

IE000451A - CP1273 DUBLIN CENTRAL GRID REINFORCEMENT

Step 3 Report

File Ref: CP1273-RPS-01-RN-XX-R-C-0002

IE000451A S4 P01 14/06/2024

www.EirGrid.ie

DUBLIN CENTRAL GRID REINFORCEMENT - STEP 3 REPORT

Document status					
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date
S3 P01	For Comment	ET	DC	DC	25.03.24
S3 P02	For EirGrid Review	ET	DC	DC	04.06.24
S4 P01	Issue for publication	ET	DC	DC	14.06.24

Approval for issue	
David Conneran	14 June 2024

Context

This report presents an independent review and analysis of submissions received to the public consultation on the EirGrid "Dublin Central Grid Reinforcement Project".

This report has been prepared for the EirGrid by RPS Consulting Engineers Ltd.

Disclaimer

Although every effort has been made to ensure the accuracy of the material contained in this report, complete accuracy cannot be guaranteed. Neither the EirGrid, nor the authors accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting or refraining from acting, as a result of a matter contained in this report.

Contents

1	INTR	ористі	ON	1
	1.1	Who is	EirGrid?	1
	1.2	Project	Description	1
		1.2.1	What Step is the Dublin Central Grid Reinforcement Project at?	3
		1.2.2	What is the Aim of this Step 3 Report?	3
		1.2.3	CP1273 Dublin Central Grid Reinforcement	3
2	METL			5
2	1 ₩ILII 2.1	Introduc		5
	2.1	Study A	rea	5
	2.2	Indicativ	ve Single Line Drawing and Master Lavout	5
	2.5	Identific	eation of Potential transmission Substation Locations	0
	2. 1 2.5	Critoria	Lised for Comparison of Ontions	0
	2.0	2 5 1	Technical	0
		2.5.1	Deliverability	0 a
		2.5.2	Economic	ə
		2.5.3	Socia-Economic	0
		2.5.4	Environmental	10
		2.J.J	LIVII OIIIIleiltat	10
3	POTE	ENTIAL S	SUBSTATION LOCATION AND 220 KV TIE IN OPTIONS	.11
	3.1	Locatio	n 1	.12
	3.2	Locatio	n 2	.12
	3.3	Locatio	n 3	.13
	3.4	Locatio	n 4	.14
4	мш		RIA ANALYSIS	15
-	4 1	Emerai	ng Best Option from Multi-Criteria Analysis	15
	42	Technic	al Analysis	16
	4.3	Delivera	ability Analysis	17
	4.4	Econor	nic Analysis	.18
	4.5	Socio-E	conomic Analysis	.19
	4.6	Environ	mental Analysis	.20
_				
5	TECH		FEASIBLITY	.21
	5.1	Iransm	Ission Asset Technology Review	.21
		5.1.1	High voltage AC cables	.21
		5.1.2	Switchgear	.21
		5.1.3	I ransformers	.21
		5.1.4	Control and protection	.21
		5.1.5		.21
	5.2	Design	Options for EBO	.22
		5.2.1	Single Line Diagram	.22
		5.2.2	Cable Circuit Ampacity Calculations	.22
		5.2.3	Indicative Master Layout	.23
		5.2.4	Indicative Master Elevations	.24
		5.2.5	Indicative Primary Plant Plan View	.24
		5.2.6	Indicative Control Building Layouts	.24
		5.2.7	Indicative Cable Layouts	.24
		5.2.8	Connectivity Review	.24
	5.3	Constru		.30
		5.3.1	Uverview of Works	.30
		5.3.2	Construction of 110 kV & 220 kV GIS substation	.30
		5.3.3	I renching	.31

	F 2 4		~ 4
	5.3.4	Joint Bay Construction	34
	5.3.5	Cable Pulling	35
	5.3.6	Construction of Trenchless Crossings	35
	5.3.7	Traffic Management	37
6	SUMMARY		38
7	NEXT STEPS	5	39
APPE	NDIX A: SING	GLE LINE DIAGRAM	40
APPE	NDIX B: AMP	ACITY CALCULATIONS	41
APPE	NDIX C: MAS	TER LAYOUT	42
APPE	NDIX D: MAS	TER ELEVATIONS	43
APPE	NDIX E: PRIN	IARY PLANT VIEW	44
APPE	NDIX F: CON	TROL BUILDING LAYOUT	45
APPE	NDIX G: CAB	LE ARRANGEMENTS	46
APPE	NDIX H: HDD	CROSSING	47
APPE		DUCTOR DATASHEETS	48

List of Tables

Table 1-1: Summary of the project need and short list of options	4
Table 2-1: Colour coding of Risk / Significance / Sensitivity levels	8
Table 2-2: Technical sub-criteria for the Multi-Criteria Assessment	9
Table 2-3: Deliverability sub-criteria for the Multi-Criteria Assessment	9
Table 2-4: Economic sub-criteria for the Multi-Criteria Assessment	9
Table 2-5: Socio-Economic sub-criteria for the Multi-Criteria Assessment	9
Table 2-6: Environmental sub-criteria for the Multi-Criteria Assessment	10
Table 4-1: Criteria level summary of Multi-Criteria Analysis	15
Table 4-2: Summary of technical analysis	16
Table 4-3: Summary of deliverability analysis	17
Table 4-4: Summary of economic analysis	18
Table 4-5: Summary of socio-economic analysis	19
Table 4-6: Summary of environmental analysis	20
Table 5-1: 220 kV scenarios and configurations investigated to determine ampacity ratings	
achieved	22
Table 5-2: 110 kV scenarios and configurations investigated to determine ampacity ratings	
achieved	23

List of Figures

Figure 1-1: The Grid Reinforcement Projects: CP1214, CP1226, and CP1273	2
Figure 1-2: EirGrid's Six-Step Framework for Grid Development	3
Figure 1-3: CP1273 study area and existing 220kV circuits	4
Figure 2-1 CP1273 Dublin Central Transmission Substation Study Area	6
Figure 2-2: Single Line Drawing of the proposed Dublin Central transmission substation	7
Figure 3-1: All identified potential transmission substation locations	1
Figure 3-2: Potential transmission substation locations progressed to the Multi-Criteria Analysis	;
	1
Figure 3-3: Potential Location 1 with adjusted generic substation layout and potential 220 kV	~
tie in	2
Figure 3-4: Potential Location 2 with generic substation layout and potential 220 kV tie in 1	3
Figure 3-5: Potential Location 3 with generic substation layout and potential 220 kV tie in 1	3
Figure 3-6: Potential Location 4 with generic substation layout and potential 220 kV tie in 14	4
Figure 4-1: Identified potential transmission substation locations	5
Figure 5-1: Locations of cross sections along East Wall Road	5
Figure 5-2: Cross section of East Wall Road at Location A	6
Figure 5-3: Cross section of East Wall Road at Location B	7
Figure 5-4: Cross section of East Wall Road at Location B	8
Figure 5-5: Cross section of East Wall Road at Location D	9
Figure 5-6: Standard trench specifications for 110 kV circuit in flat formation (XDC-CBL-STND	-
H-008)	1
Figure 5-7: Standard trench specifications for 110 kV circuit in trefoil formation (XDC-CBL-	~
SIND- Π -008)	2
Figure 5-8: Standard trench specifications for 220 KV circuit in flat formation (XDC-CBL-STND	~
F-008)	2
Figure 5-9: Standard trench specifications for 220 kV circuit in trefoil formation (XDC-CBL- STND-F-008)	3
Figure 5-10: Isometric joint bay arrangement (XDC-CBL-STND-F-012).	5
Figure 5-11: Crossing in flat formation (not to scale)	6
Figure 5-12: Crossing in trefoil with an outer duct	6

Figure 5-13: Crossing in trefoil without an outer duct	37
Figure 6-1: The Emerging Best Option to progress to Step 4 within the Study Area	38
Figure 6-2: Master layout of Emerging Best Option	38

1 INTRODUCTION

1.1 Who is EirGrid?

EirGrid is responsible for a safe, secure and reliable supply of electricity. EirGrid develops, manages and operates the electricity transmission grid. This brings power from where it is generated to where it is needed throughout Ireland. EirGrid uses the grid to supply power to industry and businesses that use large amounts of electricity. The grid also powers the distribution network. This supplies the electricity used every day in homes, businesses, schools, hospitals and farms.

1.2 **Project Description**

EirGrid, as the Transmission System Operator (TSO) of Ireland, and ESB Networks, as the Distribution System Operator (DSO) and Transmission Asset Owner (TAO) of Ireland, work collaboratively to ensure that the needs of transmission and distribution connected customers are met. This includes planning the development of transmission interface stations. A transmission interface station or transmission substation is a point of connection between the transmission and distribution system. A primary function of these stations is to facilitate power flows between the transmission and distribution systems to enable power to be distributed to where it is needed.

As part of feedback collected during the Shaping our Electricity Future consultation, the DSO has highlighted to EirGrid emerging needs for additional capacity at transmission interface stations in the Dublin area. This capacity is needed to accommodate forecast growth of electricity demand in the distribution network. This projected demand growth is driven by several factors including residential, electrification of heat and transport and growth in commercial sectors.

The significant electricity demand growth in the distribution system also leads to a significant pressure on the transmission system, particularly at existing transmission substations and the associated transmission circuits. The existing transmission substations and the associated transmission circuits are at risk of reaching their capacity limits and as a result the existing infrastructure will not be capable to supply sufficient power to where it is needed. To address this need, new infrastructure is required.

Since publication of the Shaping Our Electricity Future v1.0 Roadmap in 2021, the emerging needs have translated into connection requests made by the DSO to the TSO. Currently there are three projects underway to deliver new transmission substations, one each in North County Dublin (CP1214), West County Dublin (CP1226), and Dublin Central (CP1273). This report pertains to Capital Project 1273.

Figure 1-1: The Grid Reinforcement Projects: CP1214, CP1226, and CP1273

The Dublin Central Grid Reinforcement project is following the Framework for Grid Development, which is an end-to-end process for all EirGrid's grid development projects. The framework takes projects from their conception - the identification of a need to develop the electricity transmission grid - to their eventual construction and subsequent energisation. The framework is explained in EirGrid's "Have your Say" document and is illustrated in Figure 1-2.

This approach facilitates engagement and consultation with stakeholders and the public which helps to explore options fully and make more informed decisions. Previous studies by EirGrid have brought the Dublin Central Grid Reinforcement project through Steps 1 and 2 of their Framework for Grid Development and the project is currently at Step 3.

Figure 1-2: EirGrid's Six-Step Framework for Grid Development

1.2.1 What Step is the Dublin Central Grid Reinforcement Project at?

The Dublin Central Grid Reinforcement Project is currently at the beginning of Step 3 of EirGrid's sixstep Framework for Grid Development. The key output of Step 3 is the identification of a best performing technology solution and corresponding study area to meet the need for the development of a project. This technology solution will include information such as the location of the project and/or the existing grid substation node(s) involved, as well as a heat mapped study area within which that solution occurs.

1.2.2 What is the Aim of this Step 3 Report?

The aim of this report is to identify the Emerging Best Option for the location of the Dublin Central Grid Reinforcement project as well as the 220 kV circuit tie-in location. This report includes a review of available technologies and technical feasibility. The Emerging Best Option is identified through assessment using multi-criteria analysis.

1.2.3 CP1273 Dublin Central Grid Reinforcement

EirGrid is responding to the Distribution System Operator's concern (DSO) that the existing transmission substations feeding the Dublin City Centre area will reach their capacity limits in the coming years. The DSO is planning to transfer load from Ringsend and Finglas Urban 110 kV stations to a new proposed transmission substation to accommodate further load growth in Dublin City Centre area.

A new transmission substation looped into one of the existing 220 kV circuits in the North Inner City has been identified as the best solution option for solving the need. The ESB owns land in the East Wall area and a potential site to locate the substation has already been identified. The suitability of this and other potential sites were investigated, and this is outlined in this Step 3 Report. To connect this proposed transmission substation to the transmission network, there are two connection options given below, which were brought to Step 3.

The anticipated feeding arrangements are as follows:

- Loop-In the existing Finglas North Wall 220 kV circuit; or
- Loop-In the existing Finglas Shellybanks 220 kV circuit

Figure 1-3: CP1273 study area and existing 220kV circuits

Supporting System Diagrams and initial Single Line Diagrams are provided in Section 2.

Based on technical and economic performance, it was concluded that both the connection options have similar performance and either option can be used to connect the new transmission substation.

This proposed development consists of a suite of transmission reinforcement elements which are all required to provide a solution to the need identified. Due to the restrictions of the urban city environs the technologies under consideration for substations is Gas-Insulated Substations (GIS) and for circuits underground cables (UGC).

Table 1-1: Summary of the project need and short list of options

Stations	Circuits	No. of bays/Future Proofing
1x new 220/110 kV station	2 x 220V connections on existing cables. Circa 1-2km route lengths each	No. of bays = (Initial + future)
		Dublin Central 220 kV - 8 bays - (8+0 - 4 will be occupied initially)

2 METHODOLOGY AND APPROACH

2.1 Introduction

The purpose of this report is to assess the potential location options and determine the feasibility and the Emerging Best Performing Option to develop further through Step 4 to completion. This section outlines the methodology applied to achieve this.

Initial location and route options were identified using high-level considerations as listed in Section 2.4, following the identification of constraints within the study area. The constraints identified in the study area were primarily based on a review of publicly available datasets, as well as route walkover surveys.

The data sources include but are not limited to the following:

- Development Plans -Dublin City Council
- Myplan.ie Mapping
- Central Statistics Office, CSO
- National Parks and Wildlife Services, NPWS
- Irish Ramsar Wetland Committee
- Environmental Protection Area (EPA) mapping
- Geological Survey Ireland, GSI
- National Monuments Service
- Heritage Mapping
- Corine 2018 and 2012 data (sourced from the EPA). This dataset was used with aerial imagery and supplemented with datasets obtained directly from other sources covering the Dublin area, to determine land use.
- Digital terrain mapping was sourced by EirGrid from the Ordnance Survey Ireland (OSI) for the study area. An orthographical map of the study area, sourced from OSI, was also reviewed.
- Information from local authorities, asset owners and utility providers.

To help minimise disruption and work as efficiently as possible, this project will coordinate with other state-owned utilities, transport providers and local authorities through the Dublin Infrastructure Forum (DIF). The forum meets quarterly.

The DIF has also setup three working groups at operational level:

- Stakeholder engagement and communications;
- Technical expertise; and
- Planning and environment.

While the initial focus of the work of the DIF has been on the *Powering Up Dublin* programme, it is intended to work more broadly across other major infrastructure projects being delivered in the area such as water, gas and transport.

2.2 Study Area

EirGrid

The study area for this specific project, CP1273 Dublin Central Grid Reinforcement, is shown in Figure 2-1. This study area starts north of Fairview Park and extends down to just south of the River Liffey.

Figure 2-1 CP1273 Dublin Central Transmission Substation Study Area

2.3 Indicative Single Line Drawing and Master Layout

The indicative Single Line Drawing (SLD) for this transmission substation at this point in the project is shown in Figure 2-2. This SLD was used in conjunction with the indicative Master Layout to determine the minimum size required for the substation to select potential locations within the study area.

To determine the high level feasible transmission substation locations within the study area, a highlevel substation layout was designed to determine the area required by the transmission substation. This minimum footprint was determined to be approximately 1.04 hectares. This was used in conjunction with the methodology discussed in Section 2.4 to identify potentially feasible substation locations.

Figure 2-2: Single Line Drawing of the proposed Dublin Central transmission substation

2.4 Identification of Potential transmission Substation Locations

Potential locations for the Dublin Central transmission substation have been identified following highlevel considerations under the following headings:

- Technical
 - Size of site
 - Accessibility to existing 220 kV circuits
 - Major obstacles (crossings that may require trenchless techniques)
 - Proximity
 - Route geometry
- Environmental
 - Ecology
 - Water bodies
 - o Contaminated land
- Social
 - o Residential, amenity, commercial
 - Archaeology/Cultural heritage
- Economic
 - Land ownership
 - Length of route for 220 kV circuit loop-in options
- Deliverability
 - Land availability
 - Site accessibility

The potential options identified were then assessed in the Multi-Criteria Analysis to determine the Emerging Best Performing Option to progress to Step 4.

2.5 Criteria Used for Comparison of Options

The potential locations were assessed using EirGrid's five multi-criteria assessment criteria. These are as follows:

- Technical
- Deliverability
- Economic
- Socio-Economic
- Environmental

The criteria were further divided into sub-criteria which are described below. For each sub-criterion, the location was ranked according to the colour scale shown in Table 2-1.

Table 2-1: Colour coding of Risk / Significance / Sensitivity levels

Colour Key	Level of Risk / Significance / Sensitivity
Yellow	Low
Green	Low-Moderate
Dark Green	Mid-Level / Moderate
Blue	Moderate-High
Dark Blue	High

2.5.1 Technical

Table 2-2 outlines the sub-criteria considered under Technical.

Sub-criteria	Description
Technical Operating Risk	Will the route lead to areas which are difficult to access to complete maintenance activities, examples include access to railways, motorways, fast lanes of major roads, etc.
Expansion/Extendibility	This considers the ease with which the solution option can be expanded, for example it may be possible to uprate an overhead line to a higher capacity or a new voltage in the future.

Table 2-2: Technical sub-criteria for the Multi-Criteria Assessment

2.5.2 Deliverability

The table below outlines the sub-criteria considered under Deliverability.

Table 2-3: Deliverability sub-criteria for the Multi-Criteria Assessment

Sub-criteria	Description
Dependence on other projects	Considers the likely interface, both positive and negative on the cable routes (Metro North and others)
Design complexity	Assessment of crossings, obstacles or constraints that may complicate or impact the design. The project should also comply with the specified ratings as provided by EirGrid.
Implementation Timelines	Relative length of time until energisation. This assesses significant differences, such as current landownership.

2.5.3 Economic

The table below outlines the sub-criteria considered under Economic.

Table 2-4: Economic sub-criteria for the Multi-Criteria Assessment

Sub-criteria	Description
Project Implementation Costs	Costs associated with the procurement, installation and commissioning of the grid development and therefore includes all the transmission equipment that forms part of the project's
Project Benefits	Avoided costs and difference in constraint costs for example due the lack of capacity to export a forecast volume of generation. The proximity to existing circuits.

2.5.4 Socio-Economic

The table below outlines the sub-criteria considered under Socio-Economic.

Table 2-5: Socio-Economic sub-criteria for the Multi-Criteria Assessment

Sub-criteria	Description		
Settlements and Communities	The expected impact of a grid development option on towns, villages and rural housing, as well as on commercial activity		
Amenity	Impact on recreational activities (e.g., fishing, sports) and tourism during and after construction, that are not included in the other sub-criteria.		
Cultural heritage	Considers the potential impact / proximity to areas (and specific points) of Cultural Heritage.		

DUBLIN CENTRAL GRID REINFORCEMENT - STEP 3 REPORT

Sub-criteria	Description
Landscape & Visual	An assessment of landscape constraints and designations and the impact on visual amenity.

2.5.5 Environmental

The table below outlines the sub-criteria considered under Environmental.

Table 2-6: Environmental sub-criteria for the Multi-Criteria Assessment

Sub-criteria	Description		
Biodiversity, Flora and Fauna	Considers the possible impact of the selected route on		
	biodiversity - based on the significance from constraints mapping		
	Considers the risk arising from proximity to water bodies - based		
Water Impact	on the significance from constraints mapping. Number of		
	crossings, proximity of location of site and circuits etc.		

3 POTENTIAL SUBSTATION LOCATION AND 220 kV TIE IN OPTIONS

Using the high-level considerations identified in Section 2.4, eight potential transmission substation locations were identified for further assessment. Locating the substation within public amenity lands has not been considered due to the high impact of this option. All eight locations are shown in Figure 3-1 below.

Figure 3-1: All identified potential transmission substation locations

From the initial eight sites, during the constraints study four were screened out initially due to existing planning permissions for projects on those sites. Four locations were bought forward to assess using the Multi-Criteria Analysis. This section describes each location as well as the identified 220 kV circuit tie in options. Figure 3-2 shows the potential transmission substation locations that were analysed in the Multi-Criteria Analysis.

Figure 3-2: Potential transmission substation locations progressed to the Multi-Criteria Analysis

3.1 Location 1

Location 1 is the ESB owned parking lot and vacant brownfield site on East Wall Road. The location is approximately 50m from the Finglas - Shellybanks 220 kV circuit which currently runs on the northern side of the M50.

The size of this location is approximately 1 ha. Due to the site geometry, the generic high-level site layout was customised to fit the available space.

Figure 3-3: Potential Location 1 with adjusted generic substation layout and potential 220 kV tie in

The potential 220kV circuit tie in, shown in pink in Figure 3-2, loops in the Finglas - Shellybanks 220 kV circuit. This tie in crosses the M50, and the crossing methodology is envisaged to be trenchless.

3.2 Location 2

Location 2 is the Dublin Port Company (DPC) owned parking lot on East Wall Road. The location is approximately 60m from the Finglas - Shellybanks 220 kV circuit which currently runs on the northern side of the M50.

The size of this location is approximately 3.5 ha.

Figure 3-4: Potential Location 2 with generic substation layout and potential 220 kV tie in

The potential 220 kV circuit tie in, shown in pink in Figure 3-3, loops in the Finglas - Shellybanks 220 kV circuit. This tie in crosses the M50, and the crossing methodology is envisaged to be trenchless.

3.3 Location 3

Location 3 is the Dublin Port Company (DPC) owned container storage adjacent to East Wall Road. The location is approximately 40m from the existing Finglas - North Wall 220 kV circuit which travels on Sheriff Street Upper and East Wall Road.

The proposed Finglas - North Wall replacement circuit (CP1100) also runs directly through the zone.

The size of this location is approximately 2.6 ha.

Figure 3-5: Potential Location 3 with generic substation layout and potential 220 kV tie in

There are two potential 220 kV circuit tie ins. The first, shown in pink in Figure 3-4, loops in the existing Finglas - North Wall 220 kV circuit. As this circuit is set to be decommissioned, this is not considered a viable loop in option for this project.

The second tie in option, shown in blue in Figure 3-4, loops in the proposed replacement Finglas - North Wall 220 kV circuit.

3.4 Location 4

Location 4 is the T11 Customs Parking lot owned by Dublin Port Company (DPC). The location is approximately 200m from the Finglas - Shellybanks 220 kV circuit which travels on Promenade Road.

The size of this location is approximately 2.7 ha.

Figure 3-6: Potential Location 4 with generic substation layout and potential 220 kV tie in

The potential 220 kV circuit tie in, shown in pink in Figure 3-7, loops in the Finglas - Shellybanks 220 kV circuit.

4 MULTI-CRITERIA ANALYSIS

The potential transmission substation locations identified and described in Section 3 were further evaluated using the methodology outlined in Section 2.5. Each of the locations were assessed using the five criteria and the associated sub-criteria.

This section summarises the Multi-Criteria Analysis for each location and identifies the Emerging Best Option (EBO) that will be progressed further to Step 4.

Figure 4-1 shows the four locations assessed during this analysis.

Figure 4-1: Identified potential transmission substation locations

4.1 Emerging Best Option from Multi-Criteria Analysis

Table 4-1 summarises the performance of each location across five criteria and their overall performance. The detailed performance assessments for each criterion, broken down into the sub-criteria evaluated, are available in the next sections of this report.

The Multi-Criteria Assessment identifies Location 1 as the EBO to progress to Step 4 of this project.

Criteria	Location 1	Location 2	Location 3	Location 4
Technical Performance				
Deliverability Performance				
Economic Performance				
Socio-Economic Performance				
Environmental Performance				

Table 4-1: Criteria level summary of Multi-Criteria Analysis

Criteria	Location 1	Location 2	Location 3	Location 4
Overall Performance				

Technical feasibility evaluates the practicality and viability of implementing each option from an engineering perspective, considering factors like site access, infrastructure requirements, and technical constraints. The technical criteria and relevant sub-criteria for each location is discussed in Section 4.2. All locations are rated moderate-high.

Deliverability assesses the ease with which each option can be successfully executed, taking into account factors such as project dependencies, design complexity, and implementation timelines. The deliverability criteria and relevant sub-criteria is discussed in detail in Section 4.3. Location 1 performs the best for this criterion with a rating of low-moderate. Location 3 is the highest rated with a ranking of moderate-high. All other locations are rated as mid-level/moderate in terms of deliverability.

Economic considerations involve evaluating the financial implications of each option, including project implementation costs and potential benefits. The economic criteria and relevant sub-criteria is discussed in detail in Section 4.4. Location 1 performs the best for this criterion with a rating of low-moderate. All other locations are rated as mid-level/moderate.

Socio-economic factors consider the impact of each option on settlements, communities, cultural heritage, amenity, and landscape. The socio-economic criteria and relevant sub-criteria is discussed in detail in Section 4.5. All locations are rated as mid-level/moderate.

Finally, environmental impact assessment involves evaluating the potential effects of each option on biodiversity, flora and fauna, and water resources. The environmental criteria and relevant subcriteria is discussed in detail in Section 4.6. Locations 1 and 2 were rated as low for this criterion, with location 3 rated as moderate-low. Location 4 was rated higher as moderate-high.

The overall rating for each option is calculated by aggregating the rankings across all criteria, providing a comprehensive assessment of each option's overall suitability and performance. This information allows the comparison of locations based on their respective strengths and weaknesses across different categories, ultimately aiding decision-making processes in the project planning and development stages.

From the overall performance, Location 1 is rated as low-moderate, with the other locations being rated higher. Due to this, Location 1 has been identified as the Emerging Best Option (EBO) to bring forward into Step 4 for further assessment and analysis. Location 1 was assessed in greater detail for high-level technical feasibility. This assessment is outlined in Section 5.

4.2 Technical Analysis

Table 4-2 summarises the technical performance of each location assessed in the Multi-Criteria Analysis. The three sub-criteria assessed at this stage of the project were the technical operating risk and the expansion and extendibility of each location, focusing on both 110 kV and 220 kV configurations.

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Technical Operating Risk				
Expansion / Extendibility - 110 kV				

Table 4-2: Summary of technical analysis

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Expansion / Extendibility - 220 kV				
Overall Technical Performance				

The technical operating risk column evaluates the difficulty of accessing areas for maintenance activities, considering factors like proximity to railways, motorways, or major roads. It examines potential constraints that might hinder maintenance operations in the future.

Location 1 scored as mid-level/moderate for this sub-criterion, as while the site access through East Wall Road may be constrained from a traffic impact, there is available space for HV vehicles. Location 2, 3 and 4 all scored as moderate-high due to the access of the site through Port land, which will need to account for Port activities.

Regarding expansion/extendibility, the assessment evaluates the ease with which the project can be expanded or upgraded. For the 110 kV option, the evaluation looks at how many 110 kV circuits may feasibly be routed out of the substation site (assessed at a high level from available record data). For the 220 kV option, it examines the ease of looping in the second 220 kV circuit to the substation site.

Due to the high congestion of East Wall Road, which affects all the locations (once the circuits have left Port land from location 4), the expansion for 110 kV circuits is moderate-high for these locations. There is potential to locate up to 3 110 kV circuits in either direction on this road, however trefoil configuration may be required.

The high congestion on East Wall Road results in the moderate-high rating for the 220 kV expansion sub-criteria for location 1, 2 and 3. For these sites, from a high-level review, it is likely that trefoil arrangements and copper cables be required to locate the two 220 kV circuits in this road and reach the required rating. For this sub-criterion, location 4 is rated as mid-level moderate. This is due to the tie in to the second 220 kV circuit (Finglas - North Wall) being located approximately 800m through Port land. This is an easier tie in when compared to the other locations.

Overall, all locations are rated as moderate-high.

4.3 Deliverability Analysis

Table 4-3 summarises the deliverability performance of each location assessed in the Multi-Criteria Analysis. The three sub-criteria assessed at this stage of the project were the dependence on other projects, design complexity and implementation times for each location.

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Dependence on other projects				
Design complexity				
Implementation Timelines				
Overall Deliverability Performance				

Table 4-3: Summary of deliverability analysis

The dependence on other projects sub-criterion evaluates whether the project relies on the completion of other projects for its successful execution. Location 1, 2 and 4 all score low for dependence on other projects as there are no known current projects at these locations. Location 3

scores as moderate-high due to the Dublin Port Company's 3FM Project which aims to develop a road network through this site.

In terms of design complexity, the table assesses the level of complexity associated with the project's design, considering factors such as crossings, obstacles, or constraints that may complicate or impact the design. This includes compliance with specified ratings provided by EirGrid. Options are rated based on the relative complexity of their design requirements.

Location 1 scores as mid-level/moderate in terms of design complexity due to the need for a complex trenchless crossing of the M50 for the 220 kV tie-in, as well as the size and shape of the site adding to the design complexity. Location 2 scores at mid-level moderate also due to the need for a complex trenchless crossing of the M50 for the 220 kV tie-in. Locations 3 and 4 scored as low-moderate as the circuit tie in to the primary 220 kV circuit identified as relatively accessible and the site size and geometry is appropriate.

The implementation timelines sub-criterion evaluates the anticipated timeline until energization, highlighting any significant differences among the options. At this stage one of the main differentiating factors between the sites is considered to be the current landownership status, which can influence project implementation. Location 1 is rated as low as the land is owned by ESB with no anticipated stakeholder or compulsory purchase order (CPO). The rest of the locations are rated as moderate-high as the land is owned by Dublin Port Company so land acquisition and stakeholder engagement would be required.

Overall, location 1 is rated as low-moderate. Locations 2 and 4 are rated as mid-level/moderate, while location 3 is rated as moderate-high.

4.4 Economic Analysis

Table 4-4 summarises the economic performance of each location assessed in the Multi-Criteria Analysis. The two sub-criteria assessed at this stage of the project were the project implementation costs and the project benefits of each location.

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Project Implementation Costs				
Project Benefits				
Overall Economic Performance				

Table 4-4: Summary of economic analysis

The Project Implementation Costs assesses the expenses associated with the procurement, installation, and commissioning of the transmission equipment necessary for the project. This includes all costs directly related to the project's scope, such as infrastructure and equipment expenses. At this stage, equipment considerations with all locations are considered to the similar. The differentiating factor for this sub-criterion at this stage is the costs associated with land ownership. Location 1 was rated as low as the land is owned by ESB. The rest of the locations are rated as mid-level/moderate as the land is owned by Dublin Port Company.

The Project Benefits evaluates the benefits derived from the project, including avoided costs and differences in constraint costs. Avoided costs may arise from factors such as the ability to export a forecast volume of generation, while constraint costs may result from the lack of capacity to meet certain demands. At this stage in the project, the main differentiating factor between the sites is the proximity to the existing 220 kV circuits circuit (for the first 220 kV tie-in). Locations 1 and 2 are rated mid-level/moderate due to the complex trenchless crossing of the M50 for the 220 kV tie-in.

Location 4 is also rated mid-level/moderate as the tie-in length is over 200m. Location 3 has the lowest rating of moderate-low as this site is directly adjacent to the proposed tie-in circuit.

Overall, location 1 is rated as moderate-low. The remaining locations (2, 3, and 4) are rated as mid-level/moderate.

4.5 Socio-Economic Analysis

Table 4-5 summarises the socio-economic performance of each location assessed in the Multi-Criteria Analysis. The four sub-criteria assessed at this stage of the project were the potential impacts on settlements and communities, amenity, cultural heritage and landscape and visual of each location.

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Settlements and Communities				
Amenity				
Cultural heritage				
Landscape & Visual				
Overall Socio- Economic Performance				

Table 4-5: Summary of socio-economic analysis

In terms of settlements and communities, the table assesses the expected impact of each option on residential, as well as current commercial activity onsite. Location 1 is situated in the residential and industrial area of East Wall, potentially affecting local residents and businesses. Locations 2, 3 and 4 were rated as high due to the current land use of the location being long term parking for imported cars, parking adjacent to Port Terminal 4 and parking for T11 Customs respectively. All three locations are within Dublin Port Company land.

Amenity considerations focus on the impact on recreational activities and tourism during and after construction. All the locations are rated low in this sub-criterion as they will have minimal to no impact on amenity areas.

Cultural heritage evaluation involves assessing the impact of each option on recorded cultural heritage resources. At this stage, from a high-level desktop review, all options were rated as mid-level/moderate as they do not contain any SMR's, ACA's or areas of known cultural heritage importance.

Finally, the assessment of landscape and visual factors considers landscape constraints, designated landscapes, and visual amenity. Location 2 and 4 were rated as low impact, with no expected loss of valued landscape elements or impacts on designated landscapes. Location 1 and 3 were rated as mid-level/moderate as there may be limited impacts on the residents on East Wall Road (location 1) and limited visual impacts apart from residents of dwellings and recreational users of boat and yacht clubs on the south side of the River Liffey (location 3).

Overall, all locations are rated as mid-level/moderate in terms of socio-economic impact.

4.6 Environmental Analysis

Table 4-6 summarises the environmental performance of each location assessed in the Multi-Criteria Analysis. The two sub-criteria assessed at this stage of the project were the potential impacts on biodiversity, flora and fauna and water impact of each location.

Table 4-6: Summary of environmental analysis

Sub-Criteria	Location 1	Location 2	Location 3	Location 4
Biodiversity, Flora and Fauna				
Water Impact				
Overall Environmental Performance				

The biodiversity, flora and fauna sub-criterion evaluates the potential impact of each location on biodiversity, including flora and fauna. Location 1, 2 and 3 received a rating of low, indicating no anticipated impact on biodiversity, flora, or fauna. Location 4 is rated mid-level/moderate as it is adjacent to the North Dublin Bay pNHA and SPA.

The water impact assesses the potential impact of each location on river crossings, lakes, and groundwater. Location 1 and 2 are rated low as there is no envisaged water impact in these locations. Location 3 was rated mid-level/moderate due to its proximity to Alexandra Basin, which forms part of Dublin Port. Location 4 is rated as moderate-high as it is adjacent to North Dublin Bay.

Overall, locations 1 and 2 are rated as low in terms of environmental impact. Location 3 is rated as low-moderate, while location 4 is rated as moderate-high.

5 TECHNICAL FEASIBLITY

5.1 Transmission Asset Technology Review

All equipment supplied for the GIS substation shall comply with EirGrid Transmission Standards. Technical schedule shall be provided to ensure equipment ratings and specifications satisfy EirGrid's transmission requirements. All equipment is subject to approval by the TAO. The following sections list EirGrid standards that are applicable to this project. Multiple frameworks have been set up where equipment manufacturers are pre-approved to supply equipment for use on the transmission system.

5.1.1 High voltage AC cables

CDS-GFS-00-001-R1 110/220/400 kV Underground Cable Specification

Please see Al & Cu Cable datasheet in Appendix I.

5.1.2 Switchgear	
XDS-GFS-25-001-R4	110/220/400 kV GIS Specification
5.1.3 Transformers	
XDS-GFS-00-001-R4	1110/220/400 kV Station General Requirements
XDS-GFS-08-001-R3	Station Auxiliary Power Supplies Specification
XDS-GFS-09-001-R4	Station 220 V, 48V and 24 V Lead Acid Batteries and Chargers
XDS-GFS-13-001-R2	Substation Civil and Building Works
5.1.4 Control and pro	tection
XDS-GFS-06-001-R2	Control, Protection and Metering Specification
5.1.5 Earthing	
XDS-GFS-12-001-R4	Earthing and Lightning Protection

5.2 Design Options for EBO

Location 1 has been identified as Emerging Best Option (EBO) for advancement to Step 4. The high level design options have been developed for this location.

The 220 kV tie-in to the EBO is challenging as it is a trenchless crossing of the M50. All other circuits leaving the substation site are expected to travel on East Wall Road, which is highly congested.

It must be noted that all designs are based off available record data. No specific site investigation has been completed for this project to confirm these utilities.

5.2.1 Single Line Diagram

The Single Line Diagram can be found in Appendix A.

The project brief listed the requirement for an 8 bay 220 kV substation. An 8 bay substation typically has 2 no. 220/110 kV Transformers and an initial SLD was submitted for review. Subsequently EirGrid requested the inclusion of a third transformer. The attached SLD in Appendix A shows and 8 bay station with 3 transformers, which is a non-standard arrangement and we suggest this is assessed further in the next step of the project. We have configured the transformers in a way to maximise the redundancy of the system.

5.2.2 Cable Circuit Ampacity Calculations

The cable circuit ampacity calculations can be found in Appendix B.

The ampacity considers the following scenarios in Table 5-1 and 5-2. The configurations selected reference available space requirements and possible de-ratings due to the proximity of other electrical circuits in the vicinity. As a number of circuits are existing and some future, in both cases ratings unknown, we have selected the following circuit ratings:

• 110 kV Circuits 1	190 MVA
• 220 kV Circuits 5	537 MVA
Summer ratings are considered:	
Summer Ground Temperature 2	20 °C May to September
Summer Soil Thermal Resistivity	1.2 K.m/W
• Summer Concrete (CBGM B) Thermal Resistivity 1	1.0 K.m/W
HDD (below 3 m):	
Soil Temperature	10 °C (All year round)
Soil Resistivity	1.0 K.m/W (All year round)

The cable for the 220 kV circuits is proposed to be 2 500 mm² Al. EirGrid's preference is to use aluminium conductors in flat formation. Where there is insufficient space for flat formation, trefoil may be required. Our analysis has determined that in trefoil, the aluminium conductors cannot meet the system ratings, in which case copper conductors are proposed. Also, in cases where cables are laid in the vicinity of existing cables, our analysis has determined that copper cables may be selected to achieve the ratings.

Table 5-1: 220 kV scenarios and configurations investigated to determine ampacity ratings achieved

Scenario	Direction	No. of 220 kV	220 kV formation	Cable formation physically achievable	220 kV rating achieved
А	N	2	HDD - flat	No	N/A
В	N	2	HDD - trefoil	Yes	Yes

DUBLIN CENTRAL GRID REINFORCEMENT - STEP 3 REPORT

Scenario	Direction	No. of 220 kV	220 kV formation	Cable formation physically achievable	220 kV rating achieved
С	SE	2	Flat	No	N/A
D	SE	2	1 flat; 1 trefoil	Yes	Yes
E	SE	2	Trefoil	Yes	Yes
F	NW	1	Flat	No	N/A
G	NW	1	Trefoil	Yes**	Yes

Table 5-2: 110 kV scenarios and configurations investigated to determine ampacity ratings achieved

Scenario	Direction	No. of 110 kV	110 kV formation	Cable formation physically achievable	110 kV rating achieved
Н	SE	3	Flat	Yes**	Yes
I	SE	3	Trefoil	Yes	Yes
J	NW	2	Flat	Yes**	Yes
K	NW	2	Trefoil	Yes	Yes

**Depends on other circuits within roadway

5.2.3 Indicative Master Layout

We have developed the Master Layout for the EBO which can be found in Appendix C.

The following standards were used in generating the master layout:

- Generic design standard for 110 kV GIS Station XDN-LAY-ELV-STND-H-012-003
- Generic design standard for 220 kV GIS Station XDN-LAY-ELV-STND-F-005-002
- Station design standard for 110 kV GIS Station XDN-LAY-ELV-STND-H-012-001

The layout was based on the above standard requirements from EirGrid which details the following:

- Minimum distance from the palisade fence (Internal fence) being 10m to the edge of the building both 110 kV & 220 kV buildings.
- Minimum distance from the customer fence being 7m to the edge of the building both 110 kV & 220 kV buildings.
- The minimum size of a footpath around the buildings is 2m wide.
- The minimum size of the compound road within the site is 4.5m wide.
- The standard size of a110 kV GIS building 8-bay station is 14.88m wide by 48.10m long.
- The standard size of a 220 kV GIS building 8-bay station is 18.50m wide by 49.00m long.

Based on the above standards, the following was achieved for the layout:

- The distance from the palisade fence (Internal fence) to the edge of 220 kV GIS Building is 19m on the wide side.
- The distance from the customer fence to the edge of 220 kV GIS Building is 15m on the long side.
- The distance from the palisade fence (Internal fence) to the edge of 110 kV GIS Building is 10m on the long side.

• The distance from the customer fence to the edge of 220 kV GIS Building is 10m on the wide side.

5.2.4 Indicative Master Elevations

We have developed the Master Elevations which can be found in Appendix D.

The building elevations for both 110 kV and 220 kV GIS buildings were generated based on the standard layouts of the two buildings. The elevations give details pertaining to the height, length and width of the buildings and features like doors and ventilation locations.

5.2.5 Indicative Primary Plant Plan View

We have developed the Primary Plant Plan View which can be found in Appendix E.

The plant plan was based on the 3 no. transformers of standard dimensions of 17.5m x 17.5m each.

5.2.6 Indicative Control Building Layouts

We have developed the Control Building Layouts which can be found in Appendix F.

The layouts of the control buildings which are 110 kV and 220 kV were based on EirGrid standard 8 bay station drawings which are:

- 110 kV layout; XDN-LAY-ELV-STND-H-012-003-00
- 220 kV layout; XDN-LAY-ELV-STND-F-005-002-00

The layouts show the general arrangement of the buildings based on various functions.

5.2.7 Indicative Cable Layouts

We have developed the Cable Arrangements which can be found in Appendix G.

The 220 kV circuit tie-ins for the EBO crosses the M50 motorway. Horizontal Directional Drill (HDD) is the envisaged crossing methodology. Appendix H shows the proposed HDD crossing, with the space required for the equipment setup.

5.2.8 Connectivity Review

To determine how accessible the EBO will be for future development, four cross sections were assessed along East Wall Road. These were used to identify available space for future circuits.

From this desktop review, it appears there is space available for all the required circuits out of the substation site. However, it must be noted that these cross sections have been created from available record data. Specific site investigations will be required to confirm these records and thus the available space.

The physical constructability of each circuit will also need to be assessed in more detail. Some circuits shown have been placed within footpaths that have houses open directly onto these footpaths. Special consideration will need to be given to limiting impact on these residents, while ensuring the circuit can be built.

The four cross sections are located along East Wall Road as shown in Figure 5-1. Further analysis has been broken down into the Central Section (location A), Eastern Section (location B), and Western Section (location C and D).

Figure 5-1: Locations of cross sections along East Wall Road

Central Section

Figure 5-2 shows the cross section of East Wall Road at Point A. A possible circuit arrangement in this cross section has been shown above the Transmission Level Services.

From this desktop review, there appears to be space for three 110 kV circuits in trefoil. These have been modelled in a trench of 600mm width, with separations of 200mm between each. The ampacity calculation for this scenario has been completed, and the calculations are in Appendix B. In this configuration it is possible to reach the desired rating for all three 110 kV circuits.

There is also space for two 220 kV circuits, one in trefoil and one flat in EirGrid standard trenches. The circuit in flat formation will need further modelling to determine if there is any derating expected on the 38 kV circuit adjacent.

The circuit in trefoil has sufficient distance between it and the three 110 kV circuits, that there is no expected derating between these two circuits.

Further assessment will be needed along the entire length of this road to determine any possible derating impacts. This modelling will be completed during Step 4 of this project. This will be applied across the entire East Wall Road, and so applies for all the cross sections depicted here.

Figure 5-2: Cross section of East Wall Road at Location A

Eastern Section

Figure 5-3 shows the cross section of East Wall Road at Point B. A possible circuit arrangement in this cross section has been shown above the Transmission Level Services.

From this desktop review, there appears to be space for three 110 kV circuits in trefoil. These circuits are adjacent to two 38 kV, so there may be derating on these circuits. However, the physical separation requirements can be met.

There is also space for two 220 kV circuits, one in trefoil and one flat in EirGrid standard trenches, as with the cross section at Point A. The circuit shown in flat formation may be difficult to construct, as it is located within the footpath adjacent to residence's front doors. It may be better from a constructability point of view to have this circuit in trefoil formation to reduce the trench size further.

Figure 5-3: Cross section of East Wall Road at Location B

Western Section

Figure 5-4 shows the cross section of East Wall Road at Point C. This is the narrowest point in East Wall Road heading in a north-westerly direction.

From this desktop review, there appears to be space for two 110 kV circuits in trefoil. The scenario will require further modelling to determine if there is any derating expected on the 38 kV circuit adjacent. The impact of placing the circuit adjacent to the front doors of the residences will need to be carefully assessed for constructability.

Figure 5-4: Cross section of East Wall Road at Location B

Figure 5-5 shows the cross section of East Wall Road at Point D. This is underneath the railway line on East Wall Road.

From this desktop review, there appears to be space for two 110 kV circuits in trefoil. When the existing Finglas - North Wall 220 kV circuit (shown in red in the cross section), is decommissioned, the space available in this corridor will increase.

Figure 5-5: Cross section of East Wall Road at Location D

Summary

As detailed above we have carried out an assessment of the potential to connect new circuits into the proposed transmission substation on the EBO site. EirGid has requested that we consider up to 5 x 110 kV circuits and a second 220 kV circuit. As part of this assessment, we have considered available space for new circuits on the East Wall Road and then have undertaken ampacity calculations to determine the circuit arrangement and the potential impacts.

Based on the assessments carried out to date we have identified that there is available space to accommodate some circuits. It is noted that the East Wall Road is a busy urban carriageway containing existing utilities [water, wastewater, gas, power, comms] which is bounded by commercial and residential properties for some sections and by the Tolka River for other sections.

Our assessment is based on record data from utility providers, available mapping for the area and idealised layouts. On the basis of the assessment, we believe that it will be extremely challenging to accommodate all of the circuits requested by EirGrid this is due to the available space [existing services, and proximity to existing properties] and also the potential for de-rating impact of various circuits on each other.

It is our opinion that further investigations are required to confirm the exact number of circuits that can be accommodated, this will include;

- Utility survey to PAS 128
- Slit trenching
- Resistivity testing
- Topographical survey, including boundary survey.

Following these investigations further design, constructability review and ampacity modelling are required to confirm the number of circuits that can be practically accommodated.

5.3 Constructability

5.3.1 Overview of Works

The construction works associated with the project includes the following;

- Substation Construction
 - Construction of 110 kV & 220 kV GIS substations
 - Boundary walls
 - Site services
 - Internal roads
 - Drainage including surface water attenuation
- Circuit Construction
 - Trenching, ducting, backfill and reinstatement
 - Joint bay construction
 - Cable pulling
 - Construction of Trenchless crossings

High-level details of each of the above steps are presented in the following sections.

5.3.2 Construction of 110 kV & 220 kV GIS substation

The construction of the 220 kV and 110 kV substations require detailed design and planning, adherence to safety protocols, and consideration of various technical factors. Of particular importance is understanding the bearing capacity of the ground and the soil resistivity of the site, as it directly impacts grounding systems and foundation design.

The construction of a GIS substation typically begins with site preparation, including clearing vegetation, levelling the ground, and installing temporary facilities for workers and equipment storage. Once the site is prepared, foundation construction commences, with specific attention to the design of grounding systems based on soil resistivity data. As the soil resistivity for this site is currently unknown, preliminary soil testing should be conducted to inform foundation design accurately.

The GIS equipment, including switchgear, transformers, and associated components, is then installed according to manufacturer specifications and engineering drawings. Careful coordination and supervision are essential during this phase to ensure proper alignment, connection, and testing of equipment.

Following equipment installation, interconnections between GIS components, as well as connections to external power sources and transmission lines, are established. This phase also involves comprehensive testing and commissioning to verify the functionality and performance of the substation. Soil resistivity measurements should be conducted during commissioning to validate the effectiveness of grounding systems and ensure compliance with regulatory standards. Finally, documentation of construction activities, as-built drawings, and operational procedures are prepared for future reference and maintenance.

This site has limited space available. Special consideration will need to be given to the sequencing of works and space available onsite for storage and works areas.

5.3.3 Trenching

Trenching is a construction technique that involves digging a narrow trench in the ground for the installation, maintenance, or inspection of pipelines, conduits, or cables. It is expected that the majority of the ducting for the circuits leaving the substation site for this project will be installed by means of trenching.

There are two primary trench configurations proposed for this project for both 220 kV circuits and 110 kV circuits. These are flat and trefoil formations. Where space allows, flat formation will be used as the preferred cable formation. The standard trench configurations for 110 kV circuits are shown in Figures 5-6 and 5-7.

Figure 5-6: Standard trench specifications for 110 kV circuit in flat formation (XDC-CBL-STND-H-008)

A=125mm O.D. HDPE ESB APPROVED DUCT, SDR=17.6 B=125mm O.D. HDPE ESB APPROVED DUCT, SDR=17.6 ALL DIMENSIONS IN MILLIMETERS

Figure 5-7: Standard trench specifications for 110 kV circuit in trefoil formation (XDC-CBL-STND-H-008) The standard trench configurations for 220 kV circuits are shown in Figures 5-8 and 5-9.

Figure 5-8: Standard trench specifications for 220 kV circuit in flat formation (XDC-CBL-STND-F-008)

Figure 5-9: Standard trench specifications for 220 kV circuit in trefoil formation (XDC-CBL-STND-F-008)

In wide streets where road space and traffic management considerations permit, or in areas where road closures are possible it is likely that medium sized tracked or wheeled excavators (approx. 13T to 20T) will be used to excavate trenches, these excavators would be supported by wheeled dumpers, trucks or tractors towing dump trailers.

In narrower streets, where only narrow sites can be established or where utility congestion does not facilitate excavation by larger plant a combination of small and medium sized tracked or wheeled excavators (approx. 6T to 8T and 13T to 20T) will likely be used to excavate trenches. In especially difficult locations vacuum excavation may be used locally.

On wider roads it is envisaged that works would generally progress at up to 20-40 meters a day and narrower road or where utilities present a greater constraint an average rate of up to 15-25 meters a day could be expected. This rate may be even lower in certain highly constrained locations.

5.3.3.1 Ducting Works

The cables are laid inside underground ducts which offer protection to the cable. This cable laying method is generally used in urban areas as it offers good mechanical protection of the cables.

Ducted cabling has a major advantage over direct lay in an urban environment, in that it decouples the civil works from cable installation and means that work can if necessary be completed in a piecemeal fashion, whereas in a direct lay scenario the entire cable drum length from one joint bay to the next must be completed in one continuous operation which necessitates long sections of open trenches for a prolonged period in urban areas.

Ducts are manufactured from High Density Polyethylene (HDPE) and typically delivered to site in lengths of 12m however shorter lengths are available if required. The ducts have a spigot and socket and are push fitted together.

5.3.3.2 Backfill and Reinstatement

Once the ducts have been installed in the correct configuration and maintaining the required separation distances from other services, they are backfilled using a cementitious bound aggregate mix to the levels shown on the appropriate section (Figures 5-1 to 5-4).

The remainder of the backfill and reinstatement will depend on the location of the trench, where trenches are in or to adjacent roadways and footpaths the backfill and reinstatement will be in line with the requirements of the controlling road authority (typically as per The Purple Book). Dependant on the requirement of the road authority this may also include areas of temporary reinstatement which will have a final reinstatement completed at a later date.

5.3.4 Joint Bay Construction

Joint bays are underground chambers which are used for two primary purposes during the construction stage of the project:

- 1. For the installation of the individual cable lengths into the ducts by pulling cables from one joint bay to the next using draw ropes within the installed ducts
- 2. As a working space to complete the connection (joint) between individual cable lengths to complete each circuit

These joint bays are required at regular spacings because there is a limit on the length of cable supplied which is dictated by the cable drum diameter, the diameter of the cable itself and the maximum weight that can be transported by plant that can access the joint bay.

Based on the cable sizes required for this project the joint bays will likely be spaced at 550-700m, however in areas with multiple changes in direction or other limiting factors it may be necessary to space joint bays more closely. The exact spacing is be determined during the design stage and scope to adjust this spacing without impacts on the spacing of adjacent joint bays is limited.

The joint bays proposed for this project will typically measure 8.0m long, 2.5m wide and 2.5m deep. Joint bays will either be delivered to site prefabricated from precast concrete (typically in 4 sections) and lifted into the pre-excavated location or cast in situ. Joint bays will be fully reinstated after construction is complete.

Figure 5-10: Isometric joint bay arrangement (XDC-CBL-STND-F-012)

5.3.5 Cable Pulling

Once the underground cable ducts have been installed from joint bay to joint bay it is then necessary to carry out a test of the ducts (duct proving) to confirm that no deformation has occurred in the duct which might hinder cable installation. To do this the ducts are thoroughly cleaned, brushed and a propriety mandrel is pulled through the ducts a number of times to ensure no deformation has occurred in the ducting.

The power cable drums are then brought to site from their delivery location (Dublin Port or an ESB Substation) on a suitable transporter, these transporters are typically articulated trucks with plant or step frame trailers or can also be specialist cable trailers drawn by tractors.

The cable drums can then either be removed from the transporter by suitable plant (crane, large forklift etc.) and positioned in line at the rear of the joint bay, or if space permits the transporter can be positioned at the rear of the joint bay to feed the cable directly into the ducts. A cable winch attached to an appropriate vehicle is positioned at the next joint bay location. The power cable is then pulled through the ducting using a steel wire and the cable winch.

5.3.6 Construction of Trenchless Crossings

The 220 kV circuit tie-ins for the EBO cross the M50. It is unlikely that this crossing can be completed via open trenching across the motorway. There is therefore a potential to use trenchless methods to complete this crossing.

While Horizontal Directional Drill (HDD) is the envisaged crossing methodology, a number of other trenchless methods may also be suitable and will be investigate for further detailed design during Step 4. These methodologies are:

- Horizontal Directional Drill (HDD)
- Micro tunnel Boring Machine
- Pipe Ramming

There are three different crossing configurations possible for this project. These are:

• Flat formation

This formation requires 5 separate bores as each bore crossing will contain a single cable, and two will contain the communication cables. For safety, there is a separation of 5m between each bore. This formation thus requires a large amount of lateral space; however, the advantage is the bores can be relatively small. An example of this formation (not to scale) is shown in Figure 5-12.

Figure 5-11: Crossing in flat formation (not to scale)

• Trefoil formation in an outer duct

A second option is to use a trefoil formation within a protective outer duct. The advantage for this is that a single shot is required to make the crossing for the entire circuit. All power cables and communication cables are pulled through in a larger outer duct. This duct can be beneficial depending on the requirements for the crossing (detailed design and specific ground conditions required). The disadvantage of this is that a very large bore is required to pull the outer duct. This larger conduit, as well as the outer duct itself can add to the cost of the drill. An example of this formation is shown in Figure 5-13.

Figure 5-12: Crossing in trefoil with an outer duct

• Trefoil formation

The third crossing methodology is in trefoil formation but without the outer duct. This is advantageous as it does not require the same large lateral space compared to flat formation, and as there is no outer duct, the bore size required is smaller than option 2. An example of this formation is shown in Figure 5-14.

Figure 5-13: Crossing in trefoil without an outer duct

The crossing formation is envisaged at this stage to be trefoil formation without the outer duct, however this will be confirmed through detail design and site investigations in Step 4.

5.3.7 Traffic Management

Before works begin, traffic management planning will take place with the relevant local authorities. This will include establishing the requirement for and possibility of road closures and traffic diversions. The outcomes from these discussions may identify areas where night-time works are required or would minimise the impact on traffic, this is most likely to be required in the city centre or on busy roads on the outskirts of the city.

This planning ensures the safety of road users and those carrying out the works. During roadworks, local access to homes and businesses is maintained. Traffic is kept flowing as smoothly as possible and where possible, passing bays are provided to help keep it moving.

6 SUMMARY

This report has comprehensively assessed potential locations for the Dublin Central Grid Reinforcement project through a Multi-Criteria Analysis (MCA) process. This evaluation considered technical feasibility, deliverability, economic factors, socio-economic impacts, and environmental considerations across six potential locations. Following the MCA, Location 1 emerged as the Emerging Best Option (EBO) to progress to Step 4 for further assessment and analysis.

Figure 6-1: The Emerging Best Option to progress to Step 4 within the Study Area

This Step 3 also considered the technical feasibility of constructing the transmission substation at the identified Emerging Best Option. The assessment confirms, on the basis of the information currently available, that the construction is feasible however there are a number of items to be confirmed at the next step, including the exact number of circuits that can be accommodated.

Figure 6-2 shows the site layout of the Emerging Best Option.

Figure 6-2: Master layout of Emerging Best Option

7 NEXT STEPS

This Step 3 (Preferred Options) Report will be published and presented to the public. Any feedback received will be considered in the project design moving forward.

This Step 3 Report will be accompanied by a social impact assessment (SIA) to identify the key stakeholders associated with the project, and a planning and consenting strategy to confirm the statutory consenting processes associated with the project.

A scoping exercise to identify the investigations required to validate the desktop designs will also be prepared. The site investigations may include, but are not limited to, the following:

- Ground Penetrating Radar (PAS128)
- Slit trenches and H trenches
- Boreholes
- Testing for soil contamination
- Soil resistivity
- Ecological and environmental site investigations.

The Emerging Best Option (EBO) identified in this report will be taken forward to the next stage, Step 4, of this project. This stage includes the following:

- Social Impact Assessment
- Screening for Appropriate Assessment and Environmental Impact Assessment
- Step 4 Report
- Step 5 Report

APPENDIX A: SINGLE LINE DIAGRAM

APPENDIX B: AMPACITY CALCULATIONS

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario B
Date:	21/03/2024 10:58:01
General Simulati	on Data

Steady State Option	Equally Loaded
Consider Electrical interaction between circuits	No
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0
Conductor Resistances Computation Option:	IEC-228

Installation Type:Buried Ducts							
Ambient Soil Temperature at Installation Depth	[°C]	10.0					
Native Soil Thermal Resistivity	[K.m/W]	1.0					
Consider Non-Isothermal Earth Surface		No					

Results	Summary	,								
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
	EIRGRID 220KV 2500									
1	SQ CU	1		A	50.0	1.0	-0.06	6.04	89.9	1444.5
	EIRGRID 220KV 2500									
2	SQ CU	1		В	50.0	1.0	0.06	6.04	89.7	1444.5
	EIRGRID 220KV 2500									
3	SQ CU	1		С	50.0	1.0	0.0	5.93	89.6	1444.5
4	EIRGRID 220KV 2500 SO CU	2		Δ	50.0	10	-5.06	6.04	89.7	1444 5
- 4	EIRCRID	2		~	50.0	1.0	=3.00	0.04	09.7	1444.5
	220KV 2500									
5	SQCU	2		В	50.0	1.0	-4.94	6.04	89.9	1444.5
	EIRGRID 220KV 2500									
6	SQ CU	2		C	50.0	1.0	-5.0	5.93	89.6	1444.5

	Steady State Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario B
Date:	21/03/2024 10:58:01

Simulation Data					
Installation type:	Buried Ducts				
Steady State Option	Equally Loaded				
Ambient temperature [°C]	10				
Native Soil Thermal Resistivity [K.m/W]	1.0				
Consider Non-Isothermal Earth Surface	No				
Consider effect of soil dry out	No				
Consider Electrical interaction between circuits	No				
Induced current in metallic layers as a fraction of conductor current (applied to all single phase circuits)	0				

Variable	Description	Unit	Init Cables						
Cable No.	Cable Index Number		1	2	3	4	5	6	
General Inpu	it Data					· · ·	-		
Cable ID	Cable Equipment ID		EIRGRID 220KV 2500 SQ CU						
Circuit No.	Circuit No.		1	1	1	2	2	2	
Phase	Cable Phase		A	в	с	А	в	С	
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0	
x	X coordinate	[m]	-0.06	0.06	0.0	-5.06	-4.94	-5.0	
у	Y coordinate	[m]	6.04	6.04	5.93	6.04	6.04	5.93	
DLF	Daily Load Factor	[p.u.]	1.0	1.0	1.0	1.0	1.0	1.0	
	Bonding Type		Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	
Ampacity									
I	Steady State Ampacity	[A]	1444.5	1444.5	1444.5	1444.5	1444.5	1444.5	
Temperature	95	-							
θс	Conductor temperature	[°C]	89.9	89.7	89.6	89.7	89.9	89.6	
θs	Sheath/Shield temperature	[°C]	83.1	82.8	82.7	82.8	83.1	82.7	
θa	Armour temperature	[°C]	n/a	n/a	n/a	n/a	n/a	n/a	
θsurf	Cable surface temperature	[°C]	82.1	81.8	81.8	81.8	82.1	81.8	
0duct	Duct surface temperature	[°C]	n/a	n/a	n/a	n/a	n/a	n/a	
Resistances									
Ro	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01055	0.01054	0.01054	0.01054	0.01055	0.01054	
ys	Skin Effect Factor		0.10914	0.1093	0.10935	0.1093	0.10914	0.10935	
ур	Proximity Effect Factor		0.04012	0.04017	0.04019	0.04017	0.04012	0.04019	
Losses		•							
Wc	Conductor Losses	[W/m]	22.0132	21.99921	21.995	21.99922	22.01288	21.9949	
Wd	Dielectric Losses	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477	
Ws	Metallic Screen Losses	[W/m]	2.57637	2.57854	2.57919	2.57854	2.57642	2.57921	
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	
Wt	Total Losses	[W/m]	26.08434	26.07251	26.06896	26.07253	26.08406	26.06887	
λ1	Screen Loss Factor		0.11704	0.11721	0.11726	0.11721	0.11704	0.11726	
λ2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	
Thermal resi	istances								
T1	Thermal resistance of insulation	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149	
T2	Thermal resistance of bedding/medium inside pipe-type	[K.m/W]	n/a	n/a	n/a	n/a	n/a	n/a	
тз	Thermal resistance of outer covering	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775	
T4	External thermal resistance	[K.m/W]	2.76374	2.75499	2.75244	2.75499	2.76376	2.75244	
Others			1	1	1	1	1	L	
Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	l.CJ	0.0	0.0	0.0	0.0	0.0	0.0	
Lonn	Induced Voltage (standing) on Sheath	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0	
	Induced Voltage (standing) on Concentric Wires	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0	
	Induced current on Metallic Screen	[A]	0.0	0.0	0.0	0.0	0.0	0.0	

Cable Parameters under Normal Operation

CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario B
Date:	21/03/2024 10:58:01

CYME

No.	Symbol	Description	Unit	Cable No.1	Cable No.2	Cable No.3	Cable No.4	Cable No.5	Cable No.6
				EIRGRID 220KV 2500					
1		Cable Equipment ID		SQ CU					
Normal	Operation IE	C 60287-1-1							
Conduc	tor AC Resis	tance			•	•			
2	R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072
3	R'	DC Resistance of Conductor at Operating Temperature	[Ω/km]	0.00918	0.00917	0.00917	0.00917	0.00918	0.00917
4	dc	Conductor Diameter	[mm]	63.5	63.5	63.5	63.5	63.5	63.5
5	s	Distance Between Conductor Axes	[mm]	122.1	122.1	122.1	122.1	122.1	122.1
6	ks	Factor Used for xs Calculation (Skin Effect)		0.35	0.35	0.35	0.35	0.35	0.35
7	kp	Factor Used for xp Calculation (Proximity Effect)		0.2	0.2	0.2	0.2	0.2	0.2
8	xs	Component of Ys Calculation (Skin Effect)		2.18896	2.18986	2.19014	2.18986	2.18898	2.19014
9	хр	Component of Yp Calculation (Proximity Effect)		1.6547	1.65538	1.65559	1.65538	1.65471	1.65559
10	ys	Skin Effect Factor		0.10914	0.1093	0.10935	0.1093	0.10914	0.10935
11	ур	Proximity Effect Factor		0.04012	0.04017	0.04019	0.04017	0.04012	0.04019
12	R	AC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01055	0.01054	0.01054	0.01054	0.01055	0.01054
Dielectr	c Losses								
13	tanδ	Dielectric Loss Factor		0.001	0.001	0.001	0.001	0.001	0.001
14	3	Insulation Relative Permitivity		2.5	2.5	2.5	2.5	2.5	2.5
15	С	Cable Capacitance	[µF/km]	0.295	0.295	0.295	0.295	0.295	0.295
16	U ₀	Voltage	[kV]	127.01706	127.01706	127.01706	127.01706	127.01706	127.01706
17	Wd	Cable Dielectric Losses Per Phase	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477
Circulat	ing Loss Fac	stor							
18	λ'1	Screen Loss Factor Caused by Circulating Current		0.0	0.0	0.0	0.0	0.0	0.0
Eddy Lo	ss Factor								-
19	Rs	AC Resistance used for Eddy Loss Factor computation	[Ω/km]	0.51867	0.51823	0.5181	0.51823	0.51866	0.5181
20	d	Mean diameter used for Eddy Loss Factor computation	[mm]	109.3	109.3	109.3	109.3	109.3	109.3
21	ρs	Electrical Resistivity used for Eddy Loss Factor computation	[Ω.m]	0.0	0.0	0.0	0.0	0.0	0.0
22	Ds	External diameter used for Eddy Loss Factor computation	[mm]	109.5	109.5	109.5	109.5	109.5	109.5
23	ts	Thickness used for Eddy Loss Factor computation	[mm]	0.2	0.2	0.2	0.2	0.2	0.2
24	β1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		105.27683	105.32161	105.33508	105.32156	105.27786	105.33543
25	gs	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		1.00017	1.00017	1.00017	1.00017	1.00017	1.00017
27	m	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.06057	0.06062	0.06064	0.06062	0.06057	0.06064
28	λ ₀	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
29	Δ_1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.08338	0.08338	0.08338	0.08338	0.08338	0.08338
30	Δ_2	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0	0.0	0.0	0.0	0.0	0.0
31	F	Milliken conductor Effect		1.0	1.0	1.0	1.0	1.0	1.0
32	Fpipe	Magnetic effect factor due to pipe		1.0	1.0	1.0	1.0	1.0	1.0
33	Farmour	Magnetic effect factor due to armour		1.0	1.0	1.0	1.0	1.0	1.0
34	λ"1	Screen Loss Factor Caused by Eddy Current		0.11704	0.11721	0.11726	0.11721	0.11704	0.11726
Metallic	Screen Los	s factor							
35	λı	Screen Loss Factor		0.11704	0.11721	0.11726	0.11721	0.11704	0.11726
Armour	and Pipe Lo	ss Factor			-	-	-		-
36	λ₂a	Armour Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
37	λ_2 pipe	Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
39	λ ₂	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
Normal	Operation IE	C 60287-2-1		1					
40	T ₁	Thermal Resistance Between Conductor and Screen	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149

41	t ₁	Insulation Thickness Between Conductor and Screen	[mm]	22.8	22.8	22.8	22.8	22.8	22.8
42	ρΤί	Thermal Resistivity of Insulation	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
43	T ₃	Thermal Resistance of Jacket/Pipe Coating	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775
44	t3	Thickness of Jacket/Pipe Coating	[mm]	4.0	4.0	4.0	4.0	4.0	4.0
45	ρTJ	Thermal Resistivity of Jacket/Pipe Coating	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
Ducts B	uried in the	soil							
46	T4'''	Thermal Resistance of the Surrounding Medium	[K.m/W]	2.76374	2.75499	2.75244	2.75499	2.76376	2.75244
47	Τ4	Total External Thermal Resistance	[K.m/W]	2.76374	2.75499	2.75244	2.75499	2.76376	2.75244
48	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	0.0	0.0	0.0	0.0	0.0	0.0
49	I	Cable Core Current Ampacity	[A]	1444.5	1444.5	1444.5	1444.5	1444.5	1444.5

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario D
Date:	21/03/2024 12:07:28

General Simulation Data	
Steady State Option	Unequally Loaded
Consider Electrical interaction between circuits	No
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0
Conductor Resistances Computation Option:	IEC-228

Installation Type:Multiple Ductbanks/Backfills						
Ambient Soil Temperature at Installation Depth	[°C]	20.0				
Native Soil Thermal Resistivity	[K.m/W]	1.2				
Consider Non-Isothermal Earth Surface		No				

Layer Name	X [m]	Y [m]	Width [m]	Height [m]	Thermal Resistivity [K.m/W]
NSTD DB4	0.0	1.05	0.7	0.75	1.0
NSTD DB4	-1.0	0.338	1.1	0.675	1.0
NSTD DB3	-1.0	0.963	1.1	0.575	1.0
NSTD DB2	0.0	0.338	0.7	0.675	1.2

Results Summary										
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
	EIRGRID 220KV 2500									
1	SQ CU EIRGRID 220KV 2500	1		A	50.0	1.0	-0.1	1.26	90.0	1558.0
2	SQ CU	1		В	50.0	1.0	0.1	1.26	89.3	1558.0
	EIRGRID 220KV 2500			6	50.0	10		1.00		1550.0
3	EIRGRID 220KV 2500				50.0	1.0	0.0	1.06	00.9	1556.0
4	SQ CU	2		A	50.0	1.0	-1.3	1.05	82.8	1659.0
5	EIRGRID 220KV 2500 SQ CU	2		в	50.0	1.0	-1.0	1.05	89.5	1659.0
	EIRGRID 220KV 2500									
6	SQ CU	2		С	50.0	1.0	-0.7	1.05	90.0	1659.0

	Steady State Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario D
Date:	21/03/2024 12:07:28

Simulation Data						
Installation type:	Multiple Ductbanks					
Steady State Option	Unequally Loaded					
Ambient temperature [°C]	20					
Native Soil Thermal Resistivity [K.m/W]	1.2					
Consider Non-Isothermal Earth Surface	No					
Consider effect of soil dry out	No					
Consider Electrical interaction between circuits	No					
Induced current in metallic layers as a fraction of conductor current (applied to all single phase circuits)	0					

Variable	Description	Unit	nit Cables					
Cable No.	Cable Index Number		1	2	3	4	5	6
General Inpu	t Data				-	· · ·	-	
Cable ID	Cable Equipment ID		EIRGRID 220KV 2500 SQ CU	EIRGRID 220KV 2500 SQ CU	EIRGRID 220KV 2500 SQ CU			
Circuit No.	Circuit No.		1	1	1	2	2	2
Phase	Cable Phase		A	В	С	A	в	С
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0
x	X coordinate	[m]	-0.1	0.1	0.0	-1.3	-1.0	-0.7
у	Y coordinate	[m]	1.26	1.26	1.08	1.05	1.05	1.05
DLF	Daily Load Factor	[p.u.]	1.0	1.0	1.0	1.0	1.0	1.0
	Bonding Type		Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	1 Conductor Crossbonded Flat	1 Conductor Crossbonded Flat	1 Conductor Crossbonded Flat
Ampacity	-	-						
I	Steady State Ampacity	[A]	1558.0	1558.0	1558.0	1659.0	1659.0	1659.0
Temperature	S	-						
θс	Conductor temperature	[°C]	90.0	89.3	88.9	82.8	89.5	90.0
θs	Sheath/Shield temperature	[°C]	82.2	81.5	81.2	74.2	80.8	81.3
θа	Armour temperature	[°C]	n/a	n/a	n/a	n/a	n/a	n/a
θsurf	Cable surface temperature	[°C]	81.2	80.5	80.1	73.1	79.7	80.1
0duct	Duct surface temperature	[°C]	74.8	74.1	73.7	64.5	70.9	71.6
Resistances		•						
R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01032	0.0103	0.01029	0.01006	0.01023	0.01024
ys	Skin Effect Factor		0.1091	0.10954	0.10977	0.11367	0.10939	0.1091
ур	Proximity Effect Factor		0.01445	0.01451	0.01453	0.00678	0.00654	0.00652
Losses		-						
Wc	Conductor Losses	[W/m]	25.03896	24.9953	24.97246	27.68189	28.15666	28.19009
Wd	Dielectric Losses	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477
Ws	Metallic Screen Losses	[W/m]	1.04912	1.05145	1.05267	0.25926	1.04679	0.26697
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0
Wt	Total Losses	[W/m]	27.58285	27.54152	27.5199	29.43592	30.69821	29.95183
Å1	Screen Loss Factor		0.0419	0.04207	0.04215	0.00937	0.03718	0.00947
λ2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
Thermal resi	stances	-						
T1	Thermal resistance of insulation	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149
T2	Thermal resistance of bedding/medium inside pipe-type	[K.m/W]	n/a	n/a	n/a	n/a	n/a	n/a
Т3	Thermal resistance of outer covering	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775
Т4	External thermal resistance	[K.m/W]	0.72069	0.72169	0.71255	0.83593	0.81872	0.81075
Others								
Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	ſ°C1	41.3	40.6	40.5	28.5	34.5	35.9
	Induced Voltage (standing) on Sheath	[V/km1	0.0	0.0	0.0	0.0	0.0	0.0
	Induced Voltage (standing) on Concentric Wires	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0
	Induced current on Metallic Screen	[A]	0.0	0.0	0.0	0.0	0.0	0.0

Cable Parameters under Normal Operation

CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario D
Date:	21/03/2024 12:07:28

CYME

No.	Symbol	Description	Unit	Cable No.1	Cable No.2	Cable No.3	Cable No.4	Cable No.5	Cable No.6
				EIRGRID 220KV 2500					
1		Cable Equipment ID		SQ CU					
Normal	Operation IE	C 60287-1-1							
Conduc	tor AC Resis	tance			•	•			
2	R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072
3	R'	DC Resistance of Conductor at Operating Temperature	[Ω/km]	0.00918	0.00916	0.00915	0.00898	0.00917	0.00918
4	dc	Conductor Diameter	[mm]	63.5	63.5	63.5	63.5	63.5	63.5
5	s	Distance Between Conductor Axes	[mm]	201.99998	201.99998	201.99998	300.0	300.0	300.0
6	ks	Factor Used for xs Calculation (Skin Effect)		0.35	0.35	0.35	0.35	0.35	0.35
7	kp	Factor Used for xp Calculation (Proximity Effect)		0.2	0.2	0.2	0.2	0.2	0.2
8	xs	Component of Ys Calculation (Skin Effect)		2.18876	2.19115	2.1924	2.21353	2.19036	2.18876
9	хр	Component of Yp Calculation (Proximity Effect)		1.65455	1.65635	1.6573	1.67327	1.65576	1.65455
10	ys	Skin Effect Factor		0.1091	0.10954	0.10977	0.11367	0.10939	0.1091
11	VD	Proximity Effect Factor		0.01445	0.01451	0.01453	0.00678	0.00654	0.00652
12	R	AC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01032	0.0103	0.01029	0.01006	0.01023	0.01024
Dielectr	c Losses			1					
13	tanδ	Dielectric Loss Factor		0.001	0.001	0.001	0.001	0.001	0.001
14	ε	Insulation Relative Permitivity		2.5	2.5	2.5	2.5	2.5	2.5
15	С	Cable Capacitance	[µF/km]	0.295	0.295	0.295	0.295	0.295	0.295
16	Uo	Voltage	[kV]	127.01706	127.01706	127.01706	127.01706	127.01706	127.01706
17	Wd	Cable Dielectric Losses Per Phase	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477
Circulat	ing Loss Fac	stor							
18	λ'1	Screen Loss Factor Caused by Circulating Current		0.0	0.0	0.0	0.0	0.0	0.0
Eddy Lo	ss Factor			•					
19	Rs	AC Resistance used for Eddy Loss Factor computation	[Ω/km]	0.51725	0.51609	0.51549	0.50389	0.51489	0.51567
20	d	Mean diameter used for Eddy Loss Factor computation	[mm]	109.3	109.3	109.3	109.3	109.3	109.3
21	ρs	Electrical Resistivity used for Eddy Loss Factor computation	[Ω.m]	0.0	0.0	0.0	0.0	0.0	0.0
22	Ds	External diameter used for Eddy Loss Factor computation	[mm]	109.5	109.5	109.5	109.5	109.5	109.5
23	ts	Thickness used for Eddy Loss Factor computation	[mm]	0.2	0.2	0.2	0.2	0.2	0.2
24	β1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		105.42177	105.53972	105.60161	106.81008	105.66267	105.58339
25	gs	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		1.00017	1.00017	1.00017	1.00017	1.00017	1.00017
27	m	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.06074	0.06087	0.06094	0.06235	0.06101	0.06092
28	λ _o	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.00081	0.00081	0.00081	0.00019	0.00074	0.00018
29	Δ_1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.03515	0.03514	0.03514	-0.03036	0.00004	0.02164
30	Δ_2	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0	0.0	0.0	0.0	0.0	0.0
31	F	Milliken conductor Effect		1.0	1.0	1.0	1.0	1.0	1.0
32	Fpipe	Magnetic effect factor due to pipe		1.0	1.0	1.0	1.0	1.0	1.0
33	Farmour	Magnetic effect factor due to armour		1.0	1.0	1.0	1.0	1.0	1.0
34	λ"1	Screen Loss Factor Caused by Eddy Current		0.0419	0.04207	0.04215	0.00937	0.03718	0.00947
Metallic	Screen Los	s factor							
35	λ1	Screen Loss Factor		0.0419	0.04207	0.04215	0.00937	0.03718	0.00947
Armour	and Pipe Lo	ss Factor							
36	λ₂a	Armour Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
37	λ_2 pipe	Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
39	$\hat{\lambda}_2$	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
Normal	Operation IE	C 60287-2-1							
40	T ₁	Thermal Resistance Between Conductor and Screen	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149

41	t1	Insulation Thickness Between Conductor and Screen	[mm]	22.8	22.8	22.8	22.8	22.8	22.8
42	ρΤί	Thermal Resistivity of Insulation	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
43	T ₃	Thermal Resistance of Jacket/Pipe Coating	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775
44	t3	Thickness of Jacket/Pipe Coating	[mm]	4.0	4.0	4.0	4.0	4.0	4.0
45	ρTJ	Thermal Resistivity of Jacket/Pipe Coating	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
Cables	Directly Bur	ied							
46	L	Depth of Cable Axis	[m]	n/a	n/a	n/a	n/a	n/a	n/a
47	u	Coefficient Used in IEC 60287-2-1 Clause 2.2		n/a	n/a	n/a	n/a	n/a	n/a
48	T4	Thermal Resistance of the Surrounding Medium	[K.m/W]	n/a	n/a	n/a	n/a	n/a	n/a
49	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	n/a	n/a	n/a	n/a	n/a	n/a
50	I	Cable Core Current Ampacity	[A]	n/a	n/a	n/a	n/a	n/a	n/a
Cable in	Ducts								•
51	U	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		1.87	1.87	1.87	1.87	1.87	1.87
52	V	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.312	0.312	0.312	0.312	0.312	0.312
53	Y	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.0037	0.0037	0.0037	0.0037	0.0037	0.0037
54	θm	Mean Temperature of the Medium Filling the Space	[°C]	78.1	77.4	77.0	69.6	76.2	76.8
55	T₄'	Thermal Resistance of the Medium Inside the Duct/Pipe	[K.m/W]	0.22429	0.22514	0.22559	0.23505	0.22664	0.22591
56	Do	Outside Diameter of the Duct/Pipe	[mm]	200.0	200.0	200.0	200.0	200.0	200.0
57	Di	Inside Diameter of the Duct/Pipe	[mm]	180.0	180.0	180.0	180.0	180.0	180.0
58	ρΤ	Thermal Resistivity of the Duct/Pipe Material	[K.m/W]	0.5	0.5	0.5	3.5	3.5	3.5
59	T4"	Thermal Resistance of the Duct/Pipe	[K.m/W]	0.00838	0.00838	0.00838	0.05869	0.05869	0.05869
60	T4'''	Thermal Resistance of the Surrounding Medium	[K.m/W]	0.48802	0.48817	0.47858	0.54219	0.53339	0.52615
Ducts B	uried in the	soil							
61	T₄'''	Thermal Resistance of the Surrounding Medium	[K.m/W]	0.48802	0.48817	0.47858	0.54219	0.53339	0.52615
62	T4	Total External Thermal Resistance	[K.m/W]	0.72069	0.72169	0.71255	0.83593	0.81872	0.81075
63	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	41.3	40.6	40.5	28.5	34.5	35.9
64	I	Cable Core Current Ampacity	[A]	1558.0	1558.0	1558.0	1659.0	1659.0	1659.0

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario E
Date:	21/03/2024 10:46:30

General Simulation Data	
Steady State Option	Equally Loaded
Consider Electrical interaction between circuits	No
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0
Conductor Resistances Computation Option:	IEC-228

Installation Type:Multiple Ductbanks/Backfills						
Ambient Soil Temperature at Installation Depth	[°C]	20.0				
Native Soil Thermal Resistivity	[K.m/W]	1.2				
Consider Non-Isothermal Earth Surface		No				

Layer Name	X [m]	Y [m]	Width [m]	Height [m]	Thermal Resistivity [K.m/W]
NSTD DB4	0.0	1.276	2.5	1.2	1.0
NSTD DB2	0.0	0.338	2.5	0.675	1.2

Results Summary										
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
	EIRGRID 220KV 2500									
1	SQ CU	1		A	50.0	1.0	0.75	1.56	90.0	1480.0
	EIRGRID 220KV 2500									
2	SQ CU	1		В	50.0	1.0	0.95	1.56	88.9	1480.0
	EIRGRID 220KV 2500				50.0	10	0.05	4.00		1100.0
4	EIRGRID 220KV 2500 SQ CU	2			50.0	1.0	-0.95	1.38	88.3	1480.0
5	EIRGRID 220KV 2500 SQ CU	2		в	50.0	1.0	-0.75	1.56	89.6	1480.0
6	EIRGRID 220KV 2500 SQ CU	2		с	50.0	1.0	-0.85	1.38	83.7	1480.0

	Steady State Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario E
Date:	21/03/2024 10:46:30

Simulation Data					
Installation type:	Multiple Ductbanks				
Steady State Option	Equally Loaded				
Ambient temperature [°C]	20				
Native Soil Thermal Resistivity [K.m/W]	1.2				
Consider Non-Isothermal Earth Surface	No				
Consider effect of soil dry out	No				
Consider Electrical interaction between circuits	No				
Induced current in metallic layers as a fraction of conductor current (applied to all single phase circuits)	0				

Variable	Description	Unit	nit Cables						
Cable No.	Cable Index Number		1	2	3	4	5	6	
General Inpu	it Data				-	· · ·	-		
Cable ID	Cable Equipment ID		EIRGRID 220KV 2500 SQ CU						
Circuit No.	Circuit No.		1	1	1	2	2	2	
Phase	Cable Phase		A	в	с	А	в	с	
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0	
x	X coordinate	[m]	0.75	0.95	0.85	-0.95	-0.75	-0.85	
v	Y coordinate	[m]	1.56	1.56	1.38	1.56	1.56	1.38	
DLF	Daily Load Factor	[p.u.]	1.0	1.0	1.0	1.0	1.0	1.0	
	Bonding Type		Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	Crossbonded Triangular	
Ampacity		-							
1	Steady State Ampacity	[A]	1480.0	1480.0	1480.0	1480.0	1480.0	1480.0	
Temperature	35	•							
θс	Conductor temperature	[°C]	90.0	88.9	84.3	88.3	89.6	83.7	
θs	Sheath/Shield temperature	[°C]	82.9	81.9	77.3	81.3	82.6	76.8	
θа	Armour temperature	[°C]	n/a	n/a	n/a	n/a	n/a	n/a	
θsurf	Cable surface temperature	[°C]	82.0	80.9	76.4	80.3	81.7	75.9	
θduct	Duct surface temperature	[°C]	75.0	73.9	69.3	73.2	74.6	68.7	
Resistances		•							
R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072	
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01031	0.01029	0.01017	0.01027	0.01031	0.01016	
ys	Skin Effect Factor		0.10911	0.10979	0.1127	0.11018	0.10932	0.11305	
ур	Proximity Effect Factor		0.01445	0.01454	0.0149	0.01459	0.01448	0.01494	
Losses		•							
Wc	Conductor Losses	[W/m]	22.5943	22.53287	22.27654	22.49817	22.5755	22.24627	
Wd	Dielectric Losses	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477	
Ws	Metallic Screen Losses	[W/m]	0.94458	0.94785	0.96175	0.9497	0.94557	0.96343	
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	
Wt	Total Losses	[W/m]	25.03364	24.97548	24.73306	24.94264	25.01584	24.70447	
λ1	Screen Loss Factor		0.04181	0.04207	0.04317	0.04221	0.04188	0.04331	
Å2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	
Thermal resi	istances								
T1	Thermal resistance of insulation	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149	
T2	Thermal resistance of bedding/medium inside pipe-type	[K.m/W]	n/a	n/a	n/a	n/a	n/a	n/a	
Т3	Thermal resistance of outer covering	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775	
T4	External thermal resistance	[K.m/W]	2.47708	2.43943	2.28055	2.41817	2.46538	2.26147	
Others									
Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	I°C1	0.0	0.0	0.0	0.0	0.0	0.0	
	Induced Voltage (standing) on Sheath	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0	
	Induced Voltage (standing) on Concentric Wires	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0	
	Induced current on Metallic Screen	[A]	0.0	0.0	0.0	0.0	0.0	0.0	

Cable Parameters under Normal Operation

CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario E
Date:	21/03/2024 10:46:30

CYME

No.	Symbol	Description	Unit	Cable No.1	Cable No.2	Cable No.3	Cable No.4	Cable No.5	Cable No.6
				EIRGRID 220KV 2500					
1		Cable Equipment ID		SQ CU					
Normal	Operation IE	C 60287-1-1							
Conductor AC Resistance									
2	R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0072	0.0072	0.0072	0.0072	0.0072	0.0072
3	R'	DC Resistance of Conductor at Operating Temperature	[Ω/km]	0.00918	0.00915	0.00902	0.00913	0.00917	0.009
4	dc	Conductor Diameter	[mm]	63.5	63.5	63.5	63.5	63.5	63.5
5	s	Distance Between Conductor Axes	[mm]	202.00004	202.00004	202.00004	202.00004	202.00004	202.00004
6	ks	Factor Used for xs Calculation (Skin Effect)		0.35	0.35	0.35	0.35	0.35	0.35
7	kp	Factor Used for xp Calculation (Proximity Effect)		0.2	0.2	0.2	0.2	0.2	0.2
8	xs	Component of Ys Calculation (Skin Effect)		2.18883	2.19256	2.20833	2.19467	2.18997	2.21022
9	хр	Component of Yp Calculation (Proximity Effect)		1.6546	1.65742	1.66934	1.65901	1.65546	1.67077
10	ys	Skin Effect Factor		0.10911	0.10979	0.1127	0.11018	0.10932	0.11305
11	VD	Proximity Effect Factor		0.01445	0.01454	0.0149	0.01459	0.01448	0.01494
12	R	AC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01031	0.01029	0.01017	0.01027	0.01031	0.01016
Dielectr	c Losses								
13	tanδ	Dielectric Loss Factor		0.001	0.001	0.001	0.001	0.001	0.001
14	ε	Insulation Relative Permitivity		2.5	2.5	2.5	2.5	2.5	2.5
15	С	Cable Capacitance	[µF/km]	0.295	0.295	0.295	0.295	0.295	0.295
16	U _o	Voltage	[kV]	127.01706	127.01706	127.01706	127.01706	127.01706	127.01706
17	Wd	Cable Dielectric Losses Per Phase	[W/m]	1.49477	1.49477	1.49477	1.49477	1.49477	1.49477
Circulat	ing Loss Fa	stor							
18	λ'1	Screen Loss Factor Caused by Circulating Current		0.0	0.0	0.0	0.0	0.0	0.0
Eddy Lo	ss Factor				1	I			
19	Rs	AC Resistance used for Eddy Loss Factor computation	[Ω/km]	0.51844	0.51664	0.5091	0.51562	0.51789	0.5082
20	d	Mean diameter used for Eddy Loss Factor computation	[mm]	109.3	109.3	109.3	109.3	109.3	109.3
21	ρs	Electrical Resistivity used for Eddy Loss Factor computation	[Ω.m]	0.0	0.0	0.0	0.0	0.0	0.0
22	Ds	External diameter used for Eddy Loss Factor computation	[mm]	109.5	109.5	109.5	109.5	109.5	109.5
23	ts	Thickness used for Eddy Loss Factor computation	[mm]	0.2	0.2	0.2	0.2	0.2	0.2
24	β1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		105.30013	105.48393	106.26257	105.58824	105.35627	106.35577
25	gs	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		1.00017	1.00017	1.00017	1.00017	1.00017	1.00017
27	m	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0606	0.06081	0.06171	0.06093	0.06066	0.06182
28	λ _o	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0008	0.00081	0.00083	0.00081	0.00081	0.00084
29	Δ_1	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.03515	0.03514	0.03511	0.03514	0.03515	0.03511
30	Δ_2	Coefficient used in IEC 60287-1-1 Clause 2.3.6.1		0.0	0.0	0.0	0.0	0.0	0.0
31	F	Milliken conductor Effect		1.0	1.0	1.0	1.0	1.0	1.0
32	Fpipe	Magnetic effect factor due to pipe		1.0	1.0	1.0	1.0	1.0	1.0
33	Farmour	Magnetic effect factor due to armour		1.0	1.0	1.0	1.0	1.0	1.0
34	λ"1	Screen Loss Factor Caused by Eddy Current		0.04181	0.04207	0.04317	0.04221	0.04188	0.04331
Metallic	Screen Los	s factor							
35	λı	Screen Loss Factor		0.04181	0.04207	0.04317	0.04221	0.04188	0.04331
Armour	and Pipe Lo	ss Factor							
36	λ₂a	Armour Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
37	λ ₂ pipe	Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
39	$\hat{\lambda}_2$	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0
Normal	Operation IE	C 60287-2-1							
40	T ₁	Thermal Resistance Between Conductor and Screen	[K.m/W]	0.30149	0.30149	0.30149	0.30149	0.30149	0.30149

41	t1	Insulation Thickness Between Conductor and Screen	[mm]	22.8	22.8	22.8	22.8	22.8	22.8
42	ρΤί	Thermal Resistivity of Insulation	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
43	T ₃	Thermal Resistance of Jacket/Pipe Coating	[K.m/W]	0.03775	0.03775	0.03775	0.03775	0.03775	0.03775
44	t3	Thickness of Jacket/Pipe Coating	[mm]	4.0	4.0	4.0	4.0	4.0	4.0
45	ρTJ	Thermal Resistivity of Jacket/Pipe Coating	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
Cables	Directly Bur	ied			-				•
46	L	Depth of Cable Axis	[m]	n/a	n/a	n/a	n/a	n/a	n/a
47	u	Coefficient Used in IEC 60287-2-1 Clause 2.2		n/a	n/a	n/a	n/a	n/a	n/a
48	T ₄	Thermal Resistance of the Surrounding Medium	[K.m/W]	n/a	n/a	n/a	n/a	n/a	n/a
49	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	n/a	n/a	n/a	n/a	n/a	n/a
50	I	Cable Core Current Ampacity	[A]	n/a	n/a	n/a	n/a	n/a	n/a
Cable in	Ducts								•
51	U	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		1.87	1.87	1.87	1.87	1.87	1.87
52	V	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.312	0.312	0.312	0.312	0.312	0.312
53	Y	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.0037	0.0037	0.0037	0.0037	0.0037	0.0037
54	θm	Mean Temperature of the Medium Filling the Space	[°C]	79.2	78.1	73.6	77.5	78.9	73.0
55	T₄'	Thermal Resistance of the Medium Inside the Duct/Pipe	[K.m/W]	0.22294	0.22426	0.22994	0.22501	0.22334	0.23063
56	Do	Outside Diameter of the Duct/Pipe	[mm]	200.0	200.0	200.0	200.0	200.0	200.0
57	Di	Inside Diameter of the Duct/Pipe	[mm]	180.0	180.0	180.0	180.0	180.0	180.0
58	ρΤ	Thermal Resistivity of the Duct/Pipe Material	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5
59	T4"	Thermal Resistance of the Duct/Pipe	[K.m/W]	0.05869	0.05869	0.05869	0.05869	0.05869	0.05869
60	T4'''	Thermal Resistance of the Surrounding Medium	[K.m/W]	2.19545	2.15648	1.99193	2.13447	2.18335	1.97215
Ducts B	uried in the	soil							
61	T4'''	Thermal Resistance of the Surrounding Medium	[K.m/W]	2.19545	2.15648	1.99193	2.13447	2.18335	1.97215
62	T ₄	Total External Thermal Resistance	[K.m/W]	2.47708	2.43943	2.28055	2.41817	2.46538	2.26147
63	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	0.0	0.0	0.0	0.0	0.0	0.0
64	I	Cable Core Current Ampacity	[A]	1480.0	1480.0	1480.0	1480.0	1480.0	1480.0

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario G
Date:	21/03/2024 12:37:26

General Simulation Data	
Steady State Option	Unequally Loaded
Consider Electrical interaction between circuits	No
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0
Conductor Resistances Computation Option:	IEC-228

Installation Type:Multiple Ductbanks/Backfills						
Ambient Soil Temperature at Installation Depth	[°C]	20.0				
Native Soil Thermal Resistivity	[K.m/W]	1.2				
Consider Non-Isothermal Earth Surface		No				

Layer Name	X [m]	Y [m]	Width [m]	Height [m]	Thermal Resistivity [K.m/W]
NSTD DB1	0.0	0.963	0.6	0.575	1.0
NSTD DB4	-2.25	0.963	0.7	0.575	1.0
NSTD DB3	0.8	0.963	0.6	0.575	1.0
NSTD DB2	-0.8	0.963	0.6	0.575	1.0

Results	Summary									
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
1	UBLIN CENTR/	1		A	50.0	1.0	-0.87	1.11	88.9	1012.0
2	UBLIN CENTR/	1		в	50.0	1.0	-0.73	1.11	90.0	1012.0
3	UBLIN CENTR/	1		с	50.0	1.0	-0.8	1.0	84.5	1012.0
4	UBLIN CENTR/	2		А	50.0	1.0	-0.07	1.09	90.0	983.9
5	UBLIN CENTR/	2		в	50.0	1.0	0.06	1.09	89.8	983.9
6	UBLIN CENTR/	2		с	50.0	1.0	0.0	0.98	84.8	983.9
7	UBLIN CENTR/	3		А	50.0	1.0	0.72	1.09	90.0	1102.4
8	UBLIN CENTR/	3		в	50.0	1.0	0.88	1.09	85.9	1102.4
9	UBLIN CENTR/	3		с	50.0	1.0	0.78	0.98	84.4	1102.4
10	ID 220KV 2500	4		A	50.0	1.0	-2.35	1.11	88.2	1504.4
11	ID 220KV 2500	4		В	50.0	1.0	-2.15	1.11	90.0	1504.4
12	ID 220KV 2500	4		с	50.0	1.0	-2.25	0.93	81.9	1504.4

	Steady State Summary						
CYMCAP Version	2 Revision 3						
Study:	VUBLIN CENTRAL						
Execution:	icenato G						
Date:	12:37:26						
Simulation Data							
Installation type:	Multiple Ductbanks						
Steady State Option	UnequalityLoaded						
Ambient temperature [°C]	20						
Native Soil Thermal Resistivity [K.m/W]	12						
Consider Non-Isothermal Earth Surface	No						
Consider effect of soil dry out	No						
Consider Electrical interaction between circuits	No						
Induced current in metallic layers as a fraction of conducts (applied to all single phase circuits)	current 0						

Variable	Description	Unit						Ca	bles					
Cable No.	Cable Index Number		1	2	3	4	5	6	7	8	9	10	11	12
General Inpu	at Data													
	Cable Equipment ID											EIRGRID 220KV 2500	EIRGRID 220KV 2500	EIRGRID 220KV 2500
Cable ID			DUBLIN CENTRAL	SQ CU	SQ CU	SQ CU								
Circuit No.	Circuit No.		1	1	1	2	2	2	3	3	3	4	4	4
Phase	Cable Phase		A	В	c	A	В	C	A	B	с	A	В	c
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
x	X coordinate	[m]	-0.87	-0.73	-0.8	-0.07	0.06	0.0	0.72	0.88	0.78	-2.35	-2.15	-2.25
у	r coordinate	[m]	1.11	1.11	1.0	1.09	1.09	0.98	1.09	1.09	0.98	1.11	1.11	0.93
DLF	Daily Load Pactor	[p.u.]	1.0 1 Conductor	1.0 1 Conductor	1.0 1 Conductor	1.0 I Conductor	1.0 T Conductor	1.0 T Conductor	1.0 I Conductor	1.0 1 Conductor	1.0 1 Conductor	1.0 T Conductor	1.0 I Conductor	1.0 1 Conductor
	Bonding Type		Crossbonded Triangular											
Ampacity		-												
	Steady State Ampacity	[A]	1012.0	1012.0	1012.0	983.9	983.9	983.9	1102.4	1102.4	1102.4	1504.4	1504.4	1504.4
Temperature	rs													
θc	Conductor temperature	[°C]	88.9	90.0	84.5	90.0	89.8	84.8	90.0	85.9	84.4	88.2	90.0	81.9
θs	Sheath/Shield temperature	[°C]	84.2	85.3	79.9	85.5	85.3	80.4	84.4	80.4	78.9	81.0	82.7	74.8
6a	Armour temperature	[°C]	n/a											
0surf	Cable surface temperature	[°C]	83.3	84.4	79.0	84.7	84.4	79.6	83.4	79.4	77.8	80.0	81.8	73.8
0duct	Duct surface temperature	1°C1	77.7	78.8	73.3	79.4	79.2	74.3	76.8	72.7	71.2	72.7	74.5	66.4
Resistances														
R _a	DC Resistance of the conductor at 20°C	[Ω/km]	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0072	0.0072	0.0072
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01671	0.01675	0.01654	0.01677	0.01676	0.01657	0.01666	0.0165	0.01644	0.01027	0.01032	0.01011
ys	Skin Effect Factor		0.13659	0.13576	0.13992	0.13576	0.13593	0.13967	0.13574	0.13882	0.14004	0.11022	0.1091	0.11422
УP	Proximity Effect Factor		0.02717	0.02702	0.02777	0.02789	0.02793	0.02862	0.02035	0.02076	0.02093	0.01467	0.01454	0.01517
Losses														
Wc	Conductor Losses	[W/m]	17.11435	17.15901	16.94134	16.2304	16.22169	16.03701	20.24277	20.04961	19.97537	23.24236	23.34684	22.8825
Wd	Dielectric Losses	[W/m]	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	1.49477	1.49477	1.49477
Ws	Metallic Screen Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.98793	0.98232	1.00779
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wt	Total Losses	[W/m]	17.53946	17.58412	17.36646	16.65551	16.6468	16.46213	20.66789	20.47472	20.40049	25.72505	25.82392	25.38506
λ ₁	Screen Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04251	0.04207	0.04404
Å2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thermal resi	istances													
T1	Thermal resistance of insulation	[K.m/W]	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.30149	0.30149	0.30149
T2	Thermal resistance of bedding/medium inside pipe-type	[K.m/W]	n/a											
T3	Thermal resistance of outer covering	[K.m/W]	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.03775	0.03775	0.03775
T4	External thermal resistance	[K.m/W]	0.98641	0.98395	1.0115	0.98021	0.97881	1.01016	0.97624	0.98036	0.98949	0.89114	0.88378	0.88042
Others														
Aftint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	1101	46.0	47.1	41.4	48.3	48.1	42.9	43.2	39.3	37.7	37.1	38.9	31.5
Lioni	Induced Voltage (standing) on Sheath	D//km1	p/a	n/a	n/a	n/a	n/a	p/a	p/a	p/a	p/a	0.0	0.0	0.0
	Induced Voltage (standing) on Concentric Wires	D//km3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Induced current on Metallic Screen	[2/61]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	l		1 3.0	5.0	3.0	1 3.0	3.0	3.0	3.0	3.0	3.0	3.0	1 3.0	3.0

EYME

Cable Parameters under Normal Operation

CYMCAP Version 7.2 Revision 3 Study: DUBLIN CENTRAL Execution Scenario G

Date: 21/03/2024 12:37:26

ABint

[°C]

46.0

47.1

41.4

48.3

48.1

42.9

43.2

39.3

37.7

37.1

38.9

31.5

No. Symbol Unit Cable No.2 Cable No.3 Cable No.4 Cable No.5 Cable No.6 Cable No.7 Cable No.8 Cable No.9 Cable No.10 Cable No.11 Cable No.12 EIRGRID EIRGRID 220KV 2500 220KV 2500 SQ CU SQ CU EIRGRID 220KV 2500 SQ CU DUBLIN DUBLIN CENTRAL DUBUN DUBLIN CENTRAL DUBLIN CENTRAL DUBLIN CENTRAL DUBLIN CENTRAL DUBLIN DUBLIN CENTRAL CENTRAL CENTRAL able Equipment ID Normal Operation IEC 60287-1-1 Conductor AC Resistance 2 R₀ DC Resistance of the conductor at 20°C [Ω/km] 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0072 0.0072 0.0072 0.0144 0.00918 0.00895 3 R' DC Resistance of Conductor at Operating Temperature [Ω/km] 0.01436 0.01441 0.01417 0.01441 0.01418 0.01441 0.01423 0.01416 0.00913 48.3 48.3 48.3 48.3 48.3 48.3 48.3 48.3 48.3 63.5 63.5 63.5 4 dc Conductor Diameter [mm] 5 s Distance Between Conductor Axes [mm] 129.0052 129.0052 129.0052 126.99998 126.99998 126.99998 148.44398 148.44398 148.44398 201.42263 201.42263 201.42263 6 ks Factor Used for xs Calculation (Skin Effect) 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.35 0.35 0.35 kp 7 Factor Used for xp Calculation (Proximity Effect) 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.2 0.2 0.2 Component of Ys Calculation (Skin Effect) 8 2.32942 2 3254 2 34523 2.3254 2.32623 2 34404 2.32533 2 34003 2 34577 2.1949 2 18875 2 2 165 1 xs 9 хр Component of Yp Calculation (Proximity Effect) 1.79951 1.7964 1.81172 1.7964 1.79704 1.8108 1.79634 1.8077 1.81213 1.65919 1.65454 1.67552 10 Skin Effect Factor 0.13659 0.13576 0.13992 0.13576 0.13593 0.13967 0.13574 0.13882 0.14004 0.11022 0.1091 0.11422 ys 11 ур Proximity Effect Factor 0.02717 0.02702 0.02777 0.02789 0.02793 0.02862 0.02035 0.02076 0.02093 0.01467 0.01454 0.01517 12 R AC Resistance of Conductor at Operating Temperature [Ω/km] 0.01671 0.01675 0.01654 0.01677 0.01676 0.01657 0.01666 0.0165 0.01644 0.01027 0.01032 0.01011 Dielect Losse 13 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Dielectric Loss Factor tanδ 14 Insulation Relative Permitivity 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.295 0.295 0.295 15 С Cable Capacitance [µF/km] 16 U₀ Voltage [kV] 63.50853 63.50853 63.50853 63.50853 63.50853 63.50853 63.50853 63.50853 63.50853 127.01706 127.01706 127.01706 17 Wd Cable Dielectric Losses Per Phase [W/m] 0.42512 0.42512 0.42512 0.42512 0.42512 0.42512 0.42512 0.42512 0.42512 1.49477 1.49477 1.49477 Circulating Loss Factor 18 λ'1 Screen Loss Factor Caused by Circulating Current 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Eddy Loss Facto 19 Rs AC Resistance used for Eddy Loss Factor computation [Ω/km] n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.51513 0.5181 0 50488 20 Mean diameter used for Eddy Loss Factor compu [mm] n/a n/a n/a n/a n/a n/a n/a n/a n/a 109.3 109.3 109.3 21 Electrical Resistivity used for Eddy Loss Factor computation [Ω.m] n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.0 0.0 0.0 ρs 22 109.5 109.5 109.5 Ds External diameter used for Eddy Loss Factor computation n/a n/a n/a n/a n/a n/a n/a n/a n/a [mm] 23 Thickness used for Eddy Loss Factor computation 0.2 0.2 ts [mm] n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.2 24 β1 Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a 105.63801 105.33469 106.70525 Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 1.00017 25 gs n/a n/a n/a n/a n/a n/a n/a n/a n/a 1.00017 1.00017 27 m Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.06099 0.06064 0.06222 28 λo Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.00082 0.00081 0.00085 n/a 29 Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 n/a n/a n/a n/a n/a n/a n/a n/a 0.03531 0.03532 0.03526 Δ_1 30 Coefficient used in IEC 60287-1-1 Clause 2.3.6.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.0 0.0 0.0 $\Delta_{\rm Z}$ 31 Milliken conductor Effect 1.0 1.0 1.0 E n/a n/a n/a n/a n/a n/a n/a n/a n/a 32 Fpipe Magnetic effect factor due to pipe n/a n/a n/a n/a n/a n/a n/a n/a n/a 1.0 1.0 1.0 33 Farmour Magnetic effect factor due to armour n/a n/a n/a n/a 1.0 1.0 1.0 n/a n/a n/a n/a n/a 34 λ". Screen Loss Factor Caused by Eddy Current 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04251 0.04207 0.04404 reen Loss factor Metallic So Screen Loss Factor 35 ٨ı 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04251 0.04207 0.04404 and Pipe Loss Factor 36 λ-a Armour Loss Factor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37 $\lambda_2 pipe$ Pipe Loss Factor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39 Armour Loss Factor + Pipe Loss Factor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 λz ration IEC 60287-2-1 40 T₁ Thermal Resistance Between Conductor and Screen [K.m/W] 0.27195 0.27195 0.27195 0.27195 0.27195 0.27195 0.27195 0.27195 0.27195 0.30149 0.30149 0.30149 41 Insulation Thickness Between Conductor and Screet 15.2 15.2 15.2 15.2 15.2 15.2 15.2 22.8 22.8 [mm] 15.2 15.2 22.8 42 ρΤί Thermal Resistivity of Insulation [K.m/W] 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 43 Thermal Resistance of Jacket/Pipe Coating 0.05144 0.05144 0.05144 0.05144 0.05144 0.05144 0.05144 0.05144 0.05144 0.03775 0.03775 0.03775 [K.m/W] T_3 Thickness of Jacket/Pipe Coating 44 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 t3 [mm] 45 ρTJ Thermal Resistivity of Jacket/Pipe Coating 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 [K.m/W] 3.5 3.5 3.5 3.5 tly E 46 Depth of Cable Axis [m] n/a 1 47 u Coefficient Used in IEC 60287-2-1 Clause 2.2 n/a 48 T. Thermal Resistance of the Surrounding Medium [K.m/W] n/a Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements 49 ∆θint [°C] n/a 50 Cable Core Current Ampacity n/a [A] Cable in inte 51 1.87 Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 U 52 V Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 53 Y Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 54 θm Mean Temperature of the Medium Filling the Space [°C] 80.7 81.9 76.4 82.3 82.1 77.2 80.4 76.4 74.8 77.1 78.9 70.9 55 T. Thermal Resistance of the Medium Inside the Duct/Pipe [K.m/W] 0.28595 0.28433 0.29243 0.28369 0.28403 0.29127 0.28643 0.2925 0.2949 0.22552 0.22333 0.2334 56 Do Outside Diameter of the Duct/Pipe [mm] 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 200.0 200.0 200.0 57 Inside Diameter of the Duct/Pipe 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 180.0 180.0 180.0 Di [mm] 58 Thermal Resistivity of the Duct/Pipe Material 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 ρΤ [K.m/W] 3.5 3.5 3.5 Thermal Resistance of the Duct/Pipe 0.0321 0.05869 59 T.,* [K.m/W] 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.05869 0.05869 60 Τ.= Thermal Resistance of the Surrounding Medium [K.m/W] 0.66836 0.66752 0.68697 0.66441 0.66268 0.68679 0.65771 0.65576 0.66248 0.60693 0.60176 0.58832 Ducts F 61 Thermal Resistance of the Surrounding Medium [K.m/W] 0.66836 0.66752 0.68697 0.66441 0.66268 0.68679 0.65771 0.65576 0.66248 0.60693 0.60176 0.58832 T.= Total External Thermal Resistance 0.98641 0.98395 0.97881 1.01016 0.97624 0.98036 0.98949 0.88378 0.88042 62 [K.m/W] 1.0115 0.98021 0.89114 T₄ Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements 63

64	1	Cable Core Current Ampacity	[A]	1012.0	1012.0	1012.0	983.9	983.9	983.9	1102.4	1102.4	1102.4	1504.4	1504.4	1504.4
----	---	-----------------------------	-----	--------	--------	--------	-------	-------	-------	--------	--------	--------	--------	--------	--------

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario H
Date:	21/03/2024 14:22:51

General Simulation Data							
Steady State Option	Unequally Loaded						
Consider Electrical interaction between circuits	No						
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0						
Conductor Resistances Computation Option:	IEC-228						

Installation Type:Multiple Ductbanks/Backfills								
Ambient Soil Temperature at Installation Depth	[°C]	20.0						
Native Soil Thermal Resistivity	[K.m/W]	1.2						
Consider Non-Isothermal Earth Surface		No						

Layer Name	X [m]	Y [m]	Width [m]	Height [m]	Thermal Resistivity [K.m/W]
NSTD DB1	0.0	0.963	0.825	0.575	1.0
NSTD DB3	1.025	0.963	0.825	0.575	1.0
NSTD DB2	-1.025	0.963	0.825	0.575	1.0

Results	Results Summary									
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
1	DUBLIN CENTRAL	1		A	50.0	1.0	-1.23	1.07	84.6	1210.6
2	DUBLIN CENTRAL	1		в	50.0	1.0	-1.03	1.07	90.0	1210.6
3	DUBLIN CENTRAL	1		с	50.0	1.0	-0.83	1.07	90.0	1210.6
4	DUBLIN CENTRAL	2		А	50.0	1.0	-0.2	1.05	88.0	1111.5
5	DUBLIN CENTRAL	2		в	50.0	1.0	0.0	1.05	90.0	1111.5
6	DUBLIN CENTRAL	2		с	50.0	1.0	0.2	1.05	88.1	1111.5
7	DUBLIN CENTRAL	3		А	50.0	1.0	0.83	1.06	90.0	1213.6
8	DUBLIN CENTRAL	3		в	50.0	1.0	1.03	1.06	90.0	1213.6
9	DUBLIN CENTRAL	3		с	50.0	1.0	1.23	1.06	84.6	1213.6

CYME		Steady State Summary						
CYMCAP Version	7.2 Revision 3							
Study:	DUBLIN CENTRAL	-						
Execution:	Scenario H							
Date:	21/03/2024 14:22:51	03/2024 14:22:51						
Simulation Data								
Installation type:	Multiple	le Ductbanks						
Steady State Option	Unequal	Jnequally Loaded						
Ambient temperature [°C]	20							
Native Soil Thermal Resistivity [K.m/W]	1.2							
Consider Non-Isothermal Earth Surface	No							
Consider effect of soil dry out	No	No						
Consider Electrical interaction between circuits	No							

Induced current in metallic layers as a fraction of conductor current (applied to all single phase circuits)

	Description						O-HI				
Variable	Description	Unit					Cables				
Cable No.	Cable Index Number		1	2	3	4	5	6	7	8	9
General Inpu	t Data		1		1			1	1		1
Cable ID	Cable Equipment ID		DUBLIN CENTRAL								
Circuit No.	Circuit No.		1	1	1	2	2	2	3	3	3
Phase	Cable Phase		A	В	С	A	В	с	A	В	С
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
x	X coordinate	[m]	-1.23	-1.03	-0.83	-0.2	0.0	0.2	0.83	1.03	1.23
у	Y coordinate	[m]	1.07	1.07	1.07	1.05	1.05	1.05	1.06	1.06	1.06
DLF	Daily Load Factor	[p.u.]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Bonding Type		1 Conductor Crossbonded Flat								
Ampacity			1		1		1				1
1	Steady State Ampacity	[A]	1210.6	1210.6	1210.6	1111.5	1111.5	1111.5	1213.6	1213.6	1213.6
Temperature	15										
Өс	Conductor temperature	[*C]	84.6	90.0	90.0	88.0	90.0	88.1	90.0	90.0	84.6
θs	Sheath/Shield temperature	[*C]	78.1	83.3	83.3	82.4	84.4	82.5	83.3	83.3	78.0
θа	Armour temperature	[*C]	n/a								
θsurf	Cable surface temperature	[*C]	76.8	82.1	82.1	81.4	83.3	81.4	82.0	82.1	76.8
0duct	Duct surface temperature	[*C]	68.8	74.2	74.1	74.7	76.7	74.7	74.1	74.1	68.7
Resistances		-									
R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01631	0.01653	0.01652	0.01645	0.01653	0.01645	0.01652	0.01653	0.01631
ys	Skin Effect Factor		0.13983	0.13575	0.13577	0.13725	0.13574	0.13721	0.13577	0.13574	0.13984
ур	Proximity Effect Factor		0.01147	0.01117	0.01117	0.01128	0.01116	0.01127	0.01117	0.01116	0.01147
Losses											
Wc	Conductor Losses	[W/m]	23.91137	24.22029	24.21864	20.31781	20.41532	20.32032	24.33656	24.33895	24.02724
Wd	Dielectric Losses	[W/m]	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512
Ws	Metallic Screen Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wt	Total Losses	IW/m1	24.33649	24.64541	24.64376	20.74292	20.84044	20.74544	24.76168	24.76406	24.45235
λ.	Screen Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Å2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thermal resi	stances										
T1	Thermal resistance of insulation	[K m/W]	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195
T2	Thermal resistance of bedding/medium inside pipe-type	[K m/W]	n/a								
T3	Thermal resistance of outer covering	[K m/W]	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144
т4	External thermal resistance	[K m/W]	0.96475	0.9582	0.95307	0.94893	0.95219	0.94943	0.95171	0.9564	0.9624
Others	L	[formen]	0.00470	0.0002	0.00001	0.04000	0.00210	1 0.01010	0.00111	0.0004	L 0.0024
	Temperature Rise at the Surface of the Cable Due to Other										
Δθint	Surrounding Elements	[*C]	33.3	38.5	38.6	41.7	43.5	41.7	38.4	38.4	33.2
	Induced Voltage (standing) on Concentric Wires	[V/km]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Induced current on Metallic Screen	[A]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CYME

Cable Parameters under Normal Operation

CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario H
Date:	21/03/2024 14:22:51

No.	Symbol	Description	Unit	Cable No.1	Cable No.2	Cable No.3	Cable No.4	Cable No.5	Cable No.6	Cable No.7	Cable No.8	Cable No.9
				DUBLIN								
1		Cable Equipment ID		CENTRAL								
Normal	Operation IE	C 60287-1-1										
Conduc	tor AC Resis	stance							1	I	1	
2	R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113
3	R'	DC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01417	0.01441	0.01441	0.01432	0.01441	0.01432	0.01441	0.01441	0.01417
4	dc	Conductor Diameter	[mm]	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3
5	s	Distance Between Conductor Axes	[mm]	200.0	200.0	200.0	200.0	200.0	200.0	200.00005	200.00005	200.00005
6	ks	Factor Used for xs Calculation (Skin Effect)		0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
7	kp	Factor Used for xp Calculation (Proximity Effect)		0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
8	XS	Component of Ys Calculation (Skin Effect)		2.34482	2.32538	2.32548	2.33254	2.32533	2.33236	2.32548	2.32533	2.34485
9	XD	Component of Yp Calculation (Proximity Effect)		1.8114	1.79638	1.79646	1.80192	1.79634	1.80177	1.79646	1.79634	1.81143
10		Skin Effect Easter		0.12092	0 19575	0 19577	0 12725	0 12574	0 19701	0 12577	0 12574	0.12094
10	ys	Skill Ellect Factor		0.13963	0.13575	0.13377	0.13725	0.13374	0.13721	0.13577	0.13374	0.13904
11	ур	Proximity Effect Factor		0.01147	0.01117	0.01117	0.01128	0.01116	0.01127	0.01117	0.01116	0.01147
12	R	AC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01631	0.01653	0.01652	0.01645	0.01653	0.01645	0.01652	0.01653	0.01631
Dielectr	c Losses								[1	1	
13	tanδ	Dielectric Loss Factor		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
14	ε	Insulation Relative Permitivity		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
15	С	Cable Capacitance	[µF/km]	0.336	0.336	0.336	0.336	0.336	0.336	0.336	0.336	0.336
16	U ₀	Voltage	[kV]	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853
17	Wd	Cable Dielectric Losses Per Phase	[W/m]	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512
Circulat	ing Loss Fa	ctor										
18	λ'1	Screen Loss Factor Caused by Circulating Current		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eddy Lo	ss Factor											
19	λ",	Screen Loss Factor Caused by Eddy Current		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Metallic	Screen Los	s factor										
20	1	Sereen Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Armour	and Pipe I o	ss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
04		America Sector		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	л ₂ а	Armour Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	λ ₂ pipe	Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	λ ₂	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Normai	Operation IE	C 60287-2-1										
25	T ₁	Thermal Resistance Between Conductor and Screen	[K.m/W]	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195
26	t ₁	Insulation Thickness Between Conductor and Screen	[mm]	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
27	ρTi	Thermal Resistivity of Insulation	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
28	T ₃	Thermal Resistance of Jacket/Pipe Coating	[K.m/W]	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144
29	t ₃	Thickness of Jacket/Pipe Coating	[mm]	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
30	ρTJ	Thermal Resistivity of Jacket/Pipe Coating	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Cables I	Directly Buri	ed										
31	L	Depth of Cable Axis	[m]	n/a								
32	u	Coefficient Used in IEC 60287-2-1 Clause 2.2		n/a								
33	T4	Thermal Resistance of the Surrounding Medium	[K.m/W]	n/a								
		Temperature Rise at the Surface of the Cable Due to Other										
34	Δθint	Surrounding Elements	[°C]	n/a								
35	I	Cable Core Current Ampacity	[A]	n/a								
Cable in	Ducts											
36	U	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87
37	V	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312
38	Y	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037
39	θm	Mean Temperature of the Medium Filling the Space	[°C]	73.2	78.5	78.5	78.4	80.3	78.4	78.4	78.5	73.1
40	T₄'	Thermal Resistance of the Medium Inside the Duct/Pipe	[K.m/W]	0.29746	0.28926	0.2893	0.28951	0.28655	0.28943	0.28938	0.28932	0.29757
41	Do	Outside Diameter of the Duct/Pipe	[mm]	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0
42	Di	Inside Diameter of the Duct/Pipe	[mm]	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0
43	ρΤ	Thermal Resistivity of the Duct/Pipe Material	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
44	T."	Thermal Resistance of the Duct/Pipe	[K.m/W]	0.0321	0.0321	0.0321	0.0321	0.0321	0.0321	0.0321	0.0321	0.0321
45	•4 T.'''	Thermal Resistance of the Surrounding Medium	[K m/M/]	0.63510	0.63684	0.63167	0.62732	0.63354	0.6270	0.63022	0.63408	0.63273
Ducts B	uried in the	soil	[centeral]	0.00010	0.00004	5.00107	5.021.02	0.00004	0.0279	0.00022	0.00-00	5.50£15
46	т "	Thermal Resistance of the Surrounding Modium	[K m/M/I	0.63510	0.63694	0.63167	0.62732	0.62254	0.6270	0.63033	0.63409	0.63272
40	14 T	Total External Thormal Resistance	[K.m/M]	0.00019	0.05004	0.03107	0.02132	0.05304	0.0219	0.05022	0.05490	0.05273
4/	14		[K.II]/VV]	0.90475	0.9082	0.90307	0.94893	0.90219	0.94943	0.901/1	0.9004	0.9024
48	Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	[°C]	33.3	38.5	38.6	41 7	43.5	41 7	38.4	38.4	33.2
			1	55.5	55.5	00.0				1 00.7	1 00.7	50.2

49 I Cable Core Current Ampacity [A] 1210.6 1210.6 1111.5 1111.5 1111.5 1213.6 1213.6	1213.6
---	--------

	Study Summary
CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario I
Date:	21/03/2024 14:16:15

General Simulation Data	
Steady State Option	Unequally Loaded
Consider Electrical interaction between circuits	No
Induced currents in metallic layers as a fraction of conductor current (applied to all single phase circuits) :	0.0
Conductor Resistances Computation Option:	IEC-228

Installation Type:Multiple Ductbanks/Backfills		
Ambient Soil Temperature at Installation Depth	[°C]	20.0
Native Soil Thermal Resistivity	[K.m/W]	1.2
Consider Non-Isothermal Earth Surface		No

Layer Name	X [m]	Y [m]	Width [m]	Height [m]	Thermal Resistivity [K.m/W]
NSTD DB1	0.0	0.963	0.6	0.575	1.0
NSTD DB3	0.8	0.963	0.6	0.575	1.0
NSTD DB2	-0.8	0.963	0.6	0.575	1.0

Results 3	Summary	1								
Cable No.	Cable ID	Circuit No.	Feeder ID	Cable Phase	Cable Frequency	Daily Load Factor	X coordinate [m]	Y coordinate [m]	temperature [°C]	Ampacity [A]
1	DUBLIN CENTRAL	1		A	50.0	1.0	-0.87	1.11	87.6	1101.2
2	DUBLIN CENTRAL	1		в	50.0	1.0	-0.73	1.11	90.0	1101.2
3	DUBLIN CENTRAL	1		с	50.0	1.0	-0.8	1.0	84.1	1101.2
4	DUBLIN CENTRAL	2		A	50.0	1.0	-0.07	1.09	90.0	1021.0
5	DUBLIN CENTRAL	2		в	50.0	1.0	0.06	1.09	90.0	1021.0
6	DUBLIN CENTRAL	2		с	50.0	1.0	0.0	0.98	85.1	1021.0
7	DUBLIN CENTRAL	3		A	50.0	1.0	0.72	1.09	90.0	1121.1
8	DUBLIN CENTRAL	3		в	50.0	1.0	0.88	1.09	85.9	1121.1
9	DUBLIN CENTRAL	3		с	50.0	1.0	0.78	0.98	84.5	1121.1

CYME		Steady State Summary
CYMCAP Version	7.2 Revision	3
Study:	DUBLIN CE	NTRAL
Execution:	Scenario I	
Date:	21/03/2024	14:16:15
Simulation Data		
Installation type:		Multiple Ductbanks
Steady State Option		Unequally Loaded
Ambient temperature [°C]		20
Native Soil Thermal Resistivity [K.m/W]		1.2
Consider Non-Isothermal Earth Surface		No
Consider effect of soil dry out		No
Consider Electrical interaction between circuits		No

Consider Electrical interaction between circuits No Induced current in metallic layers as a fraction of conductor current (applied to all single phase circuits)

Variable	Description	Unit					Cables				
Cable No.	Cable Index Number		1	2	3	4	5	6	7	8	9
General Inp	ut Data										
Cable ID	Cable Equipment ID		DUBLIN CENTRAL								
Circuit No.	Circuit No.		1	1	1	2	2	2	3	3	3
Phase	Cable Phase		A	В	С	A	В	с	A	В	С
Fq	Operating Frequency	[Hz]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
x	X coordinate	[m]	-0.87	-0.73	-0.8	-0.07	0.06	0.0	0.72	0.88	0.78
v	Y coordinate	[m]	1.11	1.11	1.0	1.09	1.09	0.98	1.09	1.09	0.98
DLF	Daily Load Factor	[p.u.]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Bonding Type		Crossbonded								
	5.1		Triangular								
Ampacity		1			[1	1	1	1		1
	Steady State Ampacity	[A]	1101.2	1101.2	1101.2	1021.0	1021.0	1021.0	1121.1	1121.1	1121.1
Temperatur			I	1	1	1	1		1		T
Өс	Conductor temperature	[°C]	87.6	90.0	84.1	90.0	90.0	85.1	90.0	85.9	84.5
θs	Sneath/Snield temperature	[°C]	82.1	84.4	78.6	85.2	85.2	80.3	84.3	80.2	78.8
ва	Armour temperature	[*C]	n/a								
θsurf	Cable surface temperature	[*C]	81.0	83.3	77.5	84.2	84.3	79.4	83.2	79.1	77.7
0duct	Duct surface temperature	[*C]	74.4	76.7	70.8	78.6	78.6	73.7	76.3	72.3	70.8
Resistances				1	1	1		1			1
R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113
R	AC Resistance of the Conductor at Operating Temperature	[Ω/km]	0.01666	0.01675	0.01652	0.01677	0.01677	0.01658	0.01666	0.0165	0.01644
ys	Skin Effect Factor		0.13753	0.13575	0.14027	0.13576	0.13575	0.13947	0.13574	0.13884	0.13995
ур	Proximity Effect Factor		0.02734	0.02702	0.02783	0.0279	0.02789	0.02858	0.02035	0.02077	0.02092
Losses											
Wc	Conductor Losses	[W/m]	20.20563	20.31715	20.03805	17.4787	17.47961	17.28102	20.93667	20.73555	20.66515
Wd	Dielectric Losses	[W/m]	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512
Ws	Metallic Screen Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wa	Armor/Pipe Losses	[W/m]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wt	Total Losses	[W/m]	20.63075	20.74226	20.46316	17.90382	17.90472	17.70614	21.36179	21.16067	21.09027
λ,	Screen Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Å2	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thermal res	istances	-									
T1	Thermal resistance of insulation	[K.m/W]	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195
T2	Thermal resistance of bedding/medium inside pipe-type	[K.m/W]	n/a								
Т3	Thermal resistance of outer covering	[K.m/W]	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144
T4	External thermal resistance	[K.m/W]	0.9929	0.98838	1.01622	0.98313	0.98103	1.01187	0.97881	0.98159	0.99031
Others											
Δθint	Temperature Rise at the Surface of the Cable Due to Other Surrounding Elements	I,cl	40.5	42.8	36.7	46.6	46.7	41.5	42.2	38.4	36.8
	Induced Voltage (standing) on Concentric Wires	IV/km1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Induced current on Metallic Screen	[47,83,1]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L		- 0	0.0	5.0	2.0			5.0	5.0		1 0.0

CYME

Cable Parameters under Normal Operation

CYMCAP Version	7.2 Revision 3
Study:	DUBLIN CENTRAL
Execution:	Scenario I
Date:	21/03/2024 14:16:15

No.	Symbol	Description	Unit	Cable No.1	Cable No.2	Cable No.3	Cable No.4	Cable No.5	Cable No.6	Cable No.7	Cable No.8	Cable No.9
				DUBLIN	DUBLIN	DUBLIN						
1		Cable Equipment ID		CENTRAL	CENTRAL	CENTRAL						
Normal	Operation IE	C 60287-1-1										
Conduc	tor AC Resis	stance										
2	R ₀	DC Resistance of the conductor at 20°C	[Ω/km]	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113
3	R'	DC Resistance of Conductor at Operating Temperature	[Ω/km]	0.0143	0.01441	0.01415	0.01441	0.01441	0.01419	0.01441	0.01423	0.01416
4	dc	Conductor Diameter	[mm]	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3
5		Distance Between Conductor Aves	[mm]	129.0052	129 0052	129.0052	126 00008	126 00008	126 00008	1/18 /// 308	1/18 // 308	1/8 // 308
6	ke	Factor Lised for vs Calculation (Skin Effect)	[]	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
7	ko	Easter Llead for xn Calculation (Bravimity Effect)		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
,	кр			0.07	0.07	0.01	0.07	0.57	0.01	0.57	0.01	0.04500
0	XS	Component of Ys Calculation (Skin Ellect)		2.3339	4.70000	2.34069	2.32344	2.32330	2.34311	2.32332	2.34013	2.34339
9	хр	Component of TP Calculation (Proximity Effect)		1.80296	1.79039	1.813	1.79643	1.79030	1.81008	1.79634	1.80778	1.81184
10	ys	Skin Effect Factor		0.13753	0.13575	0.14027	0.13576	0.13575	0.13947	0.13574	0.13884	0.13995
11	ур	Proximity Effect Factor		0.02734	0.02702	0.02783	0.0279	0.02789	0.02858	0.02035	0.02077	0.02092
12	R	AC Resistance of Conductor at Operating Temperature	[Ω/km]	0.01666	0.01675	0.01652	0.01677	0.01677	0.01658	0.01666	0.0165	0.01644
Dielectr	ic Losses											
13	tanδ	Dielectric Loss Factor		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
14	ε	Insulation Relative Permitivity		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
15	с	Cable Capacitance	[µF/km]	0.336	0.336	0.336	0.336	0.336	0.336	0.336	0.336	0.336
16	U ₀	Voltage	[kV]	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853	63.50853
17	Wd	Cable Dielectric Losses Per Phase	[W/m]	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512	0.42512
Circulat	ing Loss Fa	ctor										
18	λ'،	Screen Loss Factor Caused by Circulating Current		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eddy Lo	ss Factor											
10	ג ".	Screen Loss Factor Caused by Eddy Current		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Metallic	Screen Los	s factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20		Screen Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Annour												
21	λ ₂ a	Armour Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	λ ₂ pipe	Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	λ ₂	Armour Loss Factor + Pipe Loss Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Normal	Operation IE	C 60287-2-1	1									
25	T ₁	Thermal Resistance Between Conductor and Screen	[K.m/W]	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195	0.27195
26	t1	Insulation Thickness Between Conductor and Screen	[mm]	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
27	ρΤί	Thermal Resistivity of Insulation	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
28	T ₃	Thermal Resistance of Jacket/Pipe Coating	[K.m/W]	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144	0.05144
29	t ₃	Thickness of Jacket/Pipe Coating	[mm]	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
30	ρTJ	Thermal Resistivity of Jacket/Pipe Coating	[K.m/W]	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Cables	Directly Buri	ed	-					-	-		-	
31	L	Depth of Cable Axis	[m]	n/a	n/a	n/a						
32	u	Coefficient Used in IEC 60287-2-1 Clause 2.2		n/a	n/a	n/a						
33	Τ4	Thermal Resistance of the Surrounding Medium	[K.m/W]	n/a	n/a	n/a						
		Temperature Rise at the Surface of the Cable Due to Other									_	
34	Δθint	Surrounding Elements	[°C]	n/a	n/a	n/a						
35	I	Cable Core Current Ampacity	[A]	n/a	n/a	n/a						
Cable in	Ducts											
36	U	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87
37	v	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312
38	Y	Coefficient Used in IEC 60287-2-1 Clause 2.2.7.1		0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037
39	θm	Mean Temperature of the Medium Filling the Space	[°C]	78.0	80.4	74.5	81.7	81.7	76.8	80.1	76.0	74.6
40	Τ4'	Thermal Resistance of the Medium Inside the Duct/Pipe	[K.m/W]	0.29	0.2865	0.29543	0.28456	0.28453	0.29178	0.28691	0.29304	0.29525
41	Do	Outside Diameter of the Duct/Pipe	[mm]	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0	125.0
42	Di	Inside Diameter of the Duct/Pipe	[mm]	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0
43	ρΤ	Thermal Resistivity of the Duct/Pipe Material	[K.m/W]	3,5	3,5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
10	т."	Thermal Resistance of the Duct/Dine	[K m/M/	0.0321	0.0321	0.0221	0.0321	0.0321	0.0321	0.0321	0.0221	0.0321
44	14 T ""	Thermal Resistance of the Surrounding Modium	[K m/M/	0.6709	0.66077	0.69960	0.66647	0.6644	0.69709	0.6509	0.65644	0.66206
40 Ducts P	uried in the		[[K.III/W]	0.0708	0.00977	0.00009	0.00047	0.0044	0.06798	0.0098	0.00044	0.00290
40		Thermal Desistance of the Surray direction	IK make	0.6700	0.66077	0.680000	0.660.47	0.6011	0.69700	0.6500	0.65044	0.66000
46	14	Therman Resistance of the Surrounding Medium	[K.m/W]	8010.0	0.00000	0.08869	0.00010	0.00100	0.08/98	0.07001	0.00150	0.00296
47	E4	I otal External Thermal Resistance	[K.m/W]	0.9929	0.98838	1.01622	0.98313	0.98103	1.01187	0.97881	0.98159	0.99031
19	ABint	Temperature Rise at the Surface of the Cable Due to Other	1001	40.5	42 9	36.7	46.6	46.7	A1 5	42.2	39.4	36.9
40	DUIIL	our ounding Liements		40.0	42.0	30.7	40.0	40.7	41.0	42.2	30.4	30.0

49 I Cable Core Current Ampacity [A] 1101.2 1101.2 1101.2 1021.0 1021.0 1021.0 1121.1 1121.1 1121.1	49	1	Cable Core Current Ampacity	[A]	1101.2	1101.2	1101.2	1021.0	1021.0	1021.0	1121.1	1121.1	1121.1
---	----	---	-----------------------------	-----	--------	--------	--------	--------	--------	--------	--------	--------	--------
APPENDIX C: MASTER LAYOUT

APPENDIX D: MASTER ELEVATIONS

()	Information including to a graphical company as stackwised	
(17)	information including topographical survey, geotechnical	6
	investigation and utility detail used in the design have	12
	been provided by others	
	seen previded by earliere.	

APPENDIX E: PRIMARY PLANT VIEW

e of the drawing. All ed issue and any work own risk. RPS will not e of these files, either by isioned measurements, errors arising when oduction, or setting out	(iii)) This drawing is the property of RPS, it is a project confidential classified document. It must not be copied used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.						
errors arising when oduction, or setting out	(iv)	Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others.	S3 P01	27/03/2024	DB DC	ISSUE FOR REVIEW & COMMENT	¢ ^C	
	(v)	All Levels refer to Ordnance Survey Datum, Malin Head.	Rev	Date	OF CA	Amendment / Issue	Арр	

APPENDIX F: CONTROL BUILDING LAYOUT

GENERAL

THIS DRAWING IS PRODUCED FOR INFORMATION PURPOSES ONLY ALL DIMENSIONS, REFERENCES (EG. LIGHTNING MAST LOCATIONS ETC). GIVEN ARE INDICATIVE AND SHOULD NOT BE USED AS PART OF A DETAILED DESIGN

THIS IS A CONCEPTUAL DESIGN DETAILED DESIGN IS REQUIRED PENDING CONFIRMATION OF SPECIFIC EQUIPMENT SUPPLIER AND SITE DETAILS

NOTE 3: BUILDING HAS BEEN SPECIFICALLY DESIGNED T0 ACCOMMODATE 2 NO TRANSFORMER BAYS (CABLE CONNECTION) AND 6NO. FEEDER BAYS (CABLE

NOTE 4: WHERE THERE IS MORE THAN ONE MINIMUM DISTANCE STATED FOR A SPECIFIC AREA THE LARGEST MINIMUM DISTANCE SHOULD BE ADHERED TO

NOTE 5: FIRE AND ATEX ZONES NOT SHOWN, THIS SHOULD BE CONSIDERED DURING DETAILED CUSTOMER DESIGN

CIVIL CALCULATIONS ARE TO BE CARRIED OUT AT THE DETAIL DESIGN STAGE AND TAKE INTO ACCOUNT SPECIFIC, EXISTING SITE GROUND CONDITIONS

THE SWITCHGEAR SHOWN ON THIS DRAWING IS INDICATIVE ONLY DIMENSIONS OF THE OVERALL BUILDING SHALL BE DESIGNED TO SUIT MANUFACTURER

SPECIFIC DIMENSIONS ENVELOPE AROUND THE SWITCHGEAR SHALL BE WITH

MANUFACTURER RECOMMENDATIONS FOR ON-GOING OPERATION, MAINTENANCE AND REPLACEMENT OF HV PLANT

NOTE 1:

NOTE 2:

NOTE 3:

NOTE 6:

SWITCH GEAR

NOTE 7 (AS ILLUSTRATED ON DRAWING):

CONNECTION).

SCALE: NTS

CABINET DESIGNATION	DESCRIPTION	DIMENSIONS
B1-1	220V DC BATTERY 1, STAND 1	3150x550
B1-2	220V DC BATTERY 1, STAND 2	3150x550
B2-1	220V DC BATTERY 2, STAND 1	3150x550
B2-2 B7	48V DC TELECOMS BATTERY	3450x860
B8	48V DC STATION BATTERY	1260x320
D1	220V DC DISTRIBUTION BOARD 1	2400x400
D2	220V DC DISTRIBUTION BOARD 2	2400x400
D8	48V DC DISTRIBUTION BOARD	1600x400
D3	AC DISTRIBUTION BOARD	3200x400
D10	220V BATTERY No 1 CHARGER CHANGE VER SWICCH & FUSE BOX	600x350
D12	220V BATTERY No 1: CHARGER 1 & BATTERY SUPERVISION	600x500
D20	220V BATTERY No 2 CHARGER CHANGE OVER SWITCH & FUSE BOX	600x350
D21	220V BATTERY No 2: CHARGER 1 & BATTERY SUPERVISION	600x500
D22	220V BATTERY No 2: CHARGER 2 & BATTERY SUPERVISION	600x500
D80	24/48V BATTERY: CHARGER CHANGE OVER SWITCH & FUSE BOX	600x350
D81	24/48V BATTERY: CHARGER 1 & BATTERY SUPERVISION	600x500
D82	24/48V BATTERY: CHARGER 2 & BATTERY SUPERVISION	600x500
D70	48V TELECOMS CONNECTION/FUSE BOX 48V SMPS (TELECOMS)	600v600
D71	TELECOMS ISOLATION SWITCH	100x100
M1	OPMUX 1	800x800
M2	OPMUX 2	800x800
M3	OPMUX 3	800x800
M4	ODF	800x800
M5	IP SERVICES	800x800
M6	48V DC (TELECOMS) DISTRIBUTION BOARD	600X600
M7	MAIN DISTRIBUTION FRAME NCC RTU 1 (INCL GPS CLOCK)	800x800
M9	NCC RTU 2 (INCL.GPS CLOCK)	800x800
M10	TELEMETERING 1	1200x800
M11	TELEMETERING 2	1200x800
M12	DCC RTU	600x400
M13	SYNCHRONISING PANEL	1200x800
M14	EVENT RECORDER/AAP 1	1600x800
M15 M16	EVENT RECORDER/AAP 2	1600x800 800x800
M10	SIGNAL INTERPOSING	3200x800
M18	BUSBAR PROTECTION 1	1600x800
M19	BUSBAR PROTECTION 2	1600x800
M20	BUSBAR PROTECTION 3	1600x800
M21	CUSTOMER INTERFACE	3200x800
M32	F9 COUPLER PROTECTION	800x800
M33	F7 PROTECTION	800x800
M34	F7 PROTECTION	800x800
M36	F5 PROTECTION	800x800
M37	F3 PROTECTION	800x800
M38	F3 PROTECTION	800x800
M39	F1 PROTECTION	800x800
M40	F1 PROTECTION	800x800
M41		800x800
M42 M43	F2 PROTECTION	800x800
M44	F2 PROTECTION	800x800
M45	F4 PROTECTION	800x800
M46	F4 PROTECTION	800x800
M47	F6 PROTECTION	800x800
M48	F6 PROTECTION	800x800
M49		800x800
M51	F10 COUPLER PROTECTION	000x600 800x800
M52	REMOTE INTERROGATION/DISTURBANCE RECORDER	800x800
M53	INTRUDER ALARM PANEL	
M54	FIRE ALARM PANEL	
M55	ETIE	600x400
M56	EIRGRID ENERGY METERING	800x800
M57	I ELEPHUNE POINTS (2No.)	0000-000
M58		00000800

ing. All any work S will not s, either by surements,	(iii)	This drawing is the property of RPS, it is a project confidential classified document. It must not be copied used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.						ATETER COMPLEX				
when setting out	(iv)	Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others.	S3 P01	27.03.24	EM	ISSUE FOR REVIEW & COMMENT	¢ ^C	West Pier Business Campus Dun Laoghaire	T F W	+353 1 4882900 +353 1 2835676 www.rpsgroup.c		
	(v)	All Levels refer to Ordnance Survey Datum, Malin Head.	Rev	Date	Of Cat	Amendment / Issue	Арр	Co Dublin	E	ireland@rpsgroup		

OWERCOMM	Scale NTS @ A1	DUBLIN CENTRAL BUL	K SUPPLY F					
82900 35676 g roup.com/ireland psgroup.com	Created on 27/03/2024	Title 220 KV GIS						
	Sheets 1 of 1							
	Drawing Number CP1274-RPS-02-	DW-XX-D-C-0008	Status S3	Rev P01				

	BATTERIES SHOULD BE LOCATED AWAY FROM THE WALL TO ENSURE ACCESS TO ALL BATTERY CELLS FOR MAINTENANCE, BATTERIES SHOULD NOT BE LOCATED IN
REQUIREMENT FOR GIS OVERPRESSURE VENTS TO BE CONFIRMED BY GIS	FRONT OF AIR VENTS
SUPPLIER.	
	NOTE 31 (AS ILLUSTRATED ON DRAWING):
NOTE 9: ALL OPES IN CIS DOOM FOR LV AND HV CARLES TO BE FIRE SEALED	SCREENED VENTS (2 HIGH LEVEL AND 2 LOW LEVEL) ARE TO BE INSTALLED IN
ALL OPES IN GIS ROOM FOR LV AND HV CABLES TO BE FIRE SEALED	THE BATTERY ROOM AS PER IEC 52485-2 ON ADJACENT EXTERNAL WALL MINIMUM VENT DIMENSIONS: 000 x 225mm
NOTE 10 (AS ILLUSTRATED ON DRAWING):	
MINIMUM CLEAR AREA ON BOTH SIDES OF THE GIS FOR THE HV TEST	NOTE 32 AS ILLUSTRATED ON DRAWING :
EQUIPMENT IS 3000mm	ACCESS DOOR TO STAIRCORE 2 FROM HOIST AREA, AND ADDITIONAL DOUBLE
	DOOR EXIT IN BATTERY ROOM TO BE SIZED APPROPRIATELY SIZE REQUIREMENT
NUTE 11: LV CABLE POLITING FOR FUTURE SWITCHGEAR BAYS SHALL BE CONSIDERED AS	TBC IN LINE WITH FIRE REGULATIONS
PART OF THE DETAILED DESIGN DIFFERENCES IN LENGTH BETWEEN THE RELAY	NOTE 33
ROOM AND THE SWITCHGEAR HALL MUST BE NOTED AT THE DETAIL DESIGN	BATTERY ROOM FLOOR IS TO BE FITTED WITH NON-SLIP, ACID RESISTANT VINYL
PHASE, WITH LV CABLING ROUTED ACCORDINGLY	AS PER THE REQUIREMENTS OF XDS-GFS-13-001-R2
	NOTE 34: DETAIL DECIDING TO CARRY OUT ARREODRIATE DICK ASSESSMENT &
MANUFACTURER'S SPECIFICATIONS AND ARE TO BE EVALUATED AT THE DETAIL	DETAIL DESIGN IS TO CARRY OUT APPROPRIATE RISK ASSESSMENT & VENTILATION CALCULATIONS TO EVALUATE BATTERY ROOM VENT REOLIIREMENTS
DESIGN STAGE	
NOTE 12	GENERATOR ROOM
BOTH OPTIONS OF LCC , INTEGRATED AND STANDALONE. HAVE BEEN SHOWN FOR	NOTE 35 (AS ILLUSTRATED ON DRAWING):
INFORMATIONAL PURPOSES	MINIMUM DIESEL GENERATOR LOUVRE DIMENSIONS 1200 x 1200mm
NOTE 14:	HOIST AREA
SWITCHGEAR MANUFACTURER REQUIREMENTS FOR FURTHER DETAILS ON FIRGRID	NOTE 36 (AS ILLUSTRATED ON DRAWING)
EARTHING REQUIREMENTS, REFER TO EIRGRID'S FUNCTIONAL SPECIFICATION	FOULDMENT ACCESS DOOD TO BE SIZED SUCH THAT A STANDARD ESB TRUCK
XDS-GFS-12-001.	CAN BE REVERSED IN THE HOIST AREA (MIN 4000mm WIDTH)
	NOTE 37 (AS ILLUSTRATED ON DRAWING) :
GIS ACCESS PLATFORMS SHOWN ARE INDICATIVE ONLY AND SHALL BE	ROLLER SHUTTER DOOR EXTENDS TO CEILING LEVEL OF THE GROUND FLOOR
	OF THE GIS BUILDING
HALLWAY	NOTE 38 (AS ILLUSTRATED ON DRAWING):
	ROLLER SHUTTER DOOR TO BE INSTALLED BETWEEN THE HOIST AREA AND THE
NOTE 16 (AS ILLUSTRATED ON DRAWING):	CABLE PIT AND IS INTENDED TO PREVENT VERTICAL FIRE TRAVEL BETWEEN THE
EIDE AND ALADM DANELS TO BE LOCATED IN THE VICINITY OF THE MAIN	
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE.	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) :
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE RELAY ROOM MUST DE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) :
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) :	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSIDE THEFE APE NO ORSTELICIONS LOCATED 2m DIPECTLY IN EPOINT OF	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) :	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42:
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW REACE FOR SETTINCE UP THE FOLLUMENT NEEDED FOR CABLE FOLLUNC	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT.	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER.	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43:
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER.	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER.	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING): DECLAY OF ON DECOMPTON INCL SUB DOOL DECOMPTON
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 200mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 200mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING) : RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE. CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING): RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS NOTE 21: CABLE SUPPORT STEELWORK TO BE PROVIDED BY THE CONTRACTOR WALL TO BE CAPABLE OF SUPPORTING HV CABLES, RING CT'S etc	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING): RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS NOTE 45:
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DIGTS AND SOLTER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE SUPPORT STEELWORK TO BE PROVIDED BY THE CONTRACTOR WALL TO BE CAPABLE OF SUPPORTING HV CABLES, RING CTS etc NOTE 22 AS ILLUSTRATED ON DRAWING: AN OPENING SHALL BE PROVIDED UNDER THE STAIRS FOR CABLE PULLING	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO TE 43: NOTE 44: NOTE 44 (AS ILLUSTRATED ON DRAWING): RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS NOTE 45: ROOF ACCESS IS TO BE EVALUATED AT THE DETAIL DESIGN STAGE BY CONDUCTING A BIEV ASSESSMENT
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING BUCTS NOTE 21: CABLE SUPPORT STEELWORK TO BE PROVIDED BY THE CONTRACTOR WALL TO BE CAPABLE OF SUPPORTING HV CABLES, RING CT's etc NOTE 22 AS ILLUSTRATED ON DRAWING: AN OPENING SHALL BE PROVIDED UNDER THE STAIRS FOR CABLE PULLING	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING): RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS NOTE 45: ROOF ACCESS IS TO BE EVALUATED AT THE DETAIL DESIGN STAGE BY CONDUCTING A RISK ASSESSMENT
FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE CABLE PITS NOTE 17: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH NOTE 18 (AS ILLUSTRATED ON DRAWING) : BUILDING DESIGNER AND CABLE DESIGNER SHALL CO-ORDINATE WORKS TO ENSURE THERE ARE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM NOTE 19 (AS ILLUSTRATED ON DRAWING) : ADEQUATE AREA TO BE PROVIDED IN THE VICINITY OF THE GIS BUILDING TO ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING OPERATIONS THIS AREA IS APPROX. 12m X 12m FOR EACH CABLE CIRCUIT, CABLE DESIGNER TO CONSIDER. NOTE 20: AN OPENING MUST BE PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS NOTE 21: CABLE SUPPORT STEELWORK TO BE PROVIDED BY THE CONTRACTOR WALL TO BE CAPABLE OF SUPPORTING HV CABLES, RING CTs etc NOTE 22 AS ILLUSTRATED ON DRAWING: AN OPENING SHALL BE PROVIDED UNDER THE STAIRS FOR CABLE PULLING	FIRST AND SECOND FLOORS OF THE BUILDING, INLINE WITH FIRE REGULATIONS RELAY ROOM NOTE 39 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION NOTE 40 (AS ILLUSTRATED ON DRAWING): SPACE SHOULD BE CONSIDERED FOR ADDITIONAL TELECOMS AND PROTECTION PANELS NOTE 41: INDICATIVE CABLE ACCESS SHOWN NOTE 42: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU NOTE 43: NO ELECTRICAL EQUIPMENT (INCL.BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS NOTE 44 (AS ILLUSTRATED ON DRAWING): RELAY ROOM FLOOR CONSTRUCTION TO SUIT ROOM REQUIREMENTS ROOF ACCESS NOTE 45: ROOF ACCESS IS TO BE EVALUATED AT THE DETAIL DESIGN STAGE BY CONDUCTING A RISK ASSESSMENT

NOTE 23: SUITABLE ANCHOR POINTS SHALL BE INSTALLED FOR CABLE PULLING

INDICATIVE MODULAR/RELEVATION AND A DISTANLEY AND ARE INTENDED T PROVIDE AN UNIMPEDED ROUTE OF ESCAPE FROM THE PIT IN THE EVENT OF AN EMERGENCY BRIDGES ARE TO CONSTRUCTED WITH A NON-METALLIC MATERIAL, I & GLASS REINFORCED

NOTE 25: CABLE PIT ENTRY DUCTS LOCATIONS ARE INDICATIVE ONLY DUCTING SHALL BE FACILITATED TO SUIT THE ULTIMATE DEVELOPMENT OF THE STATION TO REDUCE THE POSSIBILITY OF WATER INGRESS

NOTE 26: RISK ASSESSMENT TO BE CARRIED OUT AT DETAIL DESIGN STAGE TO EVALUATE

LINK BOXES LOCATED IN THE CABLE BASEMENTS SHALL BE READILY ACCESSIBLE FOR OPERATIONS STAFF FOR MAINTENANCE PURPOSES WITH SAFETY SIGNAGE AS OUTLINE IN THE EIRGRID CABLE SPECIFICATIONS

NOTE 28: TELECOMMUNICATION DUCTS SHALL BE ROUTED DIRECTLY TO THE RELAY ROOM

MINIMUM CLEAR DISTANCE BETWEEN 220V BATTERY STANDS AND WALLS IS

THE RE QIREMENT F R O R END VENTILATION WITHIN CABLE PIT

NOTE 24 (AS ILLUSTRATED ON DRAWING) :

AS PER ESB TELECOMS REQUIREMENTS

NOTE 29 (AS ILLUSTRATED ON DRAWING) :

PLASTIC.

NOTE 27:

BATTERY ROOM

800mm

NOTE 30:

drawing. All	(iii)	This drawing is the property of RPS, it is a project confidential classified document. It must not be copied						
and any work RPS will not files, either by		used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.						
measurements, ising when n, or setting out	(iv)	Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others	S3 P01	27/03/24	EMC	ISSUE FOR REVIEW & COMMENT	¢°	ATET
	(v)	All Levels refer to Ordnance Survey Datum, Malin Head.	Rev	Date	OFCAT	Amendment / Issue	Арр	

CADINE 15	
SCRIPTION	DIMENSIONS
	3150x550
	3150x550
	3150x550
	3150x550
	3450x880
	1260x320
	24O0x4O0
	2400x400
	1600x400
	32O0x4O0
	600x600
/ER SWITCH & FUSE BOX	600x300
RY SUPERVISION	600x600
RY SUPERVISION	600x600
/ER SWITCH & FUSE BOX	600x300
RY SUPERVISION	600x600
RY SUPERVISION	600x600
R SWITCH & FUSE BOX	600x300
SUPERVISION	600x600
SUPERVISION	600x600
	600x600
	10Ox100
	3800x800
	1 Ø0x800
	600x600
	600x600
	600x600
	24O0x8O0
	24O0x8O0
	1 20x800
RECORDER	600x600
	600x600
	600x600
	1200x800
	600x600
	600x600
	800x600
	800x600
	800 800
	800v600
	800v600
	800.600
	000 000
	000000
	800v400
	000x400
	000X400

NOTE 1: THIS DRAWING IS PRODUCED FOR INFORMATION PURPOSES ONLY ALL DIMENSIONS, REFERENCES (EG LIGHTNING MAST LOCATIONS ETC.) GIVEN ARE INDICATIVE AND SHOULD NOT BE USED AS PART OF A DETAILED DESIGN.
NOTE 2: THIS IS A CONCEPTUAL DESIGN DETAILED DESIGN IS REQUIRED PENDING CONFIRMATION OF SPECIFIC EQUIPMENT SUPPLIER AND SITE DETAILS.
NOTE 3: BUILDING HAS BEEN SPECIFICALLY DESIGNED T0 ACCOMMODATE 4N0. TRANSFORMER BAYS (CABLE CONNECTION) AND 4N0. FEEDER BAYS (CABLE CONNECTION).
NOTE 4: SWITCHGEAR SHOWN 0N THIS DRAWING IS INDICATIVE ONLY
NOTE 5: REQUIREMENT FOR GIS OVERPRESSURE VENTS TO BE CONFIRMED BY GIS SUPPLIER
NOTE 6: WHERE THERE IS MORE THAN ONE MINIMUM DISTANCE STATED FOR A SPECIFIC AREA THE LARGEST MINIMUM DISTANCE SHOULD BE ADHERED T0.
NOTE 7: ALL 0PES IN GIS ROOM FOR LV AND HV CABLE TO BE FIRE SEALED.
NOTE 8: THE MAXIMUM LENGTH OF A CABLE THAT CAN BE PUSHED INTO THE CABLE ROOM IS 100m ROUTE LENGTH.
NOTE 9 (AS ILLUSTRATED ON DRAWING): MINIMUM CLEAR AREA ON BOTH SIDES OF HE GINS FOR THE HV TEST EQUIPMENT IS 3000mm.
NOTE 10 (AS ILLUSTRATED ON DRAWING): MINIMUM CLEAR DISTANCE BETWEEN 220V BATTERY STANDS AND WALLS IS 800mm.
NOTE 11 (AS ILLUSTRATED ON DRAWING) : SCREENED VENTS (2 HIGH LEVEL AND 2 LOW LEVEL) ARE TO BE INSTALLED IN THE BATTERY ROOM AS PER IEC 62485-2 ON ADJACENT EXTERNAL WALL.
NOTE 12 (AS ILLUSTRATED ON DRAWING): FIRE AND ALARM PANELS TO BE LOCATED IN THE VICINITY OF THE MAIN ENTRANCE.
NOTE 13 (AS ILLUSTRATED ON DRAWING): EQUIPMENT ACCESS DOOR TO BE SIZED SUCH THAT A STANDARD ESB TRUCK CAN BE REVERSED IN THE HOIST AREA (MIN 4000mm WIDTH).
NOTE 14 (AS ILLUSTRATED ON DRAWING): THERE ARE TO BE NO OBSTRUCTIONS LOCATED 2m DIRECTLY IN FRONT OF THE CABLE DUCTS AND 300mm TO THE SIDE OF THE CABLE DUCT WHERE THE DUCT ENTERS THE CABLE ROOM
NOTE 15: ADEQUATE AREA T0 BE PROVIDED IN THE VICINITY OF THE GIS BUILDING T0 ALLOW SPACE FOR SETTING UP THE EQUIPMENT NEEDED FOR CABLE PULLING 0PERATION THIS AREA IS APPROX.12m X 12m FOR EACH CABLE CIRCUIT CABLE DESIGNER TO ADVISE.
NOTE 16: AN OPENING MUST 6E PROVIDED FOR EACH CIRCUIT TO ALLOW FOR SUITABLE CABLE PULLING DUCTS .
NOTE 17 (AS ILLUSTRATED ON DRAWING) : CABLE SUPPORT STEELWORK TO BE PROVIDED BY THE CONTRACTOR WALL TO BE CAPABLE OF SUPPORTING HV CABLES, RING CT's etc.
NOTE 18 (AS ILLUSTRATED ON DRAWING): ADDITIONAL EXIT DOOR IN BATTERY ROOM, REQUIREMENT TBC IN LINE WITH FIRE REGULATIONS.
NOTE 19 (AS ILLUSTRATED ON DRAWING): RELAY ROOM MUST BE SIZED APPROPRIATELY TO ALLOW FOR ULTIMATE DEVELOPMENT OF STATION.
NOTE 20 (AS ILLUSTRATED ON DRAWING) : SPACE SHOULD BE PROVIDED FOR FUTURE TELECOMS AND PROTECTION PANELS.
NOTE 21: INDICATIVE CABLE ACCESS SHOWN
NOTE 22: A TELECOMS EARTH BAR SHALL BE INSTALLED IN CLOSE PROXIMITY TO THE DCC RTU.
NOTE 23: ONLY SINGLE ROW BATTERY STANDS MAY BE LOCATED AGAINST A WALL
NOTE 24: NO ELECTRICAL EQUIPMENT (INCL_BATTERIES) SHALL BE INSTALLED DIRECTLY IN FRONT OF VENTS .
NOTE 25 (AS ILLUSTRATED ON DRAWING): AN OPENING SHALL BE PROVIDED UNDER THE STAIRS FOR CABLE PULLING
NOTE 26 (AS ILLUSTRATED ON DRAWING): SUITABLE ANCHOR POINTS SHALL BE INSTALLED FOR CABLE PULLING
NOTE 27: FIRE AND ATEX ZONES NOT SHOWN, THIS SHOULD BE CONSIDERED DURING DETAILED CUSTOMER DESIGN

	Scale NTS @ A1	Project	Project DUBLIN CENTRAL BULK SUPPLY POINT PROJECT									
	Created on 27/03/2024 Sheets 1 of 1	Title	110 KV GIS PLAN LAYO	S PUT								
	Drawing Number CP1274-RPS-02-	-DW-XX-D-C-	0007	Status S3	Rev P01							

APPENDIX G: CABLE ARRANGEMENTS

Ordnance Survey Ireland Licence No. CYAL50252391 © Ordnance Survey Ireland/Government of Ireland

Drawing Number		Status	Rev
CP1273-RPS-01-	DW-XX-D-C-0009	S3	P01

APPENDIX H: HDD CROSSING

	Cor	mpound S	Site	Gra	ss Verge				M50 N	Notorway				Grass	s Verge / I	Footpat	h		Comm	nercial Area	
DATUM: -10.00m AOD																					
EXISTING GROUND LEVELS (m)		4.000	4.000 —	4.233 —	5.289 —	6.171 —	6.312 —	6.428 —	6.544 —	6.659 —	6.650 —	6.573 —	6.494 —	6.415 —	6.000	5.508	5.016 —	4.524 —	3.996 —	3.247 — 2.491 —	1.734 —
TOP OF DUCT LEVELS (m)	- 2.809	- 2.350 -	- 1.372 -	- 0.237 -	- 0.165 -	- 0.325 -	- 0.485 -	- 0.645 -	- 0.804	- 0.964	- 1.124	- 1.283 -	- 1.443 -	- 1.603 -	- 1.812 -	- 2.623 -	- 3.279	- 3.172	- 2.856 -	- 2.120 - - 1.384 -	- 0.649 -
COVER DEPTH / DIFFERENCE (m)	1.191	- 1.650	- 2.628	- 3.996	- 5.123 -	- 5.846	- 5.828	- 5.784	- 5.740	5.695	- 5.527 -	- 5.290	- 5.051 -	- 4.812	4.188	- 2.885 -	- 1.737	- 1.352 -	- 1.141	- 1.127 - 1.107	- 1.085 -
CHAINAGE (m)	00.0	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20.00	55.00	60.00	65.00	70.00	75.00	80.00	85.00	00.06	95.00	105.00

<u>CP1273 - PROFILE VIEW 01 (HDD)</u> Scale: Horiz. 1:250, Vert. 1:250 @ A1

LONG SECTION - Trenchless Crossing Trenchless Crossing / CP1273 (HDD)

 General Notes (i) Hard copies, dwf and pdf will form a controlled issue of the drawing. All other formats (dwg etc.) are deemed an uncontrolled issue and any work carried out based on these files is at the recipients own risk. RPS will not accept any responsibility for any errors from the use of these files, either by human error by the recipient, listing of the un-dimensioned measurements, 	(iii)	i) This drawing is the property of RPS, it is a project confidential classified document. It must not be copied used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.						
these files are used to aid the recipients drawing production, or setting out on site.	(iv)	Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others.	S3 P01	27/03/24	1 08 DC	ISSUE FOR REVIEW & COMMENT	¢ ^C	
(ii) DO NOT SCALE, use figured dimensions only.	(v)	All Levels refer to Ordnance Survey Datum, Malin Head.	Rev	Date	Oright	Amendment / Issue	Арр	

Client

TRENCHLESS CROSSING

Compound Boundary

220kV Tie-In to Finglas / Shellybanks

Proposed Pathway

Proposed Internal Road

Proposed Internal Fence

Proposed Working Area - Type 01

_0___0___

Proposed Working Area - Type 02

	Scale 1:1000 @ A1	Project	DUBLIN CENTR SUPPLY POINT	AL BULK PROJECT		
СОММ	Created on 27/03/2024	Title	TRENCHLESS CR	OSSING -		
	Sheets 1 of 1		Plan & Long S	ection		
	Drawing Number CP1273-RPS-01	-DW-NC-D-	-C-0010	Status S3	Rev P01	
	•					

APPENDIX I: CONDUCTOR DATASHEETS

Contract No).		Ref. No.		
User / Custo	omer		Page No.	: 1 of 5	
Project Title	e : 220k	V Cable & Accessories			
Contractor					
Document T	OkV AI 25	Specific For DOSQ / 24.5mm XLPE /	catio Al wire scree	n en shield C	Sable
Rev. No.	Date	Descriptions	Prepared By	Reviewed Bv	Approved By

Ref. No. Rev. No. : 0 Page No. : 2 of 5

1. Scope

This specification covers the construction, dimensions, packing and tests requirements of 220kV single core aluminum conductor, cross-linked polyethylene(XLPE) insulated, aluminum wire screened, laminated aluminum foil and black HDPE oversheathed power cable.

2. Reference standards

- IEC 60228 : Conductors of insulated cables
- IEC 62067 : Power cables with extruded insulation and their accessories for rated voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV) - Test methods and requirements

3. Construction and Material

Construction of the cable shall meet the requirements specified in the attached table and as follows.

3.1 Conductor

The conductor shall consist of Milliken construction from the aluminum wires in accordance with IEC 60228(class 2). The conductor shall be water sealed by additional water swellable tape(s) between the conductor strands.

3.2 Conductor binder

Semi-conducting tape(s) shall be applied between the conductor and the conductor screen.

3.3 Conductor screen

The conductor screen shall consist of an extruded layer of semi-conducting thermosetting compound.

3.4 Insulation

The insulation shall consist of an extruded layer of cross-linked polyethylene (XLPE) over the conductor screen. The minimum thickness at any point shall be not less than 90% of the nominal thickness specified in the attached table.

3.5 Insulation screen

Over the insulation, semi-conducting thermosetting compound shall be extruded as insulation screen and shall be firmly bonded to the insulation.

The conductor shield, insulation and insulation screen shall be extruded simultaneously by dry curing process

3.6 Longitudinal water barrier

Semi-conducting swellable tape(s) shall be applied over the insulation screen to prevent longitudinal water penetration.

3.7 Metallic screen

The metallic screen consisting of aluminum wires shall be helically applied with suitable lay length and a narrow aluminum tape shall be applied directly over the aluminum wires with suitable gap in an opposite layer of the aluminum wires.

Ref. No. Rev. No. : 0 Page No. : 3 of 5

3.8 Longitudinal water barrier

Semi-conducting swellable tape(s) shall be applied over the metallic screen with suitable overlap to prevent longitudinal water penetration.

3.9 Radial water barrier

The laminated aluminum foil shall be applied longitudinally over the semi-conducting swellable tape to prevent radial water penetration.

3.10 Oversheath

The oversheath shall be an extruded layer of black HDPE compound.

The minimum average thickness shall not be less than the nominal thickness specified in the attached table and the minimum thickness at any point shall not be less than 85% - 0.1mm of the nominal thickness specified in the attached table.

The semi-conducting layer (graphite coating) shall be applied over the oversheath to serve as an electrode for voltage test on the oversheath.

4. Cable Marking

The following description shall be embossed along two lines on the outer sheath throughout the entire length of the cable. The gap between the end of one set of embossed characters and the beginning of another shall not be greater than 150mm.

- 1) Electric Cable
- 2) Rated voltage, 220,000 Volts
- 3) Customer's name, ESB
- 4) Specification number, 18091
- 5) Conductor size, 2500 mm²
- 6) Designation, XLPE
- 7) Manufacturer's name,
- 8) Year of manufacture

Ex) Electric Cable 220,000Volts ESB 18091 (AI)2500 mm² XLPE Continuously increasing

meter marking shall be provided on the oversheath at an interval of 1 meter.

5. Sealing and Drumming

Immediately after the works tests, both ends of the cable length shall be sealed by means of metal cap and pulling eye fitted over the end. The complete cable shall be wound on non-returnable metallic drum. All cable drums shall be arranged to take a round spindle and lagged with closely fitting steel sheets.

6. Tests

The following tests shall be carried out at manufacturer's works according to the procedure of IEC 62067.

Ref. No. Rev. No. : 0 Page No. : 4 of 5

6.1 Routine Tests

- 1) A.C Voltage test
- 2) Partial discharge test
- 3) Electrical test on oversheath

6.2 Sample Tests

- 1) Conductor examination and check of dimensions
- 2) Measurement of electrical D.C. resistance of conductor
- 3) Hot set test on XLPE insulation
- 4) Measurement of capacitance

Ref. No. Rev. No. : 0 Page No. : 5 of 5

Attached Table

Characteristics & Cross-sectional drawing

No	Description	Unit	Particulars
0	Rated voltage	kV	220
1	Conductor		Aluminum wires
	- nominal cross- sectional area	mm²	2500
	- shape		Milliken
	- overall diameter of conductor(nom.)	mm	63.0
2	Conductor binder	-	Semi-conducting tape(s)
3	Conductor screen		Semi-conducting thermosetting compound
	- average thickness	mm	1.2
	- minimum thickness at any point	mm	0.8
4	Insulation		Cross-linked polyethylene(XLPE)
	- nominal thickness	mm	24.5
5	Insulation screen		Semi-conducting thermosetting compound
	- average thickness	mm	1.0
	- minimum thickness at any point	mm	0.8
6	Longitudinal water barrier	-	Semi-conducting water swellable tape(s)
7	Metallic screen		Aluminum wires
	- No. / dia. of wires	EA/mm	93 x 2.3
8	Longitudinal water barrier	-	Semi-conducting water swellable tape(s)
9	Radial water barrier	-	Aluminum laminated foil
	- nominal thickness	mm	0.35
10	Oversheath		Black HDPE compound with graphite coating
	- nominal thickness	mm	4.0
11	Overall diameter(approx.)	mm	136
12	Weight of cable(approx.)	kg/m	17.3
13	D.C. resistance of conductor at 20 $^\circ \!$	μF /km	0.0127
14	Electrostatic capacitance(nom.)	Ω/km	0.254

Scale : Not to scale

TECHNICAL SCHEDULE TS – 9

220 kV XLPE Land Cable – 2.500mm² Al XLPE **Physical Characteristics**

ltem	Query	Unit	Reply
1	Conductor:		
	(a) Material Grade		Aluminum
	(b) Type e.g. round, etc.		Compacted
	(c) Design e.g. stranded, segmental and enamelled		Segmental
	etc.		ocgnental
	(d) Nominal diameter	mm	63
	(e) Cross-sectional area	mm ²	2500
	(f) Method of water blocking		Swelling tape
2	Inner Semi-conducting Layer:		
	/ . 		
	(a) Material		Semi-conducting thermosetting compound
	(b) Nominal Thickness	mm	1.2(avg.)
2		mm	0.8
3	Insulation:		
	(a) Material Grade		YI DE
	(a) Material Grade	mm	
	(c) Minimum thickness		24.5
	(d) O vality of insulation < 10%	mm	$\leq 10\%$ (eccentricity)
4	Outer Semi-conducting Laver:	11111	
-			
	(a) Material Grade		Semi-conducting thermosetting compound
	(b) Nominal thickness	mm	1.0(avg.)
	(c) Minimum thickness	mm	0.8
5	Nominal diameter over core screen	mm	approx. 119.0
	Roundness of cable core ; maximum ovality < 0.9 mm	mm	≤ 2.0mm (Dmax – Dmin)
6	Radial thickness of insulation incl. semi-conducting		
	layers		
	(a) Nominal	mm	27.3
	(b) Minimum	mm	23.65
7	Bedding Layer/'Water Barrier		
	/ . 		
	(a) Material		Semi-conducting swellable tape
	(b) Thickness	mm	nom. 0.3
	(c) OD of bedding layer	mm	approx, 119.8
	(a) Method of electrical connection between 4 and 8		Semi-conducting swellable tape
0	(e) Method of Water blocking		Semi-conducting swellable tape
0	Metallic Sheath.		
	(a) Material		Aluminium
	(a) Material		N/A
	(c) Nominal thickness	mm	2.3(Diameter of wire)
	(d) Mean diameter	mm	approx 122.1
	(e) Cross-sectional area	mm ²	approx 386.4
	(f) Diameter over crest of corrugations	mm	N/A
	(g) OD of sheath if not corrugated	mm	Approx. 124.4
	(h) Diameter and no. of extra copper wires required to		
	ensure short circuit performance of cable meets		2.3 x 93(Aluminum wires)
	Specification 18080 (if needed)		· · · · · · · · · · · · · · · · · · ·
9	Outer MDPE/HDPE Sheath		
	(a) Material		HDPE
	(b) Nominal thickness	mm	4.0
	(c) Minimum thickness	mm	3.3
	(d) Shore D hardness		60
	(e) Shrinkage %		N/A
10	Nominal diameter of completed cable including	mm	approx, 136
	thickness of any conductive outer layer		
11	Conductive Outer Layer		
	(a) Matarial Crada		Oranhita acating
		mm	
	(b) mickiess Extruded Laver Surface registivity	KOhm/m	U.U I NI/A
	Extruded Layer Surface resistivity		IN/A

Note: All dimensions to be filled in where applicable.

	Graphite Layer Surface Resistivity Coefficient of static and dynamic friction of cable based on sidewall force equal to cable weight/m for straight line pull in HDPE pipe	KOhm/m	max. 150kΩ/m
	(a) for graphite layer		(Without Lub) 0.35
	(b) extruded outer conductive layer Coefficient of static and dynamic friction based on 5000N/m sidewall force in HDPE pipe		(Without Lub) 0.4
	(a) for graphite layer		(Without Lub) 0.35
	(b) for extruded outer conductive layer		(Without Lub) 0.4
12	(a) Normal length per drum	m	600
	(b) Maximum length per drum	m	1100
13	(a) Normal gross weight of loaded drum	kg	approx. 13,800
	(b) Maximum gross weight of loaded drum	kg	approx. 24,000
14	Maximum drum dimensions width/height	m/m	approx, 3.6 / 4.4
15	Minimum radius of bend around which cable can be pulled	kN	
	(a) Laid Direct	m	2.8
	(b) In ducts	m	2.8
	(c) Cable placed in position with former	m	2.5
	(d) Cable placed in position without former	m	2.8
16	Permissible pulling force allowed on conductors during installation	kN	98
17	Maximum permissible sidewall forces	kN	9.8 kN/m

 TECHNICAL SCHEDULE TS – 10

 220 kV XLPE Land Cable – 2.500mm² AI XLPE
 Electrical Characteristics

ltem	Query	Unit	Reply
1	Maximum AC/DC resistance of conductor at 20°C	Ω/km	DC : 0.0127
2	Maximum AC resistance of conductor at 90°C	Ω/km	0.0167
3	Minimum insulation resistance	MΩ/km	2100MΩ·km
4	Maximum phase inductance	mH/km	0.421
5	Maximum phase capacitance	µF/km	0.275
6	Maximum charging current per phase	A/km	11.0
7	Zero phase sequence impedance for 3-phase cable (R_0+jX_0)	Ω/km	0.10721+j0.06461
8	Maximum permissible continuous temperature of conductor/sheath	°C/°C	90/80
9	Maximum permissible continuous current rating when installed per Appendix A of specification for all bonding situations outlined there	A	1436.7A (For Summer) 1537.7A (For Winter)
10	Maximum AC/DC metallic sheath resistance (inclusive of any screen wires) at 20°C	Ω/km	0.07429
11	Losses: (a) Conductor losses per phase at current in item 9 (b) Dielectric losses per phase at U _O (c) Sheath loss per phase at current in item 9 (d) Total losses per phase	W/m W/m W/m W/m	At summer 34.464 1.28 0.443 36.188
12	Maximum/expected dielectric loss angle at ${\rm U}_{\rm O}$ and a conductor temperature of:		
	20°C 40°C 60°C Maximum operating temperature +5°C	% % %	0.1 0.08 0.07 0.05
13	Maximum/expected dielectric loss at 20°C and: 0.5 ${\rm U}_{\rm O}$	%	0.08

	1.0 U _o	%	0.1
	1.5 U _o	%	0.12
	2.0 U _o	%	0.15
14	Thermal resistance between conductor and metallic sheath	K m/W	0.376
15	Thermal resistivity of: Insulation and semi-conducting layers MDPE/HDPE Outer Sheath	K m/W K m/W	3.5 3.5
16	Design 1.2/50 µs impulse stress for 550kV at conductor/core screen	kV/mm	57.0 / 33.0
17	Design AC stress for U_o at conductor/core screen	kV/mm	6.9 / 4.0
18	Average design AC stress across insulation	kV/mm	5.2
19	Minimum 50% flashover voltage of sealing end for a 1.2/50mS wave (nominal), positive/negative	kV	1480(for outdoor sealing end)
20	Surface leakage distance of sealing end porcelain (outdoor). Minimum = 5,000mm	mm	Min. 8900 (In case of polymer insulator)
21	Relative permittivity of dielectric		2.5
22	Cable screening factor when cable is buried in ground with resistivity: 1,000 Ω m 100 Ω m		N/A N/A
23	Permissible Metallic Sheath(including any screen wires) fault current for the following fault duration times 0.1s 0.2s 0.5s 1.0s 3.0s	A A A A	Metallic screen(Aluminum wires) 122400 87300 56100 40400 24400
24	Permissible main conductor 1s short time fault current and corresponding conductor temperature	A/°C	230.3kA / 250'C
25	Permissible steady overload and conductor temperature for 0.5/1/2/4 hours, based on installation conditions in Appendix A, after prior continuous loading of:		
			0.5 / 1 / 2 / 4
	50% of current in Item 9	%	300 / 300 / 250 / 250
	75% of current in Item 9	%	300 / 260 / 208 / 179
		70	2191221/101/109
26	(a) Is the cable design fully in accordance with the specification?		Refer to Deviation Sheet
	(b) If not, list all deviations.		

We confirm that we have read and understand the requirements of Technical Schedules TS-9 and TS-10 and we confirm our tender is compliant with the clauses therein other than as detailed in our List of Deviations.

Name: Company: Position in Company: Date:

Contract N	lo. :		Ref. No.	: LSGS-20-PC	0570
Customer	: ESB		Page No.	: 1 of 5	
Project Title	e : Substat	tion framework 5-years	i		
Contractor	: LS Cab	le & System Ltd.			
Document	Title	Specifi Fo 220kv XLPE P	cation or ower cable		
0 Rev. No .	19. Nov. 2020 Date	For Bidding Descriptions	H. J. Kwak Prepared By	K. R. Ko Reviewed By	J. S. Kim Approved By

Ref. No. : LSGS-20-PC0570 Rev. No. : 0 Page No. : 2 of 5

1. Scope

This specification covers the construction, dimensions, packing and tests requirements of 220kV single core insulated copper conductor, cross-linked polyethylene(XLPE) insulated, aluminum wire screened, aluminum laminated foil and black HDPE oversheathed power cable.

2. Reference standards

- IEC 60228 : Conductors of insulated cables
- IEC 62067 : Test for power cables with extruded insulation and accessories for rated voltages above 150kV(Um=170kV) up to 500kV(Um= 550kV) – Test methods and requirement

3. Construction and material

Construction of the cable shall meet the requirements specified in the attached table and as follows.

3.1 Conductor

The conductor shall consist of Milliken construction from the plain annealed copper wires in accordance with IEC 60228(class 2) in which copper wires are insulated from each other.

The conductor shall be water sealed by additional water swellable tape(s) between the conductor strands.

3.2 Conductor binder

Semi-conducting tape(s) shall be applied between the conductor and the conductor screen.

3.3 Conductor screen

The semi-conductive screen over conductor shall consist of an extruded layer of semi-conducting thermosetting compound.

3.4 Insulation

The insulation shall consist of an extruded layer of cross-linked polyethylene (XLPE) over the conductor screen. The minimum thickness at any point shall not be less than the specified value in the attached table.

3.5 Insulation screen

Over the insulation, semi-conducting thermosetting compound shall be extruded as insulation screen and shall be firmly bonded to the insulation.

The conductor screen, insulation and insulation screen shall be extruded simultaneously by dry curing process.

3.6 Longitudinal water barrier

Semi-conducting swellable tape(s) shall be applied over the insulation screen to prevent longitudinal water penetration.

3.7 Metallic screen

The metallic screen consisting of the aluminum wires shall be helically applied with suitable lay length and a narrow aluminum tape shall be applied directly over the aluminum wires with suitable gap in an opposite layer of the aluminum wires.

Ref. No. : LSGS-20-PC0570 Rev. No. : 0 Page No. : 3 of 5

3.8 Longitudinal water barrier

Semi-conducting swellable tape(s) shall be applied over the metallic screen with suitable overlap to prevent longitudinal water penetration.

3.9 Radial water protection screen

The laminated aluminum foil shall be applied longitudinally over the longitudinal water barrier to prevent radial water penetration.

3.10 Oversheath

The oversheath shall be an extruded layer of black HDPE (ST7) compound. The average thickness shall not be less than the nominal thickness specified in the attached table and the minimum thickness at any point shall not be less than 85%-0.1mm of the nominal thickness specified in the attached table.

3.11 Conductive layer

Black semi-conducting PE compound(conductive layer) shall be extruded over the oversheath to serve as electrode for the voltage test on the oversheath.

4. Cable Marking

The following description shall be embossed on the oversheath throughout the entire length of the cable.

- 1) Electric Cable
- 2) Voltage
- 3) Client: ESB
- 4) Specification
- 5) Conductor size
- 6) Designation
- 7) Maker
- 8) Year of Manufacture

Ex) Electric Cable 220,000 Volts, ESB, 18091, 2500SQ, XLPE, LS Cable & System, 2020

Production batch number and continuously increasing meter marking shall be provided on the oversheath at an interval of 100 cm. They shall be distant from the cable marking 90°.

Ex) XXX 0001m

*Production batch number : XXX **Meter marking : 0001m

5. Sealing and Drumming

Immediately after the works tests, both ends of the cable length shall be sealed by means of metal cap, pulling eye fitted with soldering work over the end for storing for several months in the ground. The complete cable shall be wound on non-returnable metallic drum. All cable drums shall be arranged to take a round spindle and lagged with closely fitting steel sheets.

Ref. No. : LSGS-20-PC0570 Rev. No. : 0 Page No. : 4 of 5

6. Tests

The routine tests and sample tests shall be carried out at manufacturer's works according to the approved ITP.

Ref. No. : LSGS-20-PC0570 Rev. No. : 0 Page No. : 5 of 5

Attached Table

Characteristics & Cross-sectional drawing

Scale : Not to scale

No	Description	Unit	Particulars
0	Rated voltage	kV	220
1	Conductor		Insulated copper wires & Plain annealed copper wires
	- nominal cross- sectional area	mm²	2500
	- shape		Milliken
	- overall diameter of conductor(nom.)	mm	63.5
2	Conductor binder	-	Semi-conducting tape(s)
3	Conductor screen		Semi-conducting thermosetting compound
	- nominal thickness	mm	1.5
4	Insulation		Cross-linked polyethylene(XLPE)
	- nominal thickness	mm	20.0
	- minimum thickness at any point	mm	18.0
5	Insulation screen		Semi-conducting thermosetting compound
	- nominal thickness	mm	1.3
6	Longitudinal water barrier	-	Semi-conducting water swellable tape(s)
7	Metallic screen		Aluminum wires
	- diameter / no. of wires	mm x no.	2.3 x 93
8	Longitudinal water barrier	-	Semi-conducting water swellable tape(s)
9	Radial water protection screen	-	Aluminum laminated foil
10	Oversheath		Black HDPE compound
	- nominal thickness	mm	4.0
11	Conductive layer		Black semi-conducting PE compound
	- nominal thickness	mm	1.0
12	Overall diameter(approx.)	mm	128
13	Weight of cable(approx.)	kg/m	33.2
14	D.C. resistance of conductor at 20°C(max.)	Ω/km	0.0072
15	Electrostatic capacitance(nom.)	<i>μ</i> F /km	0.299