | -17 | 11.9 | 69.1 | -39.5 | 12.1 | 181 | -63.4 | 29. | | Kilpaddoge | Moneypoint | 2 | 220 | -53.7 | 12.5 | 8.36 | 76.6 | -17 | 11.9 | 69.1 | -39.5 | 12.1 | 181 | -63.4 | 29. | | Kilpaddoge | Tarbert | 2 | 220 | 17.7 | -10.4 | 4.73 | 25.4 | -15.4 | 5.8 | 20 | -22 | 6.85 | -147 | 73.7 | 32 | | Glansillagh | Tarbert | 1 | 220 | - | - | - | - | - | - | 7.56 | -9.3 | 1.61 | -53.3 | 21.4 | 7.2 | | Glansillagh | Kilpaddoge | 1 | 220 | - | _ | - | - | - | - | -7.56 | 9.3 | 1.61 | 53.3 | -21.4 | 6.8 | | Castlebagot | Maynooth A | 1 | 220 | -128 | 37.7 | 20.6 | -122 | 42.3 | 18.7 | -55.6 | -25.9 | 9.48 | -231 | 18.5 | 33 | | | | | | | | | 22 | | | | | | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | | _ | | | | | | | | | _ | | | | | | | From | То | No. | kV | | nmer Va | | | inter Pe | | | nmer Va | _ | | inter Pe | | | | | | | MW | MVAR | % | | Castlebagot | Inchicore | 1 | 220 | -97.7 | -62.8 | 21.2 | -106 | -61.8 | 22.4 | -216 | -21.2 | 39.6 | -54 | -74 | 16.7 | | Inchicore | Castlebagot | 2 | 220 | - | - | - | - | - | - | 143 | -26.2 | 22.5 | 44.1 | 26.9 | 7.47 | | Louth | Woodland | 1 | 220 | -84 | 22.6 | 20 | -182 | -18.3 | 38.5 | - | - | - | - | - | - | | Louth | Oriel | 1 | 220 | - | - | - | - | - | - | -46.2 | 1.73 | 5.83 | -102 | -46.3 | 13.6 | | Woodland | Oriel | 1 | 220 | - | - | - | - | - | - | 46.4 | -14.1 | 6.12 | 103 | 37.3 | 13.3 | | Maynooth A | Shannonbridg | 1 | 220 | -54.2 | -6.91 | 20.3 | -49.3 | 9.78 | 14.2 | - | - | - | - | - | - | | Maynooth B | Turlough Hil | 1 | 220 | -62.1 | 2.66 | 19.1 | -157 | 10.8 | 44.9 | -33.7 | -10.6 | 10.9 | -102 | -2.33 | 28.9 | | Maynooth B | Inchicore | 1 | 220 | 46.2 | -3.44 | 5.84 | 15.7 | -50 | 6.36 | - | - | - | - | - | - | | Castlebagot | Maynooth B | 2 | 220 | - | - | - | - | - | - | -54.9 | -49.5 | 11.4 | -138 | 27.5 | 20.3 | | Moneypoint | Prospect | 1 | 220 | 36.5 | -11 | 7.1 | 29.5 | -12.8 | 5.27 | 11.8 | -1.04 | 2.2 | -3.7 | 1.24 | 0.64 | | North Wall | Poolbeg Nort | 1 | 220 | -3.64 | 4.94 | 1.85 | -52 | -7.69 | 15.8 | -45.4 | 8.92 | 8.11 | -129 | 55.1 | 24.6 | | Oldstreet | Tynagh | 1 | 220 | -61.6 | 14 | 14.6 | -36.6 | -64 | 14.4 | -125 | 93.9 | 36.1 | -171 | -1.3 | 33.4 | | Poolbeg Nort | Poolbeg Sout | 1 | 220 | -6.08 | -15.6 | 3.71 | 49.1 | -0.92 | 10.9 | 22.3 | -13.6 | 5.81 | 102 | 7.35 | 22.7 | | Poolbeg Nort | Shellybanks | 1 | 220 | 2.45 | -3.43 | 0.73 | -101 | 22.7 | 18.1 | - | - | - | - | - | - | | Poolbeg Sout | Ckmn_Pst | 1 | 220 | -206 | -19.6 | 77.4 | -247 | -33.2 | 93.4 | -210 | -18.2 | 37 | -248 | -35.5 | 43.9 | | Poolbeg Sout | Inchicore | 1 | 220 | 44 | -0.46 | 16.5 | 43.4 | 3.46 | 16.3 | 65.4 | -0.18 | 11.5 | 58.5 | 4.31 | 10.3 | | Poolbeg Sout | Inchicore | 2 | 220 | 57.4 | 0.81 | 16.4 | 56 | 5.79 | 16.1 | 69.3 | 1.92 | 12.2 | 62.1 | 7.1 | 11 | | Prospect | Tarbert | 1 | 220 | -37 | -1.67 | 7.94 | -53.2 | 7.14 | 11.5 | -27.6 | -3.24 | 4.87 | -80.1 | 30.4 | 15 | | Shellybanks | Shellybanksb | 1 | 220 | 0 | 0 | 0 | -163 | 7.52 | 8.74 | -163 | 27.4 | 10.5 | -163 | -16 | 8.77 | | Tarbert | Kilpaddoge | 1 | 220 | -19.4 | 8.7 | 3.29 | -27.8 | 14.1 | 4.27 | - | - | - | - | - | - | | Ardnacrusha | Drumline | 1 | 110 | 8.81 | -13.8 | 16.5 | 13.8 | -12.7 | 15.5 | 13.3 | -16.2 | 21.2 | 34.2 | -15.7 | 31.1 | | Ardnacrusha | Ennis | 1 | 110 | 4.86 | -15.5 | 16.5 | 0.89 | -8.17 | 6.79 | 12.7 | -18 | 22.2 | 21.7 | -12.2 | 20.6 | | Ardnacrusha | Limerick | 1 | 110 | -6.52 | 16.2 | 9.8 | -12.7 | 27.1 | 14.2 | -10.5 | 27.5 | 16.5 | 19 | 36.3 | 19.5 | | Ardnacrusha | Caherhurly | 1 | 110 | - | - | - | - | - | - | 0.01 | -24.5 | 12.7 | -19.1 | 0.56 | 9.95 | | Balruntagh | Arva | 1 | 110 | - | - | - | - | - | - | 8.85 | -26.5 | 15.7 | -24 | -1.8 | 11.5 | | Balruntagh | Navan | 1 | 110 | - | - | - | - | - | _ | 2.63 | -2.7 | 2.12 | 24 | 1.8 | 11.5 | | Aghada | Whitegate | 1 | 110 | 39.3 | -6 | 40.2 | 69.4 | -4.7 | 57.5 | 40.2 | -4.6 | 40.9 | 76.2 | -2.85 | 63 | | Arigna | Arigna_T | 1 | 110 | -1.2 | 0.55 | 1.26 | -0.24 | -1.06 | 0.88 | -1.2 | 0.55 | 1.26 | -2.26 | -0.77 | 1.94 | | Agannygal | Derrybrien | 1 | 110 | 0 | -0.27 | 0.26 | -17.7 | 12.4 | 17.6 | 0 | -0.28 | 0.26 | -12.4 | 8.39 | 12.2 | | Agannygal | Ennis | 1 | 110 | -15.4 | 2.42 | 21.1 | -7.16 | -0.86 | 7.92 | -7.49 | -1.51 | 10.3 | -0.44 | -1.88 | 2.13 | | Agannygal | Shannonbridg | 1 | 110 | 15.4 | -2.14 | 15 | 24.9 | -11.5 | 23 | 7.49 | 1.78 | 7.4 | 12.9 | -6.51 | 12.1 | | Ahane | Killonan2 | 1 | 110 | -1.44 | 0.56 | 3.43 | -5.12 | -0.18 | 11.4 | -0.64 | 0.42 | 1.71 | -5.76 | -0.2 | 12.8 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|-----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sui | nmer Va | lley | W | /inter Pe | ak | | | | | | MW | MVAR | % | | Adamstown | Grange Castl | 1 | 110 | 18.3 | -10.8 | 13.3 | 26.9 | -13 | 16.5 | 23.7 |
-11.4 | 16.4 | 35.1 | -14 | 20.9 | | Adamstown | Inch_Country | 1 | 110 | -30.8 | 6.3 | 19.6 | -46.1 | 6.89 | 25.8 | -36.2 | 6.86 | 23.1 | -55.5 | 7.45 | 31 | | Anner | Doon | 1 | 110 | -14 | -6.9 | 34.7 | -14 | -6.9 | 34.7 | -14 | -6.9 | 34.7 | -14 | -6.9 | 34.7 | | Arklow | Ballybeg | 1 | 110 | 27.4 | 2.4 | 20.5 | 37.1 | -0.27 | 23.4 | 27.5 | -1.85 | 20.6 | 56.5 | -2.53 | 35.6 | | Arklow | Banoge | 1 | 110 | -26.4 | 7.66 | 15.4 | -19.9 | 5.05 | 9.76 | - | - | - | - | - | - | | Arklow | Shelton Abbe | 2 | 110 | 2.29 | 0.64 | 3.77 | 2.29 | 0.63 | 2.58 | - | - | - | - | - | - | | Arklow | Killinskyduf | 1 | 110 | - | - | - | - | - | - | -4.71 | 0.23 | 3.8 | - | -1.64 | 1.32 | | Arklow | Oaklands | 1 | 110 | - | - | - | - | - | - | -25.4 | 3.6 | 14.4 | -27.1 | -1.18 | 12.9 | | Arklow | Pollahoney | 1 | 110 | - | - | - | - | - | - | 1.18 | 0.27 | 0.68 | 1.18 | 0.26 | 0.57 | | Arklow | Pollahoney | 2 | 110 | - | - | - | - | - | - | 1.11 | 0.26 | 0.64 | 1.11 | 0.25 | 0.54 | | Athea | Dromada | 1 | 110 | - | -6.41 | 5.34 | -8.54 | 0.25 | 6.28 | 0 | -6.57 | 5.48 | -5.98 | -2.04 | 4.65 | | Athea | Tobertoreen | 1 | 110 | - | - | - | -6.93 | 6.66 | 4.58 | 0 | 0 | 0 | -4.85 | 6.52 | 3.87 | | Athea | Knockanure B | 1 | 110 | - | 6.41 | 3.6 | 25.7 | -27 | 17.8 | 0 | 6.57 | 3.69 | 18 | -19.1 | 12.5 | | Athlone | Lanesboro_A1 | 1 | 110 | 17.1 | -11.6 | 20.8 | 3.67 | 14.4 | 12.3 | 22.9 | -7.63 | 13.5 | 36.3 | 21.5 | 20.1 | | Athlone | Shannonbridg | 1 | 110 | -42.8 | 18.3 | 26.2 | -79.7 | 40.4 | 47 | -47.7 | 21.3 | 29.4 | -30.8 | 40.7 | 26.9 | | Athlone | Cuilleen | 1 | 110 | - | - | - | - | - | - | 0 | -2.41 | 1.72 | -89.7 | -4.6 | 64.2 | | Ballinknocka | Aughinish | 1 | 110 | - | - | - | - | - | - | -7.73 | 30.3 | 17.6 | 36.1 | 22 | 20.1 | | Ballinknocka | Kilpaddoge | 1 | 110 | - | - | - | - | - | - | 12.7 | -30.3 | 18.5 | -36.1 | -22 | 20.1 | | Aughinish | Castlefarm | 1 | 110 | 25.4 | 14.2 | 30.3 | 25.4 | 14.1 | 30.3 | 25.4 | 14.2 | 30.3 | 25.4 | 14.1 | 30.3 | | Aughinish | Kilpaddoge | 1 | 110 | -46 | -16.9 | 27.5 | -51.8 | -16.8 | 25.9 | - | - | - | - | - | - | | Aughinish | Moneteen | 1 | 110 | -4.84 | -10.3 | 6.38 | 0.96 | -10.1 | 4.81 | 21.4 | -15.3 | 14.8 | -14.8 | -5.02 | 7.44 | | Aughinish | Seal Rock | 3 | 110 | - | -0.61 | 0.51 | - | -0.64 | 0.53 | -40 | 8.59 | 34.1 | - | -0.64 | 0.53 | | Aughinish | Seal Rock | 4 | 110 | - | -0.61 | 0.51 | - | -0.64 | 0.53 | -40 | 8.59 | 34.1 | - | -0.64 | 0.53 | | Aughinish | Castlefarm | 2 | 110 | 25.4 | 14.2 | 30.3 | 25.4 | 14.1 | 30.3 | 25.4 | 14.2 | 30.3 | 25.4 | 14.1 | 30.3 | | Arva | Carrick On S | 1 | 110 | -21.7 | 8.16 | 22.3 | -37.9 | 12.3 | 32.4 | -17.4 | -4.88 | 10.2 | -70.4 | 15.1 | 34.3 | | Arva | Gortawee | 1 | 110 | 24.6 | -5.07 | 14.1 | -12.7 | 2.43 | 6.15 | 28.1 | -9.27 | 16.6 | -22.9 | 5.25 | 11.2 | | Arva | Navan | 1 | 110 | -5.31 | 12.6 | 7.68 | 18.2 | 3.6 | 8.83 | - | - | - | - | - | - | | Arva | Shankill | 1 | 110 | 1.36 | -8.64 | 4.91 | 18.1 | -10.1 | 9.87 | -1.16 | -6.3 | 3.6 | 38.6 | -11.6 | 19.2 | | Arva | Shankill | 2 | 110 | 1.08 | -7.05 | 4.01 | 14.3 | -8.21 | 7.84 | -0.91 | -5.21 | 2.97 | 30.5 | -9.35 | 15.2 | | Artane | Fin_Urban | 1 | 110 | -10.5 | 3.07 | 9.09 | -33 | 0.29 | 24.3 | -10.4 | 3.05 | 9.06 | -37.1 | -0.48 | 27.3 | | Artane | Mcdermott | 1 | 110 | 6.78 | -2.39 | 6.65 | 15.4 | -0.99 | 13.4 | 6.76 | -2.38 | 6.63 | 17.3 | -0.41 | 15.1 | | Ballyvouskil | Coomnaclohy | 1 | 110 | _ | _ | _ | _ | _ | _ | -1.2 | -9.35 | 6.74 | -8.81 | -6.96 | 8.02 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | w | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Ballyvouskil | Garrow | 1 | 110 | 0.02 | -21.7 | 11.1 | -54.6 | -18 | 26.1 | -0.68 | -21.7 | 11.1 | -38.2 | -20.8 | 19.8 | | Athy | Carlow | 1 | 110 | -35.2 | 7.91 | 36.4 | -44 | -1.45 | 36.4 | -17.1 | 13.1 | 20.6 | -14.9 | -1.84 | 12. | | Athy | Coolnabacky | 1 | 110 | - | - | - | 21.5 | -5.48 | 18.1 | 11.4 | -13.9 | 17.1 | -10.4 | -6.34 | 9.9 | | Ballywater | Crane | 1 | 110 | - | - | - | 12.6 | -10.9 | 24.5 | - | - | - | 8.8 | -10.6 | 20. | | Booltiagh | Ennis | 1 | 110 | 34.8 | -8.21 | 20.1 | 63.5 | -4.93 | 30.3 | 11.7 | -0.05 | 6.55 | 44.7 | -2.23 | 21. | | Booltiagh | Tulbrk T | 1 | 110 | -34.8 | 10.3 | 20.4 | -26.4 | 1.27 | 12.6 | -11.7 | 2.11 | 6.66 | -12.4 | 0.05 | 5.9 | | Baltrasna | Deenes | 1 | 110 | -0.75 | -9.32 | 5.25 | 31.8 | 2.56 | 15.2 | 4.9 | -6.86 | 4.73 | 22.5 | 3.48 | 10. | | Baltrasna | Corduff | 1 | 110 | -3.25 | 10.4 | 6.14 | -47.5 | -3.1 | 22.7 | -8.17 | 7.86 | 6.37 | -40.1 | -4.25 | 19. | | Ballylickey | Dunmanway | 1 | 110 | -5.21 | 5.85 | 11.5 | 6.45 | -3.62 | 10.9 | -5.19 | 5.84 | 11.5 | -1 | -1.83 | 3.0 | | Ballybeg | Ckm_Country | 1 | 110 | 23.7 | 3.29 | 17.6 | 21.3 | -0.87 | 13.4 | 24.8 | -1.18 | 18.2 | 38.5 | -4.56 | 24. | | Cordal | Ballynahulla | 1 | 110 | -0.02 | 11.5 | 5.9 | 44.1 | -13.9 | 21 | -0.02 | 11.5 | 5.9 | 30.9 | -11.5 | 15 | | Blake | Blake T | 1 | 110 | -6.56 | -0.16 | 4.83 | -26.3 | -3.61 | 16.7 | -6.04 | -0.24 | 4.45 | -29.5 | -4.34 | 18. | | Blundelstown | Corduff | 1 | 110 | 9.05 | 3.78 | 7.55 | 0.59 | 6.68 | 5.16 | 4.25 | 6.15 | 5.75 | 4.68 | -9.53 | 8.1 | | Blundelstown | Mullingar | 1 | 110 | -3.08 | -15.5 | 15 | -0.59 | -6.68 | 5.45 | -7.75 | -8.38 | 10.9 | -14.2 | 6.22 | 12. | | Binbane | Cath_Fall | 1 | 110 | -12.5 | 8.48 | 8.5 | 5.53 | -7.23 | 4.34 | -13.1 | 6.74 | 8.25 | -2.11 | -4.36 | 2.3 | | Binbane | Tievebrack | 1 | 110 | 5.49 | -6.48 | 6.34 | -3.21 | 2.98 | 2.75 | 6.03 | -4.71 | 5.71 | 3.7 | 0.28 | 2.3 | | Baroda | Monread | 1 | 110 | -2.32 | 2.22 | 3.25 | 6.21 | -18.9 | 16.5 | 3.68 | 2.05 | 4.26 | 43.3 | -16.5 | 38. | | Baroda | Newbridge | 1 | 110 | -2.94 | -3.06 | 3.48 | -11.5 | 18.1 | 17.6 | -8.94 | -2.89 | 7.7 | -48.5 | 15.7 | 41. | | Ballydine | Cullenagh | 1 | 110 | -35 | -0.42 | 17.9 | -31.2 | 8.14 | 14.8 | -30.9 | 1.45 | 15.8 | -30.4 | 8.58 | 14. | | Ballydine | Doon | 1 | 110 | 25.6 | -1.9 | 14.4 | 14.4 | -12.2 | 8.99 | 22 | -3.85 | 12.6 | 12.4 | -12.9 | 8.5 | | Barnageeragh | Cloghran | 1 | 110 | -14.9 | -1.69 | 7.82 | -14.9 | -1.68 | 7.82 | -11.3 | 4.09 | 6.26 | -11.3 | 4.1 | 6.2 | | Barnageeragh | Snugborough | 1 | 110 | - | - | - | - | - | - | -24.5 | -8.29 | 13.5 | -24.5 | -8.29 | 13. | | Barnahely | Raffeen | 1 | 110 | -26.6 | -6.43 | 43.5 | -33.8 | -7.55 | 37.7 | -25.8 | -6.49 | 42.2 | -38.2 | -8.72 | 42. | | Bellacorick | Laghtanvack | 1 | 110 | - | - | - | - | - | - | 10.3 | -16.2 | 9.98 | -59.4 | 6.1 | 31. | | Bellacorick | Castlebar | 1 | 110 | -16 | 11.7 | 10.2 | 86.3 | -32 | 42.4 | -12.2 | 22.1 | 13 | 117 | -38.9 | 56. | | Bellacorick | Moy | 1 | 110 | 14.1 | -6.32 | 8.66 | -12.5 | -18.2 | 10.5 | - | - | - | - | - | - | | Airton | Inch_City | 1 | 110 | -28.5 | -2.4 | 23.8 | -28.5 | -2.38 | 21 | -30 | -2.58 | 25.1 | -30 | -2.58 | 22. | | Airton | Inch_City | 2 | 110 | -28.5 | -2.4 | 23.8 | -28.5 | -2.38 | 21 | -30 | -2.58 | 25.1 | -30 | -2.58 | 22. | | Blackrock | Ringsend | 1 | 110 | -20.2 | -7.08 | 17.2 | -62.6 | -25.4 | 44.8 | -20.1 | -7.05 | 17.2 | -70.4 | -29.4 | 50. | | Ballyragget | Garrintaggar | 1 | 110 | - | - | - | - | - | - | 7.48 | -3.65 | 4.68 | -5.07 | 1.92 | 2.5 | | Ballyragget | Kilkenny | 1 | 110 | -8.05 | -2 | 4.66 | -23.6 | -7.21 | 11.8 | -11.5 | 1.1 | 6.5 | -12 | -10.9 | 7.7 | | Bandon | Brinny | 1 | 110 | 1.97 | 0.44 | 2.73 | 1.97 | 0.43 | 2.22 | 1.97 | 0.44 | 2.73 | 1.97 | 0.43 | 2.2 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|-----------|------| | From | То | No. | kV | Sur | nmer Va | lley | w | inter Pe | ak | Sui | nmer Va | lley | W | /inter Pe | ak | | | | | | MW | MVAR | % | | Bandon | Dunmanway | 1 | 110 | 6.05 | -9.93 | 11.7 | -8.69 | 7.17 | 9.31 | 18.6 | -9.07 | 11.6 | 2.5 | 6.33 | 3.24 | | Bandon | Brinny | 2 | 110 | 1.98 | 0.45 | 2.74 | 1.98 | 0.44 | 2.22 | 1.98 | 0.45 | 2.74 | 1.98 | 0.44 | 2.22 | | Bandon | Raffeenb | 1 | 110 | -28.5 | 8.86 | 30.1 | -38.1 | -0.93 | 31.5 | -37.7 | 7.56 | 21.6 | -56.3 | -1.01 | 29.3 | | Cloghran | Corduff | 1 | 110 | -86 | -13.2 | 44.6 | -86 | -13.1 | 39.4 | -82.4 | -7.45 | 42.4 | -82.4 | -7.36 | 37.4 | | Barrymore | Barrym T | 1 | 110 | -14.3 | 1.8 | 10.6 | -21.9 | -6.48 | 14.3 | -12.7 | 1.65 | 9.44 | -28.6 | -7 | 18.5 | | Belcamp | Darndale | 1 | 110 | 58.8 | 8.62 | 28.7 | 58.7 | 5.87 | 25.8 | 60.6 | 6.57 | 29.5 | 60.6 | 6.17 | 26.6 | | Belcamp | Darndale | 2 | 110 | 58.8 | 8.62 | 28.7 | 58.7 | 5.87 | 25.8 | 60.6 | 6.57 | 29.5 | 60.6 | 6.17 | 26.6 | | Belcamp | Metro North | 1 | 110 | - | - | - | - | - | - | 22.7 | -7.76 | 6.45 | 22.5 | -8.55 | 5.73 | | Belcamp | Newbury | 1 | 110 | - | - | - | - | - | - | 62.6 | 22.8 | 53.8 | 62.8 | 21.5 | 50.3 | | Butlerstown | Cullenagh | 1 | 110 | -18.1 | 3.15 | 10.3 | -46.9 | -0.78 | 24.4 | -17.1 | 2.92 | 9.72 | -48.1 | 0.71 | 25.1 | | Butlerstown | Killoteran | 1 | 110 | 3.22 | -3.46 | 2.41 | 5.13 | -7.71 | 4.29 | 5.92 | -3.52 | 3.51 | 0.98 | -10.5 | 4.89 | | Deenes | Drybridge | 1 | 110 | 7.73 | -11.6 | 7.83 | 31.8 | 2.7 | 15.2 | 13.4 | -7.05 | 8.5 | 22.5 | 3.78 | 10.9 | | Cloghboola | Trien | 1 | 110 | 0 | 1.23 | 0.77 | 30.1 | -18.5 | 19.5 | - | 1.23 | 0.77 | 21.1 | -17 | 15 | | Bogtown | Mount Lucas | 1 | 110 | 0 | 0 | 0 | 16.9 | -8.38 | 15.2 | - | - | - | 11.8 | -11.2 | 13.1 | | Ballyadam | Midleton | 1 | 110 | 20 | -5.16 | 20.9 | 39.3 | -4.46 | 32.7 | 19.5 | -3.45 | 20 | 42.4 | -3.13 | 35.1 | | Ballyadam | Whitegate | 1 | 110 | -20 | 5.16 | 20.9 | -39.3 | 4.46 | 32.7 | -19.5 | 3.45 | 20 | -42.4 | 3.13 | 35.1 | | Banoge | Tullabeg | 1 | 110 | -29.1 | 7.89 | 17 | -27.7 | 5.55 | 13.5 | -27.7 | 8.28 | 16.3 | -35.9 | 3.96 | 17.2 | | Banoge | Oaklands | 1 | 110 | - | - | - | - | - | - | 25.5 | -8.44 | 15.1 | 27.2 | -4.31 | 13.1 | | Boggeragh |
Clashavoon | 1 | 110 | - | 0.59 | 0.33 | 49.5 | -18.5 | 25.2 | - | 0.59 | 0.33 | 35.4 | -9.13 | 17.4 | | Coolderrig | Grange Castl | 1 | 110 | -15.6 | -0.25 | 11.2 | -15.6 | -0.25 | 11.2 | -19.8 | -0.5 | 14.1 | -19.8 | -0.49 | 14.1 | | Coolderrig | Grange Castl | 2 | 110 | -14.4 | -0.64 | 10.3 | -14.4 | -0.64 | 10.3 | -18.3 | -0.93 | 13.1 | -18.3 | -0.93 | 13.1 | | Ardnagappary | Tievebrack | 1 | 110 | -3 | -0.72 | 3.39 | -2.86 | -3.9 | 5.31 | -2.99 | -0.72 | 3.38 | -6.08 | -3.57 | 7.74 | | Cabra | Pelletstown | 1 | 110 | -6.72 | 1.24 | 5.51 | -17.9 | -2.43 | 13.6 | -6.7 | 1.23 | 5.49 | -20.1 | -3.36 | 15.3 | | Cabra | Wolfe Tone | 1 | 110 | 2.85 | -2.51 | 3.51 | 4.73 | -1.92 | 4.44 | 2.84 | -2.5 | 3.5 | 5.27 | -1.6 | 4.79 | | Clonfad | Kinnegad | 1 | 110 | - | - | - | - | - | - | 1.55 | 18.2 | 10.3 | 11.2 | 20.6 | 11.2 | | Clonfad | Mullingar | 1 | 110 | - | - | - | - | - | - | 8.39 | -23.9 | 14.2 | -11.2 | -20.6 | 11.2 | | Clashavoon | Clonkeen | 1 | 110 | 31.5 | -13.9 | 19.4 | 66.3 | -0.74 | 34.9 | 45.1 | -16.9 | 27.1 | 92.6 | -4.44 | 48.8 | | Clashavoon | Dunmanway | 1 | 110 | 5.55 | -1.03 | 3.17 | 2.53 | -1.37 | 1.37 | -0.77 | -1.68 | 1.04 | 3.89 | -3.07 | 2.36 | | Clashavoon | Macroom | 2 | 110 | 1.28 | 2.37 | 1.67 | 13.8 | -0.26 | 7.21 | -9.69 | 5.73 | 6.99 | 1.89 | 1.94 | 1.42 | | Clonkeen | Knockearagh | 1 | 110 | 31.3 | -13.4 | 19.2 | 65.6 | -2.95 | 31.3 | 44.7 | -17.6 | 27 | 91.1 | -10.3 | 43.7 | | Coolroe | Iniscarra | 1 | 110 | 4.02 | -6.05 | 3.71 | -14.8 | 3.71 | 7.03 | 15.9 | -11 | 9.87 | -13.7 | -5.67 | 6.82 | | Coolroe | Kilbarry | 1 | 110 | -8.77 | 6 | 5.97 | 3.9 | -3.97 | 2.77 | -19.6 | 10.9 | 12.6 | 1.43 | 5.43 | 2.79 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|-----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sur | nmer Va | lley | W | /inter Pe | ak | | | | | | MW | MVAR | % | | Corderry | Garvagh | 1 | 110 | 0.01 | 8.07 | 4.53 | -24.4 | 2.62 | 11.7 | -3.98 | 12 | 7.1 | -17.2 | 0.73 | 8.17 | | Corderry | Srananagh | 1 | 110 | 6.38 | -13 | 8.14 | -2.24 | 2.45 | 1.58 | 9.38 | -16.4 | 10.6 | 0.48 | 1.04 | 0.55 | | Corderry | Arigna_T | 1 | 110 | -6.39 | 5.82 | 4.85 | 45.4 | -8.94 | 22 | -5.41 | 5.68 | 4.4 | 33.2 | -4.56 | 16 | | Cashla | Cloon | 1 | 110 | 53.2 | -11.9 | 30.6 | 33.8 | 10.8 | 16.9 | 35.3 | -2.89 | 19.9 | 17.8 | 16.1 | 11.4 | | Cashla | Ennis | 1 | 110 | -6.61 | 1.97 | 3.87 | -0.52 | 7.58 | 3.62 | -13 | 1.28 | 7.32 | -11.6 | 14.6 | 8.87 | | Cashla | Galway | 1 | 110 | 11.2 | -11.4 | 15.2 | 11.4 | 3.39 | 9.68 | 11.4 | -11.9 | 9.29 | 21.4 | 8.81 | 11 | | Cashla | Galway | 2 | 110 | 13.7 | -13.8 | 18.5 | 13.9 | 4.24 | 11.9 | 14 | -14.5 | 11.3 | 26.1 | 10.9 | 13.5 | | Cashla | Galway | 3 | 110 | 13.7 | -13.8 | 18.5 | 13.9 | 4.24 | 11.9 | 14 | -14.5 | 11.3 | 26.1 | 10.9 | 13.5 | | Cashla | Salthill | 1 | 110 | 9.5 | -11.3 | 15.2 | 8.51 | -2.81 | 9.24 | 8.44 | -12.5 | 14.4 | 15.3 | -0.22 | 14.6 | | Cashla | Ballymoneen | 1 | 110 | - | - | - | - | - | - | -9.7 | 20.2 | 18.1 | - | -4.72 | 3.8 | | Cashla | Dalton_A2 | 1 | 110 | 28.2 | -8.57 | 29.7 | -5.72 | 12.5 | 11.4 | 24.3 | -10.8 | 14.9 | -9.83 | 8.32 | 6.13 | | Cashla | Somrst T | 1 | 110 | 18.6 | -0.61 | 18.8 | 28.3 | -1.26 | 23.4 | 3.25 | 4.87 | 5.91 | 9.54 | 9.7 | 11.3 | | Clahane | Trien | 1 | 110 | -1.35 | 4.22 | 4.48 | 10.1 | -2.37 | 8.54 | 6.04 | 0.09 | 6.1 | 8.06 | -16.7 | 15.4 | | Clahane | Tralee | 1 | 110 | 1.35 | -4.22 | 4.22 | 5.35 | 3.76 | 5.31 | -2.65 | -1.11 | 2.74 | 2.64 | -3.11 | 3.31 | | Castlebar | Cloon | 1 | 110 | -18.4 | 3.8 | 18.9 | 28 | -15.8 | 26.6 | -17.7 | 12.1 | 12 | 33.4 | -12.3 | 16.9 | | Castlebar | Carrowbeg | 1 | 110 | 9.71 | -6.47 | 11.8 | 17.2 | -3.71 | 14.5 | 9.68 | -6.77 | 11.9 | 19.3 | -3.21 | 16.2 | | Castlebar | Dalton_A1 | 1 | 110 | -16.5 | 4.84 | 17.4 | 22.3 | -5.91 | 19.1 | -13.5 | 6.27 | 8.37 | 33.8 | -18.4 | 18.3 | | Kilcumber | Cushaling | 1 | 110 | - | - | - | 22.4 | -20.7 | 21.8 | - | - | - | 15.7 | -24.8 | 21 | | Carrigadrohi | Kilbarry | 1 | 110 | -8.17 | 4.39 | 5.21 | 12.7 | -2.77 | 6.22 | - | - | - | - | - | - | | Carrigadrohi | Macroom | 1 | 110 | 8.17 | -4.39 | 5.21 | -12.7 | 2.77 | 6.19 | 19.9 | -8.84 | 12.2 | 8.77 | -0.01 | 4.18 | | Carrigadrohi | Kilnap | 1 | 110 | - | - | - | - | - | - | -19.9 | 8.84 | 12.2 | -0.81 | 3.5 | 1.71 | | Central Park | Taney | 1 | 110 | 3.5 | -7.62 | 7.69 | 7.53 | -7.6 | 9.22 | 3.49 | -7.64 | 7.71 | 8.46 | -7.46 | 9.72 | | Cath_Fall | Cliff | 1 | 110 | 0 | -0.22 | 0.32 | 0 | -0.21 | 0.31 | 0 | -0.22 | 0.32 | -19.9 | 0.47 | 29.2 | | Cath_Fall | Corraclassy | 1 | 110 | 5.26 | 12 | 7.36 | 45.8 | -5.46 | 22 | 1.66 | 12.7 | 7.19 | 56.9 | -7.11 | 27.3 | | Cath_Fall | Srananagh | 1 | 110 | -18.1 | 18.2 | 13.4 | 2.84 | -2.54 | 2 | -17.9 | 15.3 | 12.3 | 11 | -4.41 | 6.2 | | Cath_Fall | Clogher | 2 | 110 | 6.84 | -19.5 | 11.6 | -27.2 | 11.3 | 14 | 8.07 | -17.8 | 11 | -12.2 | 4.87 | 6.23 | | Cahir | Doon | 1 | 110 | -1.23 | 7.24 | 4.12 | 28.1 | 6.94 | 13.8 | 0.99 | 9.3 | 5.25 | 33.7 | 9.17 | 16.6 | | Cahir | Kill Hill | 1 | 110 | 27.5 | -7.14 | 15.9 | 5.61 | 14.1 | 7.22 | 24 | -4.16 | 13.7 | 1.31 | 15 | 7.16 | | Cahir | Tipperary | 1 | 110 | 3.89 | -14.5 | 8.42 | -6.35 | 9.28 | 5.36 | 18.3 | -16.5 | 13.8 | 10.7 | 7.7 | 6.27 | | Cahir | Barrym T | 1 | 110 | -39.6 | 14.3 | 40.1 | -54.3 | 32.6 | 51.5 | -49.4 | 10.8 | 28.4 | -75.9 | 30.3 | 38.9 | | Carrickmines | Cherrywood | 1 | 110 | 6 | -2.89 | 6.35 | 22.3 | -2 | 18.2 | 5.98 | -2.9 | 6.33 | 25 | -1.68 | 20.4 | | Carrickmines | Pottery Road | 1 | 110 | 7.3 | -5.41 | 7.64 | 16 | -4.36 | 13 | 7.28 | -5.43 | 7.63 | 17.9 | -3.9 | 14.5 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|------|-----|-------|---------|------|-------|----------|------|-------|---------|--------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | | | inter Pe | ak | Suu | nmer Va | | | inter Pe | ak | | 110111 | 10 | 140. | KV | MW | MVAR | % | MW | MVAR | % | MW | MVAR | %
% | MW | MVAR | % | | Carrickmines | Central Park | 1 | 110 | 7.7 | -10.9 | 9.82 | 17.2 | -10.4 | 12.7 | 7.68 | -10.9 | 9.83 | 19.3 | -10.2 | 13.7 | | Bracklone | Newbridge | 1 | 110 | - | - | - | - | - | - | 29.5 | -0.88 | 21.7 | 50.2 | -7.38 | 31.9 | | Bracklone | Portlaoise | 1 | 110 | - | - | - | - | - | - | -29.5 | 0.88 | 16.6 | -50.2 | 7.38 | 24.2 | | Cookstown | Bancroft | 1 | 110 | -1.07 | 0.94 | 1.15 | -4.57 | 0.29 | 3.45 | -1.06 | 0.94 | 1.14 | -5.42 | 0.07 | 4.08 | | Cookstown | Ckm_Country | 1 | 110 | -6.23 | -1.72 | 5.82 | -10.4 | -2.6 | 7.77 | -6.22 | -1.72 | 5.81 | -11.4 | -2.84 | 8.53 | | Clutterland | Kilmahud | 1 | 110 | 8.86 | -0.1 | 4.74 | 8.86 | -0.19 | 3.97 | 3.53 | -2.27 | 2.24 | 3.52 | -2.32 | 1.89 | | Clutterland | Castlebagot | 1 | 110 | -46.8 | -3.02 | 27.8 | -46.8 | -2.91 | 27.7 | -120 | -11.9 | 71.1 | -119 | -11.5 | 71 | | Cloon | Lanesboro_A2 | 1 | 110 | 22.2 | -7.01 | 23.5 | 34.8 | -10 | 29.7 | 13.3 | -6.61 | 15 | 23 | -1.99 | 18.9 | | Screeb | Knockranny | 1 | 110 | -7 | 2.8 | 5.58 | -19.3 | -1.97 | 12.2 | -6.98 | 2.8 | 5.57 | -21.1 | -2.46 | 13.3 | | Screeb | Knockranny | 1 | 110 | - | - | - | - | - | - | -6.98 | 2.8 | 5.57 | -21.1 | -2.46 | 13.3 | | Crane | Effernoge | 1 | 110 | - | - | - | - | - | - | -6.71 | 12.5 | 7.96 | -55.1 | 16.2 | 27.4 | | Crane | Lodgewood | 1 | 110 | -21 | 6.59 | 12.3 | -61.9 | 14.1 | 30.2 | - | - | - | - | - | - | | Crane | Tullabeg | 1 | 110 | 24.3 | 2.11 | 13.7 | 27.8 | -6.08 | 13.6 | 12.3 | 4.45 | 7.36 | 36.1 | -4.13 | 17.3 | | Crane | Wexford | 1 | 110 | -14.5 | 6.94 | 11.8 | 10 | -10.4 | 6.88 | -16.8 | -1.51 | 9.47 | -14.2 | -15.3 | 9.95 | | Carrick On S | Flagford | 1 | 110 | -19.1 | 8.29 | 21 | -11.8 | -1.16 | 9.8 | -15.8 | 2 | 16.1 | -36.7 | 0.62 | 30.3 | | Carrick On S | Flagford | 2 | 110 | -19.6 | 8.56 | 21.6 | -12.1 | -1.15 | 10 | -16.2 | 2.09 | 16.5 | -37.6 | 0.74 | 31.1 | | Carrick On S | Arigna_T | 1 | 110 | 7.61 | -7.56 | 6.03 | -44.7 | 10.8 | 21.9 | 6.63 | -7.48 | 5.61 | -30.8 | 5.04 | 14.9 | | College Park | Finglas B5 | 1 | 110 | 0 | -3.69 | 3.55 | 0 | -4.05 | 2.85 | 1.08 | -3.71 | 3.72 | 3.12 | -3.65 | 3.38 | | College Park | Corduff | 1 | 110 | -21.6 | 0.69 | 15.1 | -23.1 | 1.68 | 16.2 | -22.6 | 0.72 | 15.8 | -29.1 | 0.74 | 20.3 | | Charleville | Glenlara | 1 | 110 | 8.1 | 0.02 | 8.18 | 6.61 | 4.15 | 6.45 | 8.08 | 0.04 | 8.16 | 10.8 | 4.18 | 9.53 | | Charleville | Killonan | 1 | 110 | 20.7 | -10.2 | 17 | 36.3 | -19 | 25.8 | 36.6 | -27.9 | 33.9 | 38.2 | -20.4 | 27.3 | | Charleville | Mallow | 1 | 110 | -34.6 | 13.2 | 20.8 | -43.5 | 7.13 | 21 | -38.5 | 7.87 | 22.1 | -58.5 | 13 | 28.5 | | Carlow | Kellis | 1 | 110 | -31.8 | 7.63 | 33.1 | -46.5 | -14.4 | 40.2 | -5.43 | -1.34 | 5.32 | -34 | -15.9 | 30.5 | | Carlow | Kellis | 2 | 110 | -32 | 7.38 | 33.2 | -46.5 | -14.9 | 40.4 | -5.58 | -1.36 | 5.47 | -35 | -16.3 | 31.3 | | Carlow | Stratf T | 1 | 110 | 5.95 | -1.3 | 8.95 | -6.86 | 14.1 | 23.1 | -27.2 | 22 | 51.4 | -7.94 | 15.5 | 25.6 | | Cow Cross | Castleview | 1 | 110 | 16.7 | -6.07 | 17.9 | 28.8 | -5.33 | 24.2 | 17.2 | -5.31 | 18.2 | 29 | -3.16 | 24.1 | | Cow Cross | Oldcourt | 1 | 110 | 0.3 | 0.02 | 0.9 | 0.3 | 0.01 | 0.9 | 0.3 | 0.02 | 0.9 | 0.3 | 0.01 | 0.9 | | Cow Cross | Raffeen | 1 | 110 | -11 | 0.33 | 11.1 | -25.1 | -2.44 | 20.9 | -9.53 | -0.85 | 9.67 | -23.9 | -4.82 | 20.1 | | Cow Cross | Whitegate | 1 | 110 | -10 | 5.68 | 11.6 | -20.4 | 6.02 | 17.6 | -11.5 | 6 | 13.1 | -23.9 | 5.84 | 20.4 | | Cunghill | Glenree | 1 | 110 | -0.48 | 2.27 | 1.31 | -86.5 | 34.1 | 44.3 | -2.01 | -10.5 | 6.02 | -75 | 29.5 | 38.4 | | Cunghill | Sligo | 1 | 110 | 0.48 | -0.55 | 0.41 | 96.7 | -27.5 | 47.9 | 2.01 | 12.3 | 7.02 | 82.1 | -22.6 | 40.6 | | Cushaling | Mount Lucas | 1 | 110 | 9 | -8.58 | 9.14 | -6.86 | -26.3 | 17.1 | 11.7 | -0.67 | 8.62 | 43 | 8.57 | 27.6 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------
-----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | /inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Cushaling | Newbridge | 1 | 110 | 6.1 | 6.76 | 6.8 | 39.5 | -6.74 | 26.4 | 10.9 | 2.52 | 6.31 | 90.9 | 4.15 | 43.4 | | Cushaling | Philipstown | 1 | 110 | -15.1 | 2.4 | 11.2 | -10.2 | 12.9 | 10.4 | -22.7 | -1.27 | 12.8 | -7.82 | 20.3 | 10.4 | | Castleview | Knockraha | 1 | 110 | 2.14 | -6.91 | 7.3 | -0.1 | -8.77 | 7.25 | 3.49 | -6.25 | 7.23 | -3.42 | -7.64 | 6.92 | | Coomagearlah | Glanlee | 1 | 110 | 0 | -2.3 | 2.53 | -8.87 | 4.77 | 11.1 | -0.7 | -2.29 | 2.63 | -6.21 | 3.84 | 8.03 | | Coomagearlah | Clonkeen | 1 | 110 | 0 | 2.3 | 1.29 | 33.1 | -19.1 | 20.1 | 0.7 | 2.29 | 1.35 | 23.2 | -17.3 | 15.2 | | Corraclassy | Gortawee | 1 | 110 | 4.94 | 15.6 | 9.19 | 45.4 | -6.78 | 21.9 | 1.44 | 20.1 | 11.3 | 56.3 | -8.57 | 27. | | Corraclassy | Ennk_Pst | 1 | 110 | 0.25 | -1.55 | 1.58 | -0.3 | -0.14 | 0.27 | 0.16 | -5.27 | 5.32 | -0.57 | -2.08 | 1.78 | | Castledockre | Lodgewood | 1 | 110 | - | - | - | 12.4 | -11.9 | 18.9 | - | - | - | 8.66 | -11.6 | 15.9 | | Cullenagh | Rathnaskillo | 1 | 110 | - | - | - | -29.7 | 11.2 | 15.1 | -30.3 | 6.84 | 17.4 | -34.2 | 15.9 | 18 | | Cullenagh | Waterford | 1 | 110 | 23.6 | -9.58 | 14.3 | 61 | -7.62 | 30.6 | 23.6 | -9.14 | 14.2 | 60.6 | -11 | 30. | | City West | Fortunestown | 1 | 110 | 22.1 | 0.98 | 17.9 | 76.2 | 22 | 60.1 | 22.1 | 0.98 | 17.8 | 85.7 | 26.8 | 68 | | City West | Inch_Country | 1 | 110 | -33 | -4.86 | 32.4 | -89.7 | -26.4 | 69.7 | -32.9 | -4.85 | 32.3 | -101 | -31.7 | 78. | | Corduff | Gallanstown | 1 | 110 | -5.45 | -8.84 | 5.84 | 35.1 | 3.28 | 16.8 | -3.11 | -7.06 | 4.33 | 29 | 4.06 | 14 | | Corduff | Ryebrook | 1 | 110 | 20.4 | 18.8 | 17.2 | 17.1 | 26.9 | 18.7 | 18.1 | 19.6 | 16.6 | -3.74 | 26.2 | 15. | | Knockranny A | Uggool | 1 | 110 | - | -4.32 | 2.21 | -51.9 | 54.2 | 34.1 | - | -4.35 | 2.23 | -36.3 | 52.9 | 29. | | Knockranny A | Galway | 1 | 110 | - | 4.32 | 2.41 | 51.9 | -48.1 | 38.2 | - | 4.35 | 2.43 | 36.3 | -52.9 | 34. | | Knockranny | Knockalough | 1 | 110 | - | -11.9 | 6.24 | -10.1 | -9.38 | 7.24 | - | -12 | 6.3 | -7.04 | -10.4 | 6.6 | | Knockranny | Ferry View | 1 | 110 | - | - | - | - | - | - | - | -2.56 | 1.12 | -9.9 | 15.2 | 7.9 | | Knockranny | Salthill | 1 | 110 | -7.02 | 19.6 | 10.7 | 23.3 | 39.7 | 20.9 | -7 | 22.4 | 12 | 18.6 | 25.8 | 14. | | Knockranny | Buffy | 1 | 110 | 0 | -0.62 | 0.44 | -32.7 | -27.9 | 30.7 | 0 | -0.63 | 0.45 | -22.9 | -28.8 | 26. | | Dundalk | Mullagharlin | 1 | 110 | -4.87 | -5.48 | 7.41 | -24.6 | -12.7 | 22.9 | -2.84 | -2.24 | 3.65 | -27.4 | -13.2 | 25. | | Dundalk | Louthb | 1 | 110 | -14.1 | 8.69 | 16.7 | -30.7 | 5.67 | 25.8 | -15.7 | 5.4 | 16.7 | -36.8 | 4.09 | 30. | | Drumline | Ennis | 1 | 110 | -0.52 | -13.7 | 13.8 | -12.8 | -0.97 | 10.6 | - | - | - | - | - | - | | Dungarvan | Rathnaskillo | 1 | 110 | - | - | - | 29.9 | -11.7 | 15.3 | 20.9 | -4.54 | 12 | 34.5 | -15.9 | 18. | | Dungarvan | Woodhouse | 1 | 110 | -31 | 6.31 | 17.8 | -74.5 | 2.59 | 35.5 | -30.6 | 5.46 | 17.5 | -85.3 | 5.33 | 40. | | Drybridge | Gorman | 1 | 110 | -9.94 | 1.35 | 10.1 | -14.6 | 4.48 | 12.7 | -17.1 | 4.08 | 17.7 | -25.6 | 6.11 | 21. | | Drybridge | Loutha | 1 | 110 | -19.9 | -20.2 | 28.7 | -28.9 | -26.7 | 32.5 | -28.6 | -21.5 | 36.1 | -53.8 | -28.5 | 50. | | Drybridge | Oldbridge | 1 | 110 | 7.93 | 14.1 | 15.4 | -12.8 | 7.37 | 12 | 32.8 | 17.5 | 20.9 | 24.6 | 7.54 | 12. | | Dunmanway | Macroom | 1 | 110 | -6.62 | 1.91 | 3.52 | -0.5 | 0.31 | 0.27 | -0.33 | 1.98 | 1.03 | -3.85 | 3.79 | 2.4 | | Dunmanway | Carrigdangan | 1 | 110 | - | -0.37 | 0.18 | -20.2 | 15.5 | 11.8 | - | -0.37 | 0.18 | -14.2 | 10.9 | 8.2 | | Dallow | Dallow T | 1 | 110 | -4.66 | 1.35 | 4.62 | -13.2 | -3.65 | 11.1 | -4.65 | 1.35 | 4.61 | -16.4 | -3.83 | 13. | | Dardistown | Fin_Rural | 1 | 110 | -17.7 | -2.03 | 14.8 | -27.4 | -6.71 | 20.7 | -9.74 | 1.46 | 8.21 | -21.4 | -4.52 | 16. | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | inter Pe | ak | Sui | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Dardistown | Kilmore | 1 | 110 | 10.7 | -0.56 | 8.6 | 17.7 | 3.98 | 12 | 2.76 | -4.05 | 3.95 | 10.6 | 1.39 | 7.05 | | Derryiron | Kinnegad | 1 | 110 | 12 | -3.97 | 12.8 | 10.8 | -5.25 | 9.89 | 26.7 | -10.1 | 21 | 50.1 | -0.09 | 31.5 | | Dalton_A1 | Dalton_A2 | 1 | 110 | -16.7 | 6.98 | 18.3 | 34.2 | -7.42 | 29 | - | - | - | - | - | - | | Dunfirth | Dunfir_T | 1 | 110 | -1.73 | -0.2 | 3.05 | -10.1 | -0.44 | 17.7 | 0.03 | -0.55 | 0.96 | -11.3 | -0.61 | 19.9 | | Drumkeen | Letterkenny | 1 | 110 | 9.7 | -3.74 | 10.5 | 30.2 | -7.72 | 25.4 | 10.8 | -1.39 | 11 | 34.2 | -22 | 33 | | Drumkeen | Meentycat | 1 | 110 | - | -0.19 | 0.19 | -25.4 | 16.6 | 25.1 | - | -0.19 | 0.19 | -17.7 | 29.1 | 28.1 | | Drumkeen | Clogher | 1 | 110 | -9.7 | 3.93 | 10.2 | -4.83 | -8.88 | 8.22 | -10.8 | 1.58 | 10.6 | -16.5 | -7.14 | 14.6 | | Ennis | Slievecallan | 1 | 110 | 0.01 | -29 | 14.9 | -21.6 | -15.9 | 12.2 | 0.01 | -29.4 | 15.1 | -15.2 | -17.5 | 10.5 | | Kill Hill | Thurles | 1 | 110 | 27.4 | -6.97 | 15.9 | 16.4 | 1.52 | 7.83 | 24 | -3.86 | 13.6 | 8.84 | 2.68 | 4.4 | | Mount Lucas | Thornsberry | 1 | 110 | 8.98 | 2.39 | 6.88 | 33.5 | -0.66 | 21.1 | 11.7 | 10.1 | 11.5 | 71.1 | 19.7 | 46.4 | | Corkagh | Castlebagot | 1 | 110 | -62.8 | -6.17 | 34.3 | -62.8 | -5.97 | 34.3 | -78.7 | -9.62 | 43.1 | -78.3 | -6.59 | 42.7 | | Corkagh | Castlebagot | 2 | 110 | -62.8 | -6.17 | 34.3 | -62.8 | -5.97 | 34.3 | -78.7 | -9.62 | 43.1 | -78.3 | -6.59 | 42.7 | | Fass East | Fassaroe_T | 1 | 110 | -9.82 | -0.39 | 9.36 | -29.7 | -2.86 | 24.2 | -9.8 | -0.39 | 9.34 | -33.3 | -3.64 | 27.3 | | Fass West | Ckm_Country | 1 | 110 | -9.87 | -0.41 | 9.4 | -29.8 | -2.93 | 24.3 | -9.83 | -0.41 | 9.37 | -33.5 | -3.72 | 27.4 | | Flagford | Gilra | 1 | 110 | 11.4 | 2.97 | 17.4 | 11.5 | -10.8 | 23.1 | 11.4 | 2.95 | 17.4 | 11.5 | -10.9 | 23.2 | | Flagford | Sligo | 1 | 110 | 7.43 | -8.69 | 11.6 | -25.7 | 13.4 | 24 | 7.23 | -10.2 | 12.6 | -15.5 | 7.76 | 14.3 | | Flagford | Tonroe | 1 | 110 | 7.13 | -0.07 | 9.38 | 13 | 3.36 | 17.7 | 12.5 | -27.2 | 16.8 | -109 | 24 | 53.4 | | Flagford | Sliabh Bawn | 1 | 110 | -6.29 | 7.18 | 9.64 | 19.9 | -4.83 | 16.6 | -14 | 19.1 | 13.3 | 33.2 | -6.67 | 16.1 | | Frn St A | Harolds Cros | 1 | 110 | -3.67 | -0.12 | 3.43 | -10.1 | 0.03 | 8.88 | -3.77 | -1.94 | 3.96 | -11.4 | 0.04 | 9.97 | | Frn St A | Trinity | 1 | 110 | -3.85 | 0.42 | 3.23 | -15.1 | -1.17 | 11.1 | -4.02 | -1.89 | 3.7 | -16.9 | -1.69 | 12.5 | | Frn St B | Heuston Squa | 1 | 110 | -2.56 | 0.34 | 2.08 | -9.5 | -0.43 | 7.15 | -2.55 | 0.34 | 2.08 | -10.7 | -0.59 | 8.04 | | Frn St B | Inch_City | 1 | 110 | -5.95 | -1.32 | 5.7 | -14.3 | -2.18 | 12.7 | -5.94 | -1.32 | 5.68 | -16 | -2.46 | 14.2 | | Fin_Urban | Mcdermott | 1 | 110 | 21.2 | -16 | 26.8 | 61.4 | -10.5 | 54.7 | 21.2 | -15.9 | 26.7 | 69.1 | -8.6 | 61 | | Fin_Urban | Pelletstown | 1 | 110 | 10.2 | -3.12 | 9.81 | 32.2 | 1.8 | 27.8 | 10.2 | -3.1 | 9.78 | 36.1 | 2.98 | 31.2 | | Fin_Rural | Glasmore | 1 | 110 | 23.2 | 2.21 | 23.6 | 59.2 | 16.4 | 50.3 | 19.8 | 1.69 | 20 | 66.7 | 19.4 | 56.9 | | Fin_Rural | Grange | 1 | 110 | 25 | -22.4 | 33.3 | 46.9 | -16.5 | 39.8 | 13.6 | -25.1 | 28.3 | 39.3 | -17.8 | 34.5 | | Fin_Rural | Poppintree | 1 | 110 | 26.8 | -13.1 | 27.4 | 53.8 | -7.3 | 46.8 | 13.2 | -15.6 | 18.7 | 43.3 | -8.1 | 38 | | Fin_Rural | Stephenstown | 1 | 110 | 8.32 | -3.69 | 8.67 | 21.7 | 1.66 | 17.7 | 7.24 | -3.99 | 7.87 | 24.4 | 2.8 | 20 | | Fortunestown | Cookstown A | 1 | 110 | 16 | 2.82 | 14.8 | 61 | 22.2 | 49.2 | 16 | 2.82 | 14.7 | 68.6 | 26.5 | 55.7 | | Garballagh | Gorman | 1 | 110 | -7.05 | -2.53 | 7.13 | -8.8 | 2.71 | 7.48 | -15.7 | -5.41 | 9.35 | -27 | -0.65 | 12.8 | | Garballagh | Platin | 1 | 110 | 16.5 | 1.32 | 15.8 | 8.8 | -2.71 | 7.48 | 30 | -0.87 | 16.9 | 27 | 0.65 | 12.8 | | Glasmore | Stephenstown | 1 | 110 | -4.78 | -7.92 | 6.91 | -10.8 | -12.4 | 10.5 | -3.72 | -7.76 | 6.42 | -12.2 | -13.3 | 11.5 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|-----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | /inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Griffinrath | Grfrat T | 1 | 110 | -12.1 | -0.44 | 11.5 | -33.8 | -4.94 | 27.8 | -4.08 | -0.11 | 3.89 | -28.2 | -1.53 | 23 | | Great Island | Kilkenny | 1 | 110 | 34.6 | -14.1 | 21 | 65 | -10.6 | 31.4 | - | - | - | - | - | - | | Great Island | Waterford | 1 | 110 | -0.57 | 2.54 | 1.46 | -1.22 | 11.1 | 5.31 | -2.01 | 2.39 | 1.75 | 6.48 | 15.7 | 8.08 | | Great Island | Waterford | 2 | 110 | -0.51 | 2.26 | 1.3 | -1.1 | 10 | 4.8 | -1.82 | 2.13 | 1.57 | 5.89 | 14.2 | 7.31 | | Great Island | Rosspile | 1 | 110 | 24.1 | -6.17 | 14 | 35.5 | -16.1 | 18.6 | 10.6 | -3.46 | 6.26 | 71.2 | -27.8 | 36.4 | | Grange | Newbury | 1 | 110 | 2.4 | -1.6 | 2.33 | -11 | -8.55 | 11.2 | - | - | - | - | - | - | | Garrow | Clonkeen | 1 | 110 | 0.01 | -16.3 | 13.6 | -32.9 | 3.93 | 27.6 | -0.69 | -16.3 | 13.6 | -23.1 | 2.04 | 19.3 | | Galway | Salthill | 1 | 110 | 11.3 | -34.8 | 37 | 0.92 | -56.4 | 53.2 | 12.3 | -36.6 | 39 | 8.43 | -45.2 | 43.4 | | Gallanstown | Platin | 1 | 110 | 6.43 | -8.25 | 5.88 | 35.1 | 3.29 | 16.8 | - | - | - | - | - | - | | Golagh | Golagh T | 1 | 110 | - | - | - | 3.6 | -0.86 | 3.01 | - | - | - | - | - | - | | Gorman | Meath Hill | 1 | 110 | -6.36 | -5.05 | 8.2 | -2.52 | -1.09 | 2.27 | -10.5 | -9.41 | 14.2 | -12.4 | -0.25 | 10.2 | | Gorman | Navan | 1 | 110 | 15.7 | -0.5 | 15.8 | 24.2 | 4.83 | 20.4 | 12.5 | 3.88 | 13.2 | 21.2 | 7.02 | 18.4 | | Gorman | Navan | 2 | 110 | 13.6 | -0.32 | 13.7 | 22 | 9.39 | 11.4 | 11.1 | 6.15 | 7.12 |
18.7 | 10.9 | 10.3 | | Gorman | Navan | 3 | 110 | 17.7 | 0.83 | 17.9 | 26.8 | 7.74 | 23 | 13.7 | 5.45 | 14.9 | 23.2 | 9.9 | 20.8 | | Gorman | Gorman Ess | 1 | 110 | 0 | -0.57 | 0.3 | 0 | -0.6 | 0.27 | 0 | -0.56 | 0.3 | 0 | -0.59 | 0.27 | | Grange Castl | Inch_Country | 1 | 110 | -11.5 | 0.1 | 11.2 | -16.6 | -1.22 | 14.4 | -13.7 | -0.4 | 13.3 | -20.1 | -2.15 | 17.6 | | Grange Castl | Inch_Country | 2 | 110 | -11.5 | 0.1 | 11.2 | -16.6 | -1.22 | 14.4 | -13.7 | -0.4 | 13.3 | -20.1 | -2.15 | 17.6 | | Grange Castl | Nangor | 1 | 110 | 4.75 | 0.35 | 3.97 | 5.4 | 0.12 | 4.12 | 4.11 | 0.48 | 3.44 | 5.4 | 0.14 | 4.12 | | Grange Castl | Nangor | 2 | 110 | 5.02 | 0.53 | 4.21 | 5.71 | 0.32 | 4.37 | 4.33 | 0.66 | 3.65 | 5.71 | 0.34 | 4.37 | | Grange Castl | Yellowmeadow | 1 | 110 | -30.4 | -5.85 | 16.6 | -44 | -11.1 | 20.4 | -27.2 | -6.28 | 14.9 | -44.4 | -13.1 | 20.8 | | Clogher | Mulreavy | 1 | 110 | 0 | -10.5 | 7.69 | -28.5 | -19.8 | 25.5 | 0 | -10.6 | 7.82 | -20 | -14.4 | 18. | | Clogher | Cath Fall | 1 | 110 | -11.7 | 17.6 | 11.9 | 31.5 | -5.78 | 15.3 | -12.6 | 15.5 | 11.2 | 14 | -3.38 | 6.93 | | Clogher | Golagh T | 1 | 110 | 8.67 | -5.03 | 5.66 | 6.21 | 3.89 | 3.38 | 9.68 | -2.81 | 5.69 | 18.8 | -0.9 | 8.66 | | Harolds Cros | Ringsend | 1 | 110 | -9.94 | 0.87 | 9.33 | -28.8 | -2.91 | 25.4 | -10 | -0.96 | 9.4 | -32.3 | -3.84 | 28. | | Heuston Squa | Inch_City | 1 | 110 | -8.86 | 1.66 | 7.27 | -19.2 | 1.43 | 14.5 | -8.84 | 1.66 | 7.25 | -21.6 | 1.08 | 16.2 | | niscarra | Macroom | 1 | 110 | 4.02 | -5.96 | 3.67 | -14.8 | 3.8 | 7.04 | 15.9 | -11 | 9.84 | 5.27 | -2.39 | 2.6 | | nch_City | Milltown | 1 | 110 | 13.4 | -5.61 | 14.1 | 43.6 | -4.98 | 32.7 | 13.3 | -5.61 | 14 | 48.9 | -4.51 | 36. | | nch_Country | Yellowmeadow | 1 | 110 | 34.4 | -2.74 | 18.5 | 48 | 1.76 | 21.5 | 54.9 | 1.52 | 29.4 | 72.2 | 7.72 | 32. | | kerrin | Ikerin T | 1 | 110 | -10.1 | -2.93 | 11.5 | -15.2 | -6.83 | 18.3 | -10 | -2.91 | 11.5 | -21.6 | -6.9 | 24. | | Knockanure | Kilpaddoge | 1 | 110 | -7.74 | 6.01 | 7.21 | -4.58 | -5.18 | 4.35 | 0.08 | 1.83 | 1.34 | -11.7 | 14.3 | 11. | | Knockanure | Trien | 2 | 110 | 7.74 | -6.01 | 9.9 | 4.58 | 5.18 | 5.72 | -0.08 | -1.83 | 1.85 | 11.7 | -14.3 | 15. | | Knockanure | Knockanure B | 1 | 110 | -0.01 | 4.51 | 0.29 | 9.01 | 9.3 | 0.69 | -0.01 | 4.62 | 0.29 | 6.33 | 6.91 | 0.5 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|-----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | /inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Knockanure | Trien | 1 | 110 | 0.01 | -16.2 | 9.07 | -43.7 | 7.93 | 21.1 | 0.01 | -16.6 | 9.3 | -30.6 | 4.64 | 14.8 | | Knockraha | Kilbarry | 1 | 110 | 18.6 | -5.66 | 10.9 | 35.2 | 2.99 | 16.8 | 24.2 | -6.66 | 14.1 | 55.7 | -0.08 | 26.5 | | Knockraha | Barrym T | 1 | 110 | 55.7 | -13.4 | 42.2 | 79.7 | -19.2 | 51.6 | 63.3 | -8.46 | 35.9 | 107 | -10.6 | 51.4 | | Knockraha | Kilbarry | 2 | 110 | 14.5 | -8.04 | 16.7 | 29.7 | -3.84 | 24.7 | - | - | - | - | - | - | | Knockraha | Lysaghtstown | 1 | 110 | -4.88 | 10.9 | 11.4 | 3.22 | 11.9 | 9.99 | -11.5 | 15.1 | 18.1 | 5.61 | 10.2 | 9.46 | | Knockraha | Woodhouse | 1 | 110 | 31.4 | -6.47 | 18 | 59.5 | -8.72 | 28.6 | 30.9 | -7.16 | 17.8 | 75.7 | -9.66 | 36.4 | | Kilbarry | Marina | 1 | 110 | -26.8 | 9.49 | 27.6 | -36.8 | -7.59 | 28.9 | - | - | - | - | - | - | | Kilbarry | Marina | 2 | 110 | -25.5 | 9.01 | 26.3 | -35 | -7.25 | 27.5 | -18.4 | 11.5 | 21.1 | -33.3 | -5.7 | 26 | | Kilbarry | Mallow | 1 | 110 | 43.2 | -11.9 | 33.4 | 68 | -0.04 | 42.8 | - | - | - | - | - | - | | Kilteel | Maynooth A | 1 | 110 | -19.3 | 5.99 | 20.4 | -47.2 | 7.29 | 39.5 | -11 | 5.44 | 9.15 | -16.9 | 7.94 | 11.7 | | Kilteel | Monread | 1 | 110 | 9.67 | -4.77 | 8.05 | 13 | 19.1 | 14.6 | 2.84 | -4.49 | 3.96 | -21.5 | 17.7 | 17.5 | | Reamore | Tralee | 1 | 110 | 0 | 2.94 | 2.35 | 24.8 | -3.93 | 17.8 | - | 2.96 | 2.37 | 17.4 | -1.57 | 12.4 | | Kilkenny | Kellis | 1 | 110 | 10.9 | -15.1 | 18.8 | -11.2 | 1.87 | 9.37 | -9.65 | 11.9 | 15.5 | -2.25 | -0.6 | 1.92 | | Kishoge | Castlebagot | 1 | 110 | - | - | - | -2.51 | -0.35 | 1.14 | -13.7 | -2.34 | 7.42 | -13.7 | -2.32 | 6.22 | | Kishoge | Aungierstown | 1 | 110 | - | - | - | -0.46 | -0.08 | 0.21 | -8.11 | -1.4 | 4.4 | -8.11 | -1.39 | 3.69 | | Killonan | Limerick | 1 | 110 | 32.8 | 3.16 | 33.2 | 60.3 | 7.63 | 50.3 | 34.4 | -1.01 | 34.8 | 75 | 1.42 | 62 | | Killonan | Nenagh | 1 | 110 | 11.5 | 1.53 | 15.2 | 20.9 | 6.83 | 29 | - | - | - | - | - | - | | Killonan | Singland | 1 | 110 | 45.3 | -9.08 | 26 | 87.9 | -9.09 | 42.1 | 53.2 | -26.7 | 33.5 | 67.5 | -23.5 | 34 | | Knockearagh | Outagh T | 1 | 110 | 15.5 | -9.34 | 10.2 | 27.8 | -12.5 | 14.5 | 29.7 | -14.4 | 18.5 | 46.6 | -23.5 | 24.8 | | Knockumber | Navan | 1 | 110 | -23.7 | -13 | 27.3 | -23.7 | -12.9 | 21.9 | -23.7 | -13 | 27.3 | -23.7 | -12.9 | 21.9 | | Ballynahulla | Glenlara | 1 | 110 | 0.07 | -41.1 | 30.7 | -43.2 | -9.05 | 26.6 | -0.42 | -41 | 30.6 | -30.3 | -11.4 | 19.5 | | Kinnegad | Mullingar | 1 | 110 | 3.88 | -15.1 | 8.75 | 3.22 | -11.9 | 5.87 | - | - | - | - | - | - | | Kinnegad | Dunfir_T | 1 | 110 | -2.05 | 8.71 | 9.04 | -2.68 | 4.29 | 4.18 | - | - | - | - | - | - | | Knockacummer | Glenlara | 1 | 110 | -0.01 | 6.16 | 5.05 | 31.2 | -25.5 | 33 | -0.01 | 6.16 | 5.05 | 21.8 | -24.6 | 26.9 | | Killoteran | Waterford | 1 | 110 | -2.48 | -3.99 | 4.75 | -5.54 | -9.89 | 9.37 | 0.24 | -4.05 | 4.1 | -11 | -13.1 | 14.1 | | Kilmore | Cromcastle | 2 | 110 | - | -1.4 | 1.23 | - | -1.51 | 1.33 | - | -1.41 | 1.24 | 0 | -1.53 | 1.34 | | Kilmore | Cromcastle | 1 | 110 | - | -1.4 | 1.23 | - | -1.51 | 1.33 | - | -1.41 | 1.24 | 0 | -1.53 | 1.34 | | Kilmore | Newbury | 1 | 110 | 29.6 | -1.03 | 24.9 | 43 | 5.03 | 32.6 | - | - | - | - | - | - | | Kilmore | Poppintree | 1 | 110 | -19 | 6.56 | 18.4 | -25.3 | 5.55 | 22.3 | -6.18 | 9.04 | 10.1 | -15.3 | 7.35 | 14.6 | | Kilmahud | Castlebagot | 1 | 110 | -20.8 | -5.04 | 12.7 | -20.8 | -5.02 | 12.7 | -31.6 | -8.5 | 19.3 | -31.6 | -8.45 | 19.3 | | Kilpaddoge | Coolnanoonag | 1 | 110 | - | -2.24 | 1.6 | -11.1 | 7.79 | 9.68 | - | -2.26 | 1.61 | -7.74 | 16.2 | 12.8 | | Kilpaddoge | Rathkeale | 1 | 110 | 28 | -2.18 | 20.7 | 40.5 | 1.07 | 25.5 | 13.5 | 3.29 | 10.2 | 28.5 | 8.42 | 18.7 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | w | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Kilpaddoge | Tralee | 1 | 110 | 3.84 | -5.98 | 6.77 | 1.77 | 3.23 | 3 | -2.41 | -1.75 | 2.83 | 3.36 | -4.68 | 4.69 | | Kilpaddoge | Tralee | 2 | 110 | 5.12 | -5.67 | 4.29 | 0.87 | 3.1 | 1.7 | - | - | - | - | - | - | | Castlebagot | Barnakyle | 1 | 110 | 9.01 | -0.93 | 5.17 | 9.01 | -1.07 | 5.18 | - | - | - | - | - | - | | Castlebagot | Barnakyle | 2 | 110 | 9.01 | -0.93 | 5.17 | 9.01 | -1.07 | 5.18 | 52 | 1.82 | 29.7 | 52 | 1.33 | 29.7 | | Castlebagot | Aungierstown | 1 | 110 | 6.99 | 0.42 | 5.47 | 14.5 | -0.98 | 11.3 | 44 | 3.39 | 34.5 | 44 | 3.1 | 34.5 | | Lislea | Lisdrum | 1 | 110 | -3.53 | 10.3 | 10.4 | 17.4 | -16.2 | 19.4 | -3.91 | 11.5 | 11.6 | 24 | -19.4 | 25.1 | | Lislea | Shankill | 1 | 110 | 3.53 | -10.3 | 10.4 | -2.79 | 2.32 | 2.95 | 3.91 | -11.5 | 11.6 | -13.8 | 1.82 | 11.3 | | Lanesboro_A1 | Mullingar | 1 | 110 | 17.1 | -6.95 | 18.7 | 18.1 | -14.5 | 19.2 | - | - | - | - | - | - | | Lanesboro_A1 | Richmond | 1 | 110 | 4.46 | -0.8 | 4.58 | 17.7 | 3.61 | 14.7 | 3.91 | -0.72 | 4.02 | 19.4 | 4.38 | 16.2 | | Lanesboro_A1 | Lanesboro_A2 | 1 | 110 | -9.86 | -3.12 | 7.72 | -48.7 | 23.5 | 32.8 | - | - | - | - | - | - | | Lickny | Mullingar | 1 | 110 | - | - | - | 29.1 | -12.7 | 25.6 | - | - | - | 20.4 | -19.3 | 22.7 | | Loutha | Mullagharlin | 1 | 110 | 11.7 | 5.76 | 13.1 | 32.7 | 13.6 | 29.3 | 9.6 | 2.47 | 10 | 36 | 14.2 | 32 | | Loutha | Ratrussan | 1 | 110 | 13.8 | -11 | 18.5 | -6.64 | 11.9 | 12.2 | 16.7 | -14.4 | 12.4 | -15.9 | 15 | 10.4 | | Lysaghtstown | Midleton | 1 | 110 | 3.79 | 8.98 | 9.29 | 3.2 | 12.3 | 10.3 | 3.12 | 6.99 | 7.29 | 5.6 | 10.6 | 9.75 | | Limerick | Moneteen | 1 | 110 | 26.4 | 22.6 | 19.5 | 20.6 | 22.2 | 14.4 | 0.27 | 28.1 | 15.8 | 36.4 | 17.5 | 19.2 | | Limerick | Rathkeale | 1 | 110 | -8.7 | -1.23 | 8.88 | -7.61 | 2.62 | 6.65 | 5.62 | -7.33 | 9.33 | 12.3 | -5.02 | 11 | | Limerick | Killonan2 | 2 | 110 | -25.5 | -2.78 | 32.1 | -46.9 | -5.74 | 45.4 | -26.8 | 0.5 | 33.5 | -58.2 | -0.45 | 55.9 | | Coolnabacky | Portlaoise | 1 | 110 | - | - | - | 21.4 | -5.06 | 17.8 | 65.3 | -11.1 | 37.2 | 55.3 | 0.79 | 26.3 | | Lisdrum | Louthb | 1 | 110 | -14.6 | 8.91 | 17.3 | -7.9 | 7.76 | 9.15 | -14.9 | 10.2 | 18.2 | -8.6 | 3.26 | 7.6 | | Lisdrum | Lisdrumdoagh | 1 | 110 | - | -0.15 | 0.08 | - | -0.16 | 0.07 | - | -0.15 | 0.08 | - | -0.16 | 0.07 | | Derrycarney | Portlaoise | 1 | 110 | 20.1 | -4.45 | 11.6 | 32.7 | 2.11 | 15.6 | 2.53 | 0.75 | 1.48 | 31 | -14.7 | 16.3 | | Derrycarney | Dallow T | 1 | 110 | -20.1 | 4.45 | 11.6 | -22.6 | -2.28 | 10.8 | - | - | - | - | - | - | | Letterkenny | Lenalea | 1 | 110 | -2.46 | 0.21 | 1.82 | -3.05 | -5.7 | 4.07 | -3.02 | 1.43 | 2.46 | -10.3 | -1.92 | 6.56 | | Letterkenny | Trillick | 1 | 110 | 6.31 | -2.33 | 6.41 | -12.1 | 6.05 | 11 | 6.29 | -2.38 | 6.4 | 0.12 | 14.9 | 12.1 | | Letterkenny | Golagh T | 1 | 110 | -8.62 | 3.32 | 9.33 | -9.75 | -4.6 | 8.91 | -9.63 | 1.23 | 9.8 | -18.6 | -0.24 | 15.4 | | Letterkenny | Stra_Pst | 1 | 110 | -3.23 | -1.91 | 4.7 | 0.86 | -1.28 | 1.66 | -0.48 | 1.46 | 1.46 | 0.97 | -2.2 | 1.95 | | Lenalea | Tievebrack | 1 | 110 | -2.46 | 3.76 | 3.3 | 6.09 | -2.3 | 4.09 | -3.02 | 1.92 | 2.63 | -3.87 | -1.57 | 2.63 | | Liberty St | Marina | 1 | 110 | -5.65 | -0.81 | 8.4 | -15.6 | -3.95 | 23.7 | -5.63 | -0.81 | 8.37 | -17.6 | -4.38 | 26.6 | | Liberty St | Marina | 2 | 110 | -2.82 | -0.53
 2.9 | -7.59 | 0.67 | 6.4 | -2.81 | -0.53 | 2.89 | -8.52 | 0.43 | 7.17 | | Lisheen | Thurles | 1 | 110 | - | - | - | 38.1 | -17.1 | 34.2 | - | - | - | 26.7 | -12.1 | 24 | | Lodgewood | Crory | 1 | 110 | - | -3.26 | 2.43 | -17.9 | 1.78 | 11.8 | - | -3.3 | 2.46 | -12.6 | -0.08 | 8.25 | | Misery Hill | Ringsend | 1 | 110 | -16.5 | 6.22 | 13.5 | -44.6 | 2.15 | 32.3 | -16.6 | 3.9 | 13.1 | -50.1 | 1.05 | 36.3 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |-------------|-------------|-----|-----|-------|---------|------|-------|----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | w | inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Misery Hill | Trinity | 1 | 110 | 9.35 | -5.67 | 9.11 | 26.1 | -3.43 | 19.4 | 9.5 | -3.35 | 8.39 | 29.4 | -2.75 | 21.7 | | Macetown | Snugborough | 1 | 110 | -1.96 | -0.36 | 2.01 | -5.63 | -0.94 | 4.72 | - | - | - | - | - | - | | Macetown | Corduff | 1 | 110 | -13 | 0.31 | 13.1 | -19.6 | -0.75 | 16.2 | -13.8 | 1.19 | 14 | -24.6 | -0.26 | 20.3 | | Mcdermott | Wolfe Tone | 1 | 110 | 6.15 | 2.55 | 6.17 | 22.4 | 7.11 | 20.5 | 6.13 | 2.54 | 6.15 | 25.2 | 8.18 | 23.1 | | Meath Hill | Louthb | 1 | 110 | -23.7 | -6.63 | 24.9 | -34.6 | -17.6 | 32.1 | -27.8 | -11.1 | 30.3 | -53.1 | -18.6 | 46.5 | | Maynooth A | Timahoe | 1 | 110 | - | - | - | 11.5 | -1.19 | 10.4 | 4.21 | 5.94 | 4.09 | -4.72 | 21.9 | 10.7 | | Maynooth A | Grfrat T | 1 | 110 | 12.1 | 0.22 | 12.2 | 33.8 | 4.8 | 28.5 | 4.08 | -0.12 | 4.12 | 28.2 | 1.36 | 23.6 | | Maynooth A | Griffinrath | 1 | 110 | 12.1 | 0.18 | 12.2 | 34 | 4.14 | 28.1 | 4.1 | -0.02 | 4.14 | 28.4 | 0.78 | 23.3 | | Maynooth B | Ryebrook | 1 | 110 | 85 | 33.1 | 51.2 | 88.2 | 24.8 | 43.6 | 87.3 | 32.3 | 52.3 | 109 | 26.6 | 53.6 | | Maynooth B | Rinawade | 1 | 110 | 13 | -8.87 | 19.6 | 22 | -4.34 | 21.7 | 9.13 | 1.4 | 5.19 | 9.13 | 1.37 | 4.4 | | Maynooth B | Blake T | 1 | 110 | 0.95 | -8.42 | 8.56 | 28.2 | 2.75 | 23.4 | -11.4 | -4.31 | 9.03 | -8.89 | 4.27 | 6.2 | | Milltown | Ringsend | 1 | 110 | -7.69 | -0.3 | 7.7 | -19.2 | 0.38 | 17.9 | -7.67 | -0.29 | 7.67 | -21.6 | 0.12 | 20.1 | | Milltown | Ringsend | 2 | 110 | -6.21 | 0.64 | 5.78 | -15.2 | 0.65 | 13.3 | -6.19 | 0.64 | 5.76 | -17.1 | 0.3 | 14.9 | | Macroom | Clashavoon | 1 | 110 | -2.44 | -9.62 | 5.09 | -25.5 | -4.76 | 11.8 | 17.8 | -16.1 | 12.3 | -3.56 | -9.21 | 4.49 | | Moneteen | Mungret A | 1 | 110 | 10.8 | 6.59 | 28 | 10.8 | 6.6 | 28 | 10.8 | 6.59 | 28 | 10.8 | 6.6 | 28 | | Moneteen | Mungret B | 2 | 110 | 10.8 | 6.61 | 28.1 | 10.8 | 6.61 | 28.1 | 10.8 | 6.6 | 28 | 10.8 | 6.61 | 28.1 | | Moneypoint | Tulbrk T | 1 | 110 | 38.8 | -9.24 | 22.4 | 28.8 | 2.39 | 13.8 | 15.5 | -2.06 | 8.78 | 19 | 2.95 | 9.16 | | Marina | Trabeg | 1 | 110 | -30.2 | 9.48 | 17.8 | -53 | -7.49 | 24.4 | -34.5 | 8.83 | 20 | -58.7 | -7.02 | 27 | | Marina | Trabeg | 2 | 110 | -35 | 11.6 | 20.7 | -61.5 | -8.09 | 28.3 | -40.1 | 10.8 | 23.3 | -68.1 | -7.55 | 31.3 | | Moy | Glenree | 1 | 110 | 0.48 | -4.2 | 4.03 | 67.4 | -19.9 | 57.1 | - | - | - | - | - | - | | Moy | Tawnaghmore | 1 | 110 | - | -0.45 | 0.23 | -55.4 | 18.8 | 26.9 | - | -0.49 | 0.25 | -55.9 | 17.4 | 27 | | Moy | Tawn_B | 2 | 110 | - | -0.41 | 0.39 | -49.7 | 15 | 42.2 | - | -0.44 | 0.42 | -100 | 28.4 | 84.5 | | Bancroft | Ckm_Country | 1 | 110 | -44.2 | -6.15 | 40.9 | -47.7 | -6.42 | 41.5 | -44.1 | -6.15 | 40.9 | -48.5 | -6.67 | 42.2 | | Newbridge | Portlaoise | 1 | 110 | -17.5 | 1.17 | 16.8 | -17.2 | 5.25 | 14.6 | - | - | - | - | - | - | | Newbridge | Blake T | 1 | 110 | 5.64 | 7.16 | 6.7 | -1.63 | 0.03 | 1.03 | 17.5 | 3.31 | 13.1 | 38.6 | -0.89 | 24.3 | | North Quays | Ringsend | 1 | 110 | -10.8 | 0.37 | 8.44 | -21.9 | -1.84 | 16.1 | -10.8 | 0.38 | 8.42 | -24.6 | -2.44 | 18.2 | | Oughtragh | Outagh T | 1 | 110 | -10.6 | 1.27 | 10.1 | -23.3 | -3.13 | 19.1 | -10.1 | 1.23 | 9.73 | -27.3 | -3.53 | 22.4 | | Philipstown | Portlaoise | 1 | 110 | -15.1 | 3.58 | 11.4 | 4.73 | -0.88 | 3.03 | -22.7 | -0.12 | 12.7 | 2.64 | 3.56 | 2.11 | | Pollaphuca | Stratf T | 1 | 110 | - | - | - | 30 | -10.5 | 46.7 | 34 | -21.3 | 59 | 34 | -10.8 | 52.5 | | Poolbeg | Ringsend | 3 | 110 | 49.9 | -25.7 | 23.6 | 99.9 | 5.98 | 39.4 | 49.7 | -25.6 | 23.5 | 116 | 7.51 | 45.8 | | Poolbeg | Ringsend | 4 | 110 | 48.4 | -24.9 | 22.5 | 96.8 | 5.87 | 37.6 | 48.2 | -24.8 | 22.4 | 113 | 7.36 | 43.7 | | Platin | Oldbridge | 1 | 110 | 4.89 | -12.5 | 12.8 | 25.6 | -5.78 | 21.3 | 25.8 | -10.7 | 15.7 | 37.7 | -0.12 | 18 | | | | | | | | 20 | 22 | | | | | 20 | 31 | | | |--------------|--------------|-----|-----|-------|---------|------|-------|-----------|------|-------|---------|------|-------|----------|------| | From | То | No. | kV | Sur | nmer Va | lley | W | /inter Pe | ak | Sur | nmer Va | lley | W | inter Pe | ak | | | | | | MW | MVAR | % | | Ringsend | Whitebank | 1 | 110 | 0 | -2.15 | 1.72 | -60.9 | 28.7 | 47.7 | 0 | -2.14 | 1.71 | -60.9 | 22.1 | 46 | | Richmond | Lanesboro_A2 | 2 | 110 | -5.54 | 0.29 | 5.61 | -21.9 | -5.01 | 18.3 | - | 0.18 | 4.91 | -24 | -5.92 | 20.1 | | Raffeen | Trabeg | 1 | 110 | 38.1 | -16.6 | 21.3 | 75.5 | -17.1 | 35.2 | 46.6 | -15.8 | 25.3 | 92.1 | -18.3 | 42.7 | | Rinawade | Dunfir_T | 1 | 110 | 3.82 | -10.3 | 11.1 | 12.8 | -5.8 | 11.6 | - | - | - | - | - | - | | Ratrussan | Shankill | 1 | 110 | 13.6 | -9.84 | 17.7 | 16.8 | -4.17 | 15.5 | 16.6 | -13.2 | 22.3 | 0.5 | 2.08 | 1.91 | | Shannonbridg | Dallow T | 1 | 110 | 24.8 | -6.83 | 14.5 | 35.9 | 5.11 | 17.3 | 7.19 | -1.99 | 4.19 | 18.5 | 25.1 | 14.8 | | Shannonbridg | Ikerin T | 1 | 110 | -6.63 | 9.33 | 6.43 | -24.2 | 7.91 | 12.1 | - | - | - | - | - | - | | Shannonbridg | Somrst T | 1 | 110 | -7.36 | -1.67 | 7.63 | -5.55 | 5.22 | 6.86 | 6.98 | -7.61 | 10.4 | 16.5 | -5.81 | 15.8 | | Sligo | Srananagh | 1 | 110 | -6.16 | -3.14 | 6.98 | 8.97 | -5.82 | 8.84 | -5.34 | 2.68 | 5.69 | 3.61 | -5.47 | 5.33 | | Sligo | Srananagh | 2 | 110 | -5.69 | -2.94 | 6.47 | 8.3 | -5.42 | 8.19 | -5.18 | 2.59 | 5.52 | 3.5 | -5.33 | 5.18 | | Sorne Hill | Trillick | 1 | 110 | - | - | - | 18.9 | -3.47 | 15.6 | - | - | - | 13.2 | -12.6 | 14.8 | | Somerset | Somrst T | 1 | 110 | -11 | 0.45 | 10.5 | -22.1 | -5.27 | 18.5 | -10.2 | 0.42 | 9.7 | -25.8 | -5.99 | 21. | | Srananagh | Cath Fall | 2 | 110 | 24.6 | -18.7 | 17.4 | -3.53 | 0.13 | 1.68 | 23.8 | -15.7 | 16 | -13.2 | 1.03 | 6.3 | | Stratford | Stratf T | 1 | 110 | -5.93 | -0.12 | 13.2 | -22.7 | -4.26 | 51.4 | -5.91 | -0.12 | 13.2 | -25.6 | -5.04 | 57.9 | | Singland | Ardnacrusha | 1 | 110 | 40.4 | -8.98 | 23.3 | 72.3 | -12 | 34.9 | 48.3 | -26.8 | 31 | 50.1 | -26.5 | 27 | | Snugborough | Corduff | 1 | 110 | -37.9 | -3.15 | 16 | -41.6 | -3.66 | 17.5 | -77.5 | -12.6 | 33 | -77.5 | -12.4 | 33 | | Trabeg | Raffeenb | 2 | 110 | -54.3 | 6.29 | 30.7 | -111 | -34.9 | 55.3 | -60.3 | 3.57 | 33.9 | -121 | -40 | 60.8 | | Timahoe | Derryiron | 1 | 110 | 0 | 0 | 0 | 11.5 | -0.24 | 7.34 | 11.2 | 1.55 | 6.32 | -4.78 | 22.3 | 10.9 | | Tullabrack | Tulbrk T | 1 | 110 | -3.8 | -1.02 | 3.75 | -2.36 | -4.26 | 3.96 | -3.79 | -1.02 | 3.74 | -6.56 | -3.97 | 6.23 | | Cauteen | Killonan2 | 1 | 110 | -6.71 | -5.56 | 4.9 | 25.5 | 3.46 | 12.2 | 8.04 | -8.01 | 6.37 | 24.1 | 5.88 | 11.8 | | Cauteen | Tipperary | 1 | 110 | 6.7 | 15.3 | 9.39 | 26.2 | -5.5 | 12.8 | -8.05 | 17.7 | 10.9 | 12.2 | -3.4 | 6.03 | | Tralee | Outagh T | 1 | 110 | -4.84 | 6.71 | 5.14 | -4.3 | 14.8 | 8.08 | -19.3 | 12.5 | 14.3 | -18.7 | 27.8 | 17.5 | | Thurles | Ikerin T | 1 | 110 | 16.8 | -8.72 | 10.6 | 39.8 | -1.92 | 19 | 13.4 | -9.22 | 9.16 | 14 | 17.8 | 10.8 | | Thornsberry | Derryiron | 1 | 110 | -2.57 | 2.5 | 3.63 | -0.74 | -6.57 | 5.46 | 2.52 | 9.66 | 5.61 | 32.1 | 11.7 | 16.3 | | Rosspile | Wexford | 1 | 110 | 33.5 | -8.59 | 19.4 | 35.4 | -15.8 | 18.4 | 20.1 | -4.94 | 11.6 | 70.6 | -29.9 | 36. | | Coomataggart | Ballyvouskil | 1 | 110 | - | 0.2 | 0.1 | 46.6 | -28.7 | 24.8 | - | 0.2 | 0.1 | 32.7 | -26.6 | 19. | | Woodhouse | Knocknamona | 1 | 110 | - | - | - | -10.2 | -10.1 | 11.6 | - | -1.52 | 1.23 | -7.13 | -11.5 | 10. | | Barnahelyb | Raffeenb | 2 | 110 | -3.69 | -0.86 | 3.83 | -4.78 | -0.98 | 4.03 | -3.68 | -0.86 | 3.82 | -5.37 | -1.14 | 4.5 | | Bellacorick | Srahnakilly | 1 | 110 | 0 | -4.73 | 2.43 | -51.4 | 34.6 | 28 | - | -5.07 | 2.6 | -36 | 20.5 | 18. | | Bellacorick | Croaghaun | 1 | 110 | - | - | - | -15 | 12 | 9.13 | - | -0.14 | 0.08 | -10.5 | 7.79 | 6.2 | | Ckm_Country | Fassaroe_T | 1 | 110 | 9.84 | 0.16 | 9.37 | 29.8 | 2.79 | 24.3 | 9.81 | 0.15 | 9.34 | 33.5 | 3.63 | 27. | | Clogher | Croaghonagh | 1 | 110 | 0 | -15.2 | 8.31 | -41.6 | 26 | 26.8 | 0 | -15.5 | 8.45 | -29.1 | 24.5 | 20. | | Table H-1: Power flows | | | | | | | | | | | | | | | | |------------------------|--------------|-----|-----|---------------|-------|------|-------------|------|------|---------------|-------|------|-------------|-------|------| | From | То | No. | | 2022 | | | | | | 2031 | | | | | | | | | | kV | Summer Valley | | | Winter Peak | | | Summer Valley | | | Winter Peak | | | | | | | | MW | MVAR | % | | Lanesboro_A2 | Sliabh Bawn | 1 | 110 | 6.34 | -8.15 | 10.4 | -37 | 8.57 | 30.8 | 14.1 | -19.8 | 13.7 | -45 | -17.6 | 23 | | Shannonbridg | Derrylahan | 1 | 110 | - | - | - | - | - | - | - | - | - | - | -4.26 | 3.05 | | Shannonbridg | Timoney | 1 | 110 | - | - | - | - | - | - | -18.8 | 13.5 | 13 | -41.3 | 18.7 | 21.6 | | Stonestown | Dallow T | 1 | 110 | - | - | - | - | - | - | -2.53 | -0.61 | 1.46 | -1.93 | -22.1 | 10.6 | | Timoney | Ikerin T | 1 | 110 | - | - | - | - | - | - | -3.35 | 10.1 | 6 | 7.67 | -12.9 | 7.14 | | Derryiron | Laurencetown | 1 | 110 | - | - | - | - | - | - | - | - | - | - | -0.11 | 0.05 | | Raffeenb | Castletreasu | 1 | 110 | - | - | - | - | - | - | - | - | - | - | -5.73 | 4.62 | The Oval, 160 Shelbourne Road, Ballsbridge, Dublin 4, D04 FW28, Ireland +353 (0) 1 627 1700 | eirgrid.ie Castlereagh House, 12 Manse Road, Belfast, BT6 9RT, Northern Ireland +44 (0) 28 9079 4336 | soni.ltd.uk