

Constraint Forecast Analysis Reports for Enduring Connection Policy (ECP) 2.5

Assumptions Document

Updated on 26/01/2026

The Oval, 160 Shelbourne Road, Ballsbridge, Dublin D04 FW28
Telephone: +353 1 677 1700 | www.eirgrid.ie

Contents

Contents	2
ABBREVIATIONS AND DEFINITIONS	4
1 Executive Summary	5
1.1 Total Dispatch Down	5
1.2 Analysis Process	6
1.3 Modelling Approach	7
1.4 Study Scenario Matrix	8
2 Assumption Inputs	9
2.1 Criteria	9
2.2 Breakdown	12
2.2.1 Generation	12
2.2.2 Generator Type for each Generation Scenario (IE)	12
2.2.3 Generator Type for each Generation Scenario (IE+NI)	12
2.2.4 Generator Type by Area for each Generation Scenario (IE+NI)	13
2.2.5 Interconnector Capacities	14
2.2.6 Network Reinforcements	15
2.2.7 Network Outages	17
3 Timelines	21
3.1 Overview	21
3.2 Details	21
4 Appendix	21
4.1 Draft Assumption Industry Webinar engagement 22.08.2025	21

Revision History						
Revision	Date	Description	Originator	Reviewer	Checker	Approver
RO	28.08.2025	Release of draft assumption for ECP 2.5	ECP Team	ECP Lead	ECP Senior Lead	Economic Analysis Manager
R1	01/10/2025	Figure 3: Added 3 Study Scenarios and 3 pro-rata studies as per Industry request Table 1 interim column updated were additional information available, this will be update again Table 3 update to rated export capacity of Celtic Update text to section 3.2	ECP Team	ECP Lead	ECP Senior Lead	Economic Analysis Manager
R2	23/01/2026	Table 1 updated with final assumptions. Generation summary Table 2 to Table 4 added. Interconnector Table 5 Celtic information updated. Table 6 Network reinforcements and table 7 network outage added.	ECP Team	ECP Lead	ECP Senior Lead	Economic Analysis Manager

COPYRIGHT © EirGrid

All rights reserved. No part of this work may be modified or reproduced or copied in any form or by means - graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of EirGrid

Disclaimer

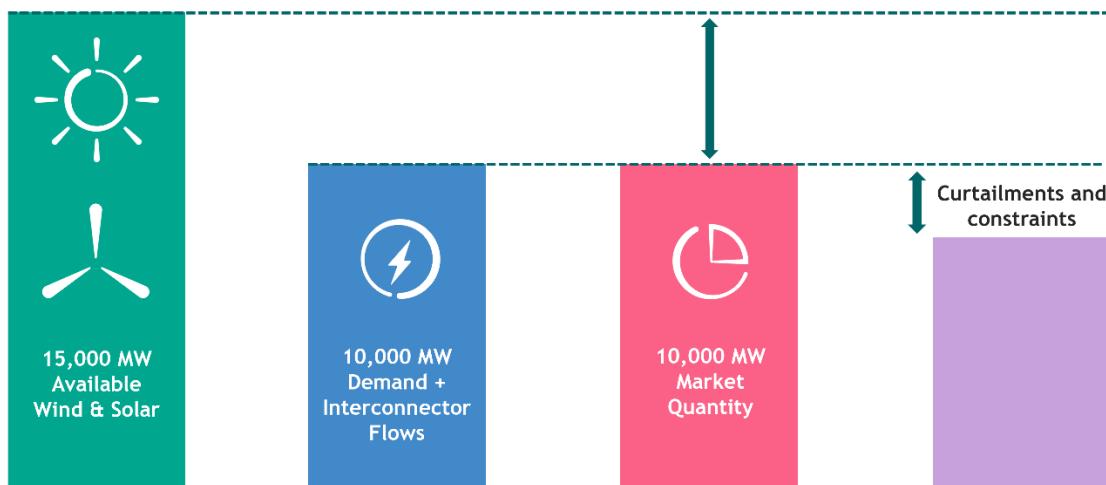
EirGrid has followed accepted industry practice in the collection and analysis of data available. While all reasonable care has been taken in the preparation of this data, EirGrid is not responsible for any loss that may be attributed to the use of this information. Prior to taking business decisions, interested parties are advised to seek separate and independent opinion in relation to the matters covered by this report and should not rely solely upon data and information contained herein. Information in this document does not amount to a recommendation in respect of any possible investment. This document does not purport to contain all the information that a prospective investor or participant in the Single Electricity Market may need.

For queries relating to the document or to request a copy contact: info@eirgrid.com

ABBREVIATIONS AND DEFINITIONS

BES	Battery Energy Storage
CRU	Commission for Regulation of Utilities
ECP	Enduring Connection Policy
ECP - GSS	Generation and System Services
GW	Giga watt
IC	Interconnector
IE	Ireland
NI	Northern Ireland
NDP	Network Delivery Portfolio
NRAA	National Resource Adequacy Assessment
NS	North South
ORESS	Offshore Renewable Energy Support Scheme
PD	Priority Dispatch
RE-HUB	Renewable Hubs
RES	Renewable Energy Sources
SEM	Single Electricity Market
SOEF	Shaping Our Electricity Future
TDD	Total Dispatch Down
TER	Total Electricity Requirement
TSO	Transmission System Operator
System Non-Synchronous Generation	There is a requirement to limit the instantaneous penetration of asynchronous generation connected to the All-Island system.
Operational Limit for Inertia	There is a requirement to have a minimum level of inertia on the All-Island system.
Minimum Sets	There is a requirement to have a minimum number of conventional generators in Ireland and Northern Ireland.
Reserve	The amount of spare capacity in the system to manage any system disturbance.
Future Grid	A future network scenario which includes reinforcement which are part of NDP and SOEF 1.1 but may not have capital approval.

1 Executive Summary


The Enduring Connection Policy (ECP) 2.5 is the fifth batch of connection offers planned under ECP-2 by the Commission for Regulation of Utilities (CRU) to facilitate opportunities for connections of Renewable Energy Sources (RES) on to the Irish electricity network. The decision on the 5th batch of connection application under the ECP 2 decision paper was cited in the Electricity Connection Policy - Generation and System Services (ECP-GSS) decision paper¹. As per the ECP-GSS decision paper the ECP-2.5 Constraints Analysis is carried out by the TSO as directed by CRU/20/060 decision² to forecast dispatch down levels for wind and solar projects. Upon completion of this constraint forecast analysis, EirGrid will publish 12 regional constraints reports, which provide developers with information on forecasted dispatch down levels in each region. While the progression offshore wind applications are considered separately from ECP process, EirGrid has included offshore-based study scenarios in the previous version of constraint forecast analysis. ECP-2.5 constraint forecast will include similar offshore sensitivities in line with the current offshore strategy.

Additional sensitivities are considered as a part of the ECP 2.5 constraint forecast depending on the industry feedback (see Section 2.2.6).

1.1 Total Dispatch Down

Total Dispatch Down (TDD) is the sum of Surplus, Curtailment, and Constraints, where:

- Surplus represents dispatch down applied for energy balancing when the available generation exceeds demand plus interconnector export.
- Curtailment represents dispatch down applied to ensure operational limits are met.
- Constraints represent dispatch down applied to manage localised congestion on the grid, whereby variable generator output is constrained to stay within overload limits of the transmission lines. This is applied at a nodal level.

Figure 1 Illustration of Surplus, Curtailment and Constraints in the SEM

¹ https://cruie-live-96ca64acab2247eca8a850a7e54b-5b34f62.divio-media.com/documents/CRU2034101_Electricity_Connection_Policy_Generation__System_Services_Decision_Paper.PDF

² <https://cruie-live-96ca64acab2247eca8a850a7e54b-5b34f62.divio-media.com/documents/CRU20060-ECP-2-Decision.pdf>

1.2 Analysis Process

The constraint forecast modelling will use PLEXOS software to model the generation, loads, transmission lines and operational constraints. Three studies will be run sequentially, as shown in the Figure 2, to simulate the dispatch down of RES generation at each stage. A post calculation methodology will be employed in the final stage to process the results according to the assumptions.

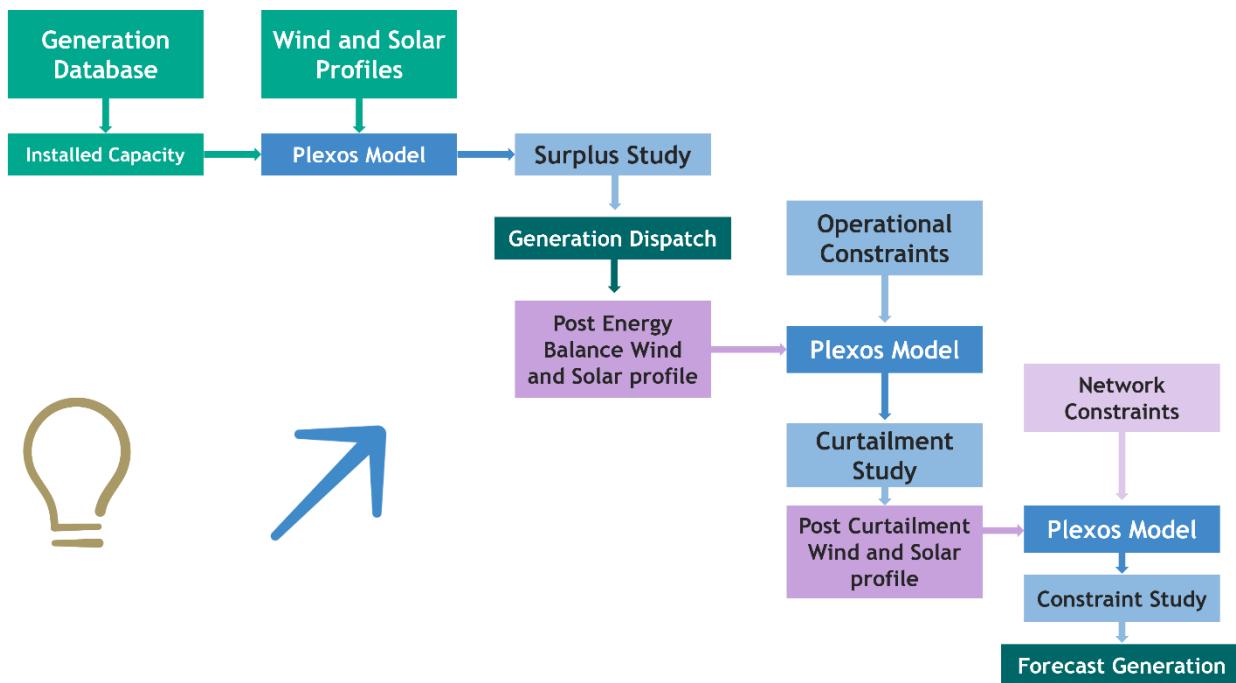


Figure 2 Process Flow Chart

1.3 Modelling Approach

The main modelling approach for each of the ECP-2.5 constraint forecast studies is outlined below.

Renewable generation is modelled at 110 kV stations:

A 110 kV station can have wind/solar Priority Dispatch (PD), non-Priority Dispatch (non-PD) or Uncontrolled generation connected to it.

Wind and solar hourly profiles are used to calculate RES generation within the model.

Batteries are modelled

Short-duration batteries (batteries with a storage duration of up to 2 hours) are modelled to supply reserve, and any residual short-duration batteries are used for energy arbitrage once the reserve requirements are met.

Other batteries (greater than 2hrs storage duration) are used within the model for energy arbitrage.

The cycling of these batteries is decided by PLEXOS's Battery Optimisation tool, which identifies the optimal charge and discharge times to maximise financial returns. Furthermore, a limit of maximum 2 cycle per day is applied to all batteries.

The batteries are modelled to have a round-trip efficiency of 81%.

Surplus

Applied if there is not enough demand or export capability to accommodate renewable generation. For each hour, non-PD renewable generators are initially dispatched down (applied pro-rata across the All-Island grid). If the surplus situation cannot be resolved by non-PD reduction alone, PD generators are then dispatched down. This method is termed as grandfathering.

Curtailment

Following dispatch down for surplus reasons, curtailment is applied to meet operational limits e.g. SNSP, Inertia, Min. Sets Rules, Generator Must Runs and Operating Reserve.

For each hour, the reduction in output due to curtailment is shared equally between PD and Non-PD renewable generators (applied pro-rata across the All-Island grid).

Constraints

Following curtailment, reduction in output due to generation constraint is applied to resolve localised transmission issues.

The model dispatches down by individual station to mathematically minimise the total renewable generation dispatch down. For annual energy, the results are then averaged across adjacent 110 kV stations.

In the grandfathering based approach, non-PD renewable generators are dispatched down first (applied pro-rata across renewable generators that are effective in managing a particular network limitation). If the constraint situation cannot be resolved by non-PD reduction alone, PD generators are then dispatched down.

In the pro-rata constraints approach, all priority and non-priority units are dispatched down on a pro-rata basis at relevant nodes to manage the network constraints.

1.4 Study Scenario Matrix

- The core ECP-2.5 study horizons are 2028, 2030 and Future Grid.
- The RES generation capacities in the initial study for 2028 include all renewable generation currently connected, plus all renewable generation expected to connect before the end of 2027.
- The 50% generation scenario is formulated by adding half of the difference between the initial study and ECP scenarios.
- The ECP generation scenario includes all the RES generation in the pipeline up to and including ECP-2.5 applicants (including ECP2.5.1 applicants) (some of whom may not have received offers at this point in time but are still considered within these studies).
- All studies will include a representative maintenance schedule. The maintenance sensitivity removes the representative maintenance schedule from the model and compares the results to the core ECP study (which includes the representative maintenance schedule).

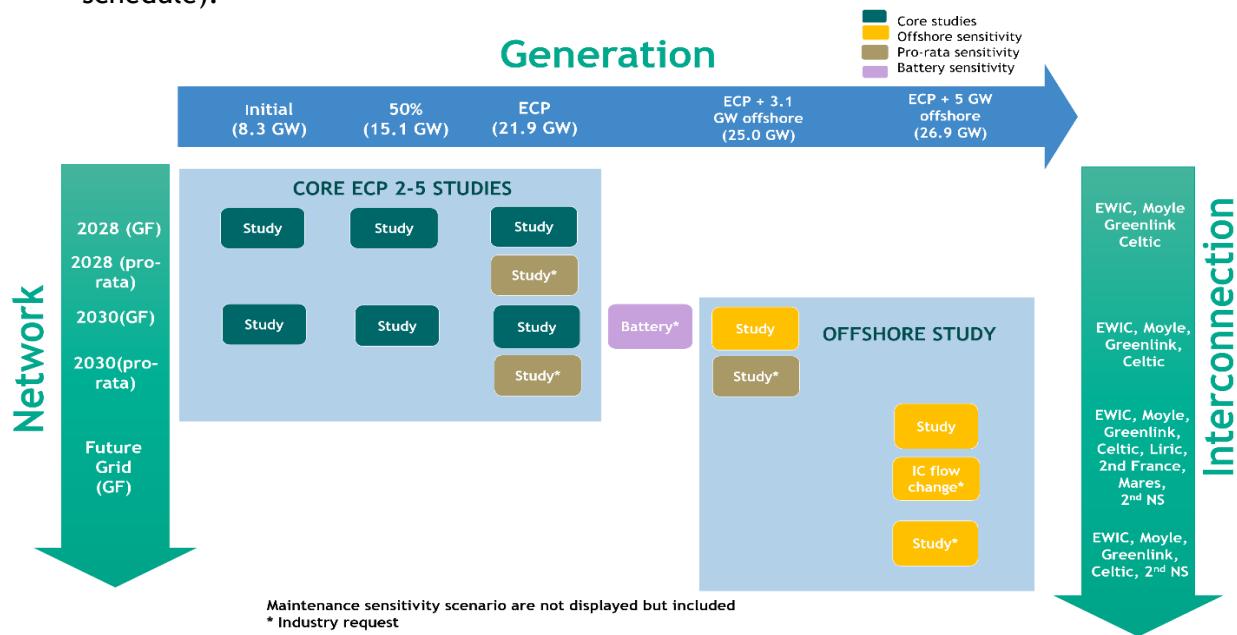


Figure 3: ECP-2.5 Study Scenarios

- The “ECP + 3.1 GW offshore” offshore sensitivity studies include a study with the ORESS 1 auction qualified offshore projects in addition to the ECP generation on 2030 network and Future Grid.
- The “ECP + 5 GW offshore” generation scenario is also included to align with the SOEF 1.1 offshore assumptions; this is based on a Future Grid network.

The study sensitivities in the future grid are presented as follows:

- ECP scenario 2028 (pro-rata) and 2030 (pro-rata) will have constraint allocation based on pro-rata.
- ECP + 3.1 GW offshore scenario for 2030 (pro-rata) will have constraint allocation based on pro-rata.
- 2030: ECP wo battery sensitivity has all installed wind and solar as of 2030 ECP scenario but without the non-connected batteries.
- ECP scenario + 5 GW offshore with “IC flow change” scenario will include an alternate flow profile for the interconnectors.
- ECP scenario + 5 GW offshore with interconnector sensitivity, i.e., without Mares, LirIC and 2nd France interconnector.

2 Assumption Inputs

2.1 Criteria

Outlined below in table all source of inputs and criteria.

Assumption for ECP2.5	Draft	Interim	Final
Study period	2028		
	2030		
	Future Grid as per SOEF	2035	
Core ECP-2.5 scenarios	2028 – Initial, 50%, and ECP scenario (constraint allocation based on grandfathering).		
	2030 – Initial, 50%, and ECP scenario (constraint allocation based on grandfathering).		
	2028 – ECP scenario (constraint allocation based on pro-rata).		
	2030 – ECP scenario (constraint allocation based on pro-rata).		
	2030 – ECP scenario + 3.1 GW offshore (constraint allocation based on pro-rata).		
	2030: ECP wo battery sensitivity – non connected batteries removed		
Sensitivities	2030 ECP + 3.1 GW offshore - offshore (constraint allocation based on grandfathering).		
	Future Grid + 5 GW offshore - offshore sensitivity study		
	Future Grid ECP scenario + 5 GW offshore with “IC flow change” with alternate flow profile for the interconnectors.		
	Future Grid ECP scenario + 5 GW offshore interconnector sensitivity, i.e., without Mares, LirIC and 2nd France interconnector.		
Northern Ireland	NI generation and network data to be added		NI generation and network updated as per SONI list
Demand	AIRAA 2026-2035		

Conventional Generation	AIRAA 2026-2035		
RES generation (Ireland)	The total generation capacity to be studied under ECP-2.5 and ECP-2.5.1 batch is 5.4 GW (1.2 GW battery, 0.6 GW gas, 2.6 GW solar and 1.0 GW onshore wind		The total generation capacity to be studied under ECP-2.5 and ECP-2.5.1 batch is 5.2 GW (1.1 GW battery, 0.6 GW gas, 2.6 GW solar and 0.9 GW onshore wind
	The total IE generation capacity (wind, solar and battery) considered in this study is 27.4 GW, including up to 5 GW of offshore wind in Ireland.		The total IE generation capacity (wind, solar and battery) considered in this study is 26.9 GW, including up to 5 GW of offshore wind in Ireland.
	The list of Priority and Non-priority units are to be updated with recent updates.		
	2028 – EWIC, Greenlink, Moyle		2028 – EWIC, Greenlink, Moyle, Celtic from Q2.
Interconnector	2030 – EWIC, Greenlink, Moyle, Celtic.		
	Future Grid – EWIC, Greenlink, Moyle, LirIC, Celtic, Mares, 2nd NS, 2nd France		
	Inertia 2028 – 23,000 MWs 2030 – 23,000 MWs Future Grid – 23,000 MWs		
	Minimum Sets (SEM) 2028 – 7 2030 – 3 Future Grid – 0	Minimum Sets (IE, NI) 2028 – 4,3 2030 – 2,1 2035 – 0,0	Minimum Sets (IE, NI) 2028 – 4,2 2030 – 2,1 2035 – 0,0
Operational Constraints	Reserve (IE, NI) POR /SOR/TOR I/TOR II	100% of LSI/LSO	500MW (700MW when Celtic is on)
	Non-Synchronous Generation 2028 – 85% 2030 – 95% Future Grid – 100%		
Outage assumptions (Transmission)	Using ECP 2.4 baseline additional updates to extend the period from 9 months to 12 months.		
Network developments	2028 and 2030: Network Delivery Portfolio Q2 2025		NDP Q3 2025
	Future Grid: SOEF 1.1 Roadmap and NDP		NDP Q4 2025

Interconnector Model	The price model for the IC's will be updated to reflect the regional price differentials currently observed in the SEM, GB and France Markets.		
	The flows will be fixed from the Surplus model for to be used in the Curtailment and Constraint model.		
Solar Profile	The solar profile for the three regions in Ireland – North, Middle and South – will use 2020 data procured from an external vendor.		
Onshore Wind Profile	Profiles from 2020. Each node using a representative profile from that area.		
Offshore Profile	Synthesised 2020 offshore profile (procured from an external vendor).		
BES Profile	Based on current offers and applications.		
	Used for maintaining reserve (POR, SOR, TOR1 & TOR2).		
	2 cycle per day limit.		
	Portion of the long duration storage to provide energy arbitrage		
RE-HUB	TBC		Not included
LCIS (Low Carbon Inertia Service)		Sync comp: 7,000MWs for IE and 4,000MWs for NI	
DLR (Dynamic Line Rating)		Up to 30% additional loading on transmission line.	
SDES (Short Duration Energy Storage)			Not included
LDES (Long Duration Energy Storage)			Not included
Hybrid Connections			Not included

Table 1 Assumption data

2.2 Breakdown

2.2.1 Generation

The following generator information is included:

- Generator Type for each Generation Scenario (IE)
- Generator Type for each Generation Scenario (IE+NI)
- Generator Type by Area for each Generation Scenario (IE+NI)

A full list of generators included in the study is published separately on the ECP constraint forecast webpage³.

2.2.2 Generator Type for each Generation Scenario (IE)

The table below shows existing and expected wind, wind offshore, solar and battery in Ireland, which were included in this analysis.

ECP-2.5 Breakdown of IE Generation Capacity (MW)						
Type	Initial Study	50% Study	ECP All Study	ECP without batteries	ECP +3.1 GW offshore	ECP + 5 GW offshore
Battery	1,018	2,724	4,429	1,018	4,429	4,429
Solar	1,757	5,535	9,312	9,312	9,312	9,312
Wind	5,483	6,827	8,172	8,172	8,172	8,172
Wind Offshore	25	25	25	25	3,099	5,025
Totals	8,284	15,111	21,938	18,527	25,012	26,938

Table 2: Generation Capacities for Ireland (IE)

2.2.3 Generator Type for each Generation Scenario (IE+NI)

The table below shows existing and expected wind, wind offshore, solar, wave, battery, and other technologies (other technologies include gas, diesel, biomass, biogas, CHP, LFG, and Anaerobic Digester (AD) plants) in both Ireland and Northern Ireland, which were included in this analysis.

Type	Initial (MW)	50% (MW)	ECP (MW)	ECP + 3.1 GW Offshore (MW)	ECP + 5 GW Offshore (MW)
Battery	1,218	3,369	5,519	5,519	5,519
Solar	1,913	5,802	9,692	9,692	9,692
Wave	-	5	10	10	10
Wind	6,908	8,550	10,193	10,193	10,514
Offshore wind	25	25	25	3,099	5,525
Other technologies	53	499	944	944	944
Total	10,118	18,250	26,383	29,457	32,204

Table 3: Generation Capacities for Ireland and Northern Ireland (IE+NI)

³ <https://www.eirgrid.ie/industry/customer-information/ecp-constraint-forecast-reports#ecp-2.5-constraint-reports-for-Solar-and-Wind>

2.2.4 Generator Type by Area for each Generation Scenario (IE+NI)

The table below shows existing and expected wind, wind offshore, solar, wave, battery, and other technologies (other technologies include gas, diesel, biomass, biogas, CHP, LFG, and Anaerobic Digester (AD) plants) in both Ireland and Northern Ireland in area wise, which were included in this analysis.

Type and Area	Initial (MW)	50% (MW)	ECP (MW)	ECP + 3.1 GW Offshore (MW)	ECP + 5 GW Offshore (MW)
Battery	1,218	3,369	5,519	5,519	5,519
A	3	78	153	153	153
B	23	254	486	486	486
C	263	406	549	549	549
D	-	15	30	30	30
E	40	210	380	380	380
G	170	267	365	365	365
H1	-	133	265	265	265
H2	25	362	699	699	699
I	178	285	391	391	391
J	316	656	996	996	996
K	-	58	115	115	115
NI	200	645	1,090	1090	1090
Solar	1,913	5,802	9,692	9,692	9,692
A	-	20	40	40	40
B	24	192	359	359	359
C	24	597	1171	1171	1171
D	4	151	297	297	297
E	144	352	559	559	559
F	22	39	55	55	55
G	221	554	887	887	887
H1	198	528	859	859	859
H2	409	873	1,338	1338	1338
I	110	304	498	498	498
J	499	1,730	2,962	2962	2962
K	103	195	286	286	286
NI	156	268	380	380	380
Wave	-	5	10	10	10
B	-	5	10	10	10
Wind	6,908	8,550	10,193	10,193	10,514
A	818	1,014	1,210	1,210	1,210
B	828	1,032	1,235	1,235	1,235
C	231	430	630	630	630
D	263	329	395	395	395
E	1,493	1,654	1,814	1,814	1,814

F	235	235	235	235	235
G	279	304	330	330	330
H1	554	652	750	750	750
H2	305	477	650	650	650
I	8	8	8	8	8
J	407	589	771	771	771
K	61	103	146	146	146
NI	1,425	1,723	2,021	2,021	2,342
Offshore wind	25	25	25	3,099	5,525
E	-	-	-	450	450
G	-	-	-		370
H2	25	25	25	25	1,203
I	-	-	-		378
J	-	-	-	2,624	2,624
NI	-	-	-	-	500
Other technologies	53	499	944	944	944
B	2	63	124	124	124
C	-	175	350	350	350
E	10	15	20	20	20
F	11	11	11	11	11
G	20	20	20	20	20
J	8	212	416	416	416
K	3	3	3	3	3
Grand Total	10,118	18,250	26,383	29,457	32,204

Table 4: Generation Capacities in area for Ireland and Northern Ireland (IE+NI)

2.2.5 Interconnector Capacities

Interconnector Capacity (MW)	Export/Import	2028	2030	Future Grid
Moyle	Export	400	500	500
	Import	450	500	500
EWIC	Export	500	500	500
	Import	500	500	500
Celtic	Export	700	700	700
	Import	700	700	700
Greenlink	Export	500	500	500
	Import	500	500	500
LirIC	Export	-	-	700
	Import	-	-	700
2 nd France-Ireland	Export	-	-	700
	Import	-	-	700

Table 5: Interconnector Export/Import Capacities

2.2.6 Network Reinforcements

Project Classification	Project Name	Year
Upate	Arva - Carrick-on-Shannon 110 kV line	2028
Upate	Bandon Dunmanway 110 kV circuit thermal capacity	2028
Upate	Bandon Raffeen 110 kV circuit thermal capacity	2028
Demand Connection	Belcamp Shellybanks 220 kV Cable	2028
New static device	Cashla - Dalton 110 kV circuit 1 (DLR)	2028
Upate	Cashla-Salthill 110 kV Thermal Upate	2028
Upate	Castlebar-Cloon 110 kV Line Upate-Refurb	2028
New static device	Cathaleens Fall - Coraclassy 110 kV circuit 1 (DLR)	2028
Upate	Coolnabacky - Portlaoise 110 kV line uprate	2028
Upate	Crane - Wexford 110 kV Line uprate	2028
New	Cross Shannon 400 kV Cable	2028
Upate	Dalton 110 kV Busbar	2028
Upate	Derryiron - Thornsberry 110 kV Line Upate	2028
New	Dunstown 400 kV Series Capacitor	2028
Upgrade	Flagford - Louth 220 kV Line Refurbishment	2028
Upate	Glenree - Moy 110 kV Line Upate	2028
Upate	Gorman - Platin 110 kV line uprate	2028
Upgrade	Killonan 220 kV Station Refurbishment	2028
Upate	Kinnegad 110 kV station, Derryiron 110 kV bay conductor	2028
Upate	Lanesboro - Mullingar 110 kV Thermal Upate	2028
Upate	Lanesboro - Sliabh Bawn 110 KV Line Upate	2028
New	Laois Kilkenny (Coolnabacky) 400 kV Station - New Station & Associated Lines & Station Works	2028
Upate	Midleton 110kV Transformer Upate and Station works DSO	2028
New	Moneypoint 400 kV Series Capacitor	2028
New	Mooretown 220 kV Station	2028
Replacement	New Ballyvouskill 220-110 kV Transformer	2028
Upate	Newbridge - Cushaling 110 kV line, Stations Bay conductors and lead-in conductor uprate	2028
Upate	Newbridge - Portlaoise 110 kV Line uprate	2028
New	North Connacht 110 kV Project	2028
New	Oldstreet-Woodland 400 kV Series Capacitor	2028
Replacement	Prospect Tarbert 220 kV Cable Replacement Project	2028
Upate	Sligo 110 kV Station - Shrananagh 1 & 2 Bay uprates	2028
Upate	Ardnacrusha Drumline 110kV thermal capacity needs	2030

New static device	Ardnacrusha Ennis 110kV circuit DLR and related works	2030
Uprate	Athlone - Lanesboro 110 kV line uprate	2030
Uprate	Athy - Carlow 110 kV circuit 1	2030
New static device	Baroda - Monread 110 kV circuit 1 (DLR)	2030
New static device	Baroda - Newbridge 110 kV circuit 1 (DLR)	2030
Uprate	Barrymore Cahir Knockraha 110kV Line Uprate	2030
New	Binbane - Clogher - Cathaleens Fall - 110 kV Clogher tie in	2030
Uprate	Blundelstown Mullingar 110 kV Line Uprate	2030
Uprate	Carlow 110 kV Station Busbar Thermal Capacity Need	2030
Uprate	Cashla-Galway 110 kV cct 2 Uprating	2030
Uprate	Cashla-Galway 110 kV cct 3 Uprating	2030
Uprate	Cashla-Galway 110 kV cot 1 Line uprate	2030
Uprate	Castlebar Dalton 110kV Thermal Capacity Increase	2030
Uprate	Cushaling - Newbridge 110 kV Thermal Upate	2030
Uprate	Cushaling - Portlaoise 110 kV line uprate	2030
Uprate	Derryiron-Timahoe-Maynooth 110 kV Line Uprate	2030
Uprate	Drumkeen - Clogher 110 kV circuit 1	2030
New static device	Drumline Ennis 110kV circuit DLR and related works	2030
Uprate	East Meath - North Dublin Reinforcement	2030
Replacement	Finglas - North Wall Cable Replacement	2030
Uprate	Galway - Salthill Thermal Capacity Need	2030
New	Glenart 220 kV Station (Pollahoney Autoproducer)	2030
Uprate	Gorman - Maynooth 220 kV Circuit Capacity Needs	2030
Uprate	Great Island - Kellis 220 kV Line Uprate	2030
Uprate	Great Island 220-110 kV transformer upgrades	2030
Replacement	Inchicore - Poolbeg 1 220 kV Cable Replacement	2030
New	Kildare Meath	2030
Uprate	Killonan - Limerick No 1 110 kV Upate	2030
Uprate	Letterkenny station redevelopment	2030
Uprate	Limerick - Rathkeale Line Uprate	2030
Uprate	Lisdrum 110kV Station Busbar Thermal Capacity Need	2030
New static device	Lisdrum Louth 110 kV DLR project	2030
New static device	Louth - Meath Hill 110 kV DLR	2030
Uprate	Louth - Woodland 220 kV Upate	2030
Uprate	Maynooth - Rinawade 110V line uprate	2030
Uprate	Meath Hill 110kV Station Busbar Thermal Capacity Need	2030

New	Peamount 110 kV Station (Bulmer RICE)	2030
Replacement	Poolbeg - North Wall 220 kV Cable Replacement	2030
New static device	Ratrussan - Shankill 110 kV Dynamic Line Rating	2030
Upate	Rinawade - Dunfirth Tee - Kinnegad 110 kV Circuit Thermal Capacity	2030
Upate	Arklow - Ballybeg - Carrickmines 110 kV capacity Needs	Future grid
Upate	Arklow Lodgewood Line Upate	Future grid
Upate	Blake Maynooth Newbridge Upate	Future grid
Replacement	Carrickmines - Poolbeg 220 kV Cable Replacement	Future grid
New	Donegal - Srananagh Corridor	Future grid
Upate	Drumline 110 kV Station Busbar Thermal Upate	Future grid
New	Dublin Central Bulk Supply Point 220kV Substation	Future grid
New	Fingal to East Meath Grid Reinforcement	Future grid
New static device	Great Island - Waterford 110 kV (DLR)	Future grid
Replacement	Inchicore - Poolbeg 2 220 kV Cable Replacement	Future grid
New	Kildare Dublin Grid Reinforcement	Future grid
Upate	Kilteel - Maynooth 110 kV	Future grid
Upate	Lodgewood-Great Island line	Future grid
Upate	Maynooth 220 kV Station Reconfiguration	Future grid
New	New Lodgewood 220-110 kV Transformer	Future grid
New	North South 400 kV Interconnector - Rol	Future grid
Up voltage	Flagford Sligo Capacity Needs	Future grid

Table 6: Network Reinforcements

2.2.7 Network Outages

Child Object	Time slice	Category
Ballylumford Kells 275 NI	M8	NI
Coleraine Coolkeeragh 110 NI	M8	NI
Kells_110_81520_KEL_275_1	M5	NI
Tandragee 110 275 ckt 2 NI	M7	NI
Aghada - Glanagow_220_1	M4	IE
Aghada - Raffeen_220_1	M6	IE
Arklow - Carrickmines_220_1	M3	IE
Arva - Carrick on Shannon_110_1	M8	IE
Balruntagh - Navan_110_1	M5	IE

Arva - Shankill_110_1	M7	IE
Carlow - Kellis_110_1	M3	IE
Carrick on Shannon - Flagford_110_1	M9	IE
Carrickmines - Dunstown_220_1	M9	IE
Carrickmines - Irishtown_220_1	M10	IE
Carrickmines - Poolbeg_220_1	M5	IE
Carraigadrohid - Kilbarry_110_1	M11	IE
Cashla - Cloon_110_1	M3	IE
Cashla - Flagford_220_1	M11	IE
Cashla - Galway_110_1	M6	IE
Cashla - Prospect_220_1	M4	IE
Castlebagot - Maynooth 220_1	M10	IE
Castlebar - Cloon_110_1	M5	IE
Cathaleen's Fall - Srananagh_110_1	M10	IE
Clashavoon - Knockraha_220_1	M8	IE
Clashavoon - Macroom_110_1	M5	IE
Rabbitpark - Lanesboro110_1	M4	IE
Coolnabacky - Moneypoint_380_1	M4	IE
Corduff - Cruiserath 220 1	M11	IE
Corduff - Ryebrook_110_1	M8	IE
Corduff - Woodland_220_1	M7	IE
Cullenagh - Great Island_220_1	M5	IE
Cullenagh - Knockraha_220_1	M9	IE
Cullenagh - Waterford_110_1	M3	IE
Phillipstown - Portlaoise_110_1	M3	IE
Derryiron - Kinnegad_110_1	M4	IE
Drybridge - Gorman_110_1	M4	IE
Drybridge - Louth_110_1	M5	IE
Dunstown - Kellis_220_1	M8	IE
Dunstown - Maynooth_b_220_2	M9	IE
Flagford - Louth_220_1	M3	IE
Sligo - Srananagh_110_1	M6	IE
Flagford - Srananagh_220_1	M4	IE
Glanagow - Raffeen_220_1	M7	IE
Gorman - Louth_220_1	M10	IE
Arodstown - Maynooth_220_1	M4	IE

Gorman - Navan_110_1	M9	IE
Garballagh - Gorman_110_1	M6	IE
Great Island - Kellis_220_1	M6	IE
Great Island - Lodgewood_220_1	M7	IE
Great Island - Waterford_110_1	M9	IE
Inchicore - Poolbeg_220_1	M11	IE
Killonan - Kilpaddoge_220_1	M10	IE
Killonan - Knockraha_220_1	M11	IE
Killonan - Limerick_110_1	M4	IE
Killonan - Shannonbridge_220_1	M9	IE
Pollagh - Tralee_110_1	M11	IE
Kilpaddoge - Tarbert_220_1	M3	IE
Pollagh - Tralee_110_1	M11	IE
Knockraha - Raffeen_220_1	M8	IE
Maynooth - Blake-T_110_1	M5	IE
Castlelost - Maynooth_220_1	M10	IE
Bracklone - Portlaoise_110_1	M7	IE
Oldstreet - Woodland_380_1	M6	IE
Prospect - Tarbert_220_1	M3	IE
Raffeen - Trabeg_110_1	M7	IE
Sligo - Srananagh_110_1	M10	IE
Eastwood - Ikerrin-T_110_1	M6	IE
Arklow T2102	M9	Transformer
Carrickmines T2101	M8	Transformer
Carrickmines T2102	M11	Transformer
Cashla T2101	M9	Transformer
Castlebagot T2101	M4	Transformer
Clashavoon T2102	M3	Transformer
Cullenagh T2101	M4	Transformer
Dunstown T4201	M5	Transformer
Dunstown T4202	M11	Transformer
Finglas T2101	M6	Transformer
Flagford T2101	M5	Transformer
Inchicore T2101	M7	Transformer
Killonan T2104	M8	Transformer
Kilpaddoge T2101	M7	Transformer

Knockraha T2101	M6	Transformer
Knockraha T2102	M10	Transformer
Louth T2101	M8	Transformer
Moneypoint T4202	M10	Transformer
Woodland T4201	M7	Transformer
Cathaleen's Fall - Clogher_110_1	M12	IE
Bandon - Raffeen_110_1	M12	IE
Kellystown - Maynooth 220_1	M12	IE
Butlerstown - Kilotran_110_1	M12	IE
Oldbridge - Platin_110_1	M12	IE
Portlaoise - Philipstown_110_1	M12	IE
Crane - Wexford_110_1	M12	IE
Knockanure T2101	M12	IE
Louth - Meath Hill_110_1	M1	IE
Northwall - Poolbeg_220_1	M1	IE
Lodgewood - Crane_110_1	M1	IE
Knockraha - Kilbarry_110_1	M1	IE
Cushaling - Newbridge_110_1	M1	IE
Galway - Salthill_110_1	M1	IE
Charleville - Killonan_110_1	M2	IE
Athy - Port Laoise_110_1	M2	IE
Garballagh - Platin_110_1	M2	IE
Cahir - Tipperary_110_1	M2	IE
Arklow - Lodgewood_220_1	M2	IE
Clashavoon - Clonkeen_110_1	M2	IE
Corduff T2101	M2	IE

Table 7: Network outages

3 Timelines

Live document will be updated throughout ECP-2.5 cycle as per timeline below.

3.1 Overview

3.2 Details

- Industry stakeholder engagement meeting - 22.08.2025 **Completed**
- Submit study scenario for consideration - 05.09.2025 **Completed**
- Industry stakeholder engagement meeting - 19.09.2025 **Completed**
- **Assumption document to be updated- 07.10.2025 Completed**
- Webinar - 23.01.2026 **Completed**
- **Assumption document to be updated- 26.01.2026**
- Publication of Results - TBC
- Closing date to submit queries - TBC pending Publication
- Closing date to respond to queries - TBC pending Publication

4 Appendix

4.1 Draft Assumption Industry Webinar engagement 22.08.2025

<https://cms.eirgrid.ie/sites/default/files/publications/ECP-2.5-Industry-Draft-Assumptions-Presentation-slides.pdf>

4.2 Summary of Initial Draft Results Webinar engagement 23.01.2026

<https://cms.eirgrid.ie/sites/default/files/publications/Constraints-Forecast-for-ECP2-5-Initial-Draft-Results-Summary.pdf>