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Abstract - Following the 2020 targets for CO2 reduction and the subsequent large planned 

RES deployment in Europe, there is evidence that the present HV Grid is not sufficient to cope 

with the new future environment. Therefore, TSOs are thoroughly investigating Grid 

Transmission needs for the future. Nowadays, a large variety of Transmission Technoloies 

(TT) are available on the market with different capital and operating costs. The location of 

many of the RES and the increase of environmental sensitivity is obliging TSOs to  

considering often and often the undergrounding option using HVAC or HVDC cable 

technology to allow for the Grid upgrading. 

Because of the aggressive 2020 targets, 40% of RES energy by 2020 and the consequence of 

large amount of RES, about 5000 MW of wind, coupled with their remote location and the 

weaknesses of the existing network, Eirgrid, the Irish TSO, is trying to conceive a 

comprehensive methodology for the Grid Expansion planning aiming at identifying the most 

efficient, reliable and cost effective development strategy of the network in the long term. 

 

The paper describes the implementation of an extensive EMT power system analysis in the 

Grid Planning department aiming at investigating any low frequency transient issue that can 

put system at risk. In particular Transmission Technology Alternatives EMT performances is 

the focus of the analysis.  

It is shown how in the planning process the EMT investigation can provide technical insights 

that are still fundamental for the decision of infrastructure investment.  

Some examples are considered, where the EMT technical performances of the best 

alternatives are compared . 
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

1. Generals 

With a 40% RES penetration to be fulfilled by 2020 Republic of Ireland and Northern Ireland 

(ROI and NI, All Island, AI) are facing a huge challenge in order to make this strategy to 

happen. Indeed the 5 GW request of connection onshore, especially for wind, and offshore 

wind, are at a level that allow the target to be covered; however, If NI transmission grid is a 

strong double circuit 275 kV Grid, this is not the case for ROI, with a meshed 220 kV, and a 



radial 400 kV East-West. Moreover, the integrations of the two jurisdictions is also weak, 

with only one double circuit 220 kV lines and about 400 MW of Net Transfer Capacity 

(NTC); congestions are expected in the future has the wind beahvior and distribution may 

dictate frequent North-South transfers. 

Because wind resources location, mostly on the West Coast, is far from the main load 

consumptions in the East and South, a considerable Long Term grid development plan is 

currently in progress, [1].  

On the other end, Offshore wind developer have asked consensus in Irish territorial water and 

are willing to either increase or request further connection to the Irish Transmission System 

(ITS).  Eirgrid has therefore further investigated potentials and advantages to optimize 

infrastructure investment to both fulfill onshore/offshore request as well as better integrate the 

two AI jurisdiction together and with the British and European markets, towards a 2030 

horizon year.  

 

Among the focuses are the understanding the future backbone voltage level, the grid structure, 

the transmission technology and the best long term dynamic expansion strategy to deploy 

RES connection request as well as integrate the isle of Ireland with neighbouring countries 

[2].  Eirgrid assumption for onshore grid developments is to consider the OHL based strategy; 

however, environmental sensitivity in many Irish countryside compels to investigate 

mitigations measures to make the projects to be delivered. Undergrounding is among the 

second best alternatives which finds better acceptance.  

 

2. Introduction 


The paper describes the generalities of the Long Term Planning (LTP) approach to fulfill a 

comprehensive design of a future grid; it focuses on the EMT studies which have been 

incorporated at the end of the technical/economical investigations. 

A Case of study is shown, starting from a potential Grid structure Expansion Solution (GES) 

towards 2030, based on 5GW + 5GW wind deployment onshore/offshore respectively 

thoroughly described in [2]. The GES is submitted to an ATP-EMTP analysis to investigate 

whether they are technically feasible in some switching operational performances. In 

particular TOVs are of major concerns at this stage as they can generate overvoltages that 

jeopardize system reliability on a large extension of the transmission system. Mitigation are 

discussed in terms of options which may include the change to a second best economic 

planning solution.  



3. The Proposed Long Term Planning (LTP) methodology 


With reference to fig.1, the proposed LTP methodology is shown. A first screening among all 

possible Alternatives is performed providing incremental GES y1, y2 .. y3. This analysis is 

based on a linear Load Flow (DCLF) approach. 

They are first all submitted to two steady refinement; reliability analysis where possible extra 

reinforcements are introduced and AC load-flow calculations. At this stage possible extra 

Compensation is located and a short-circuit analysis is performed to verify the compliance of 

the future grid with present Transmission Planning Criteria (TPC).

 

Following a Transient Stability calculation, an EMT study is performed with the main 

purpose of evaluating whether the GES withstands some operational switching procedures. In 

particular the analysis concentrates on low frequency resonances phenomena which may be 

triggered by transients following some switching procedure.  
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This is of particular concerns because the 

phenomena: 

 

a) has an high energy contents 

b) may not be mitigated or mitigation may not be 

cost effective by traditional devices, i.e. surge 

arresters, pre-insertion resistors, harmonic filters 

c) may be disruptive on long distances, i.e. 300-400 

km 

d) may be due to the proposed specific transmission 

technology 

 

Fig.1. Proposed LTP for future Grid design

  

4. The EMT analysis using ATP-EMTP 

 
To perform such investigation Eirgrid Technology & Standards proposed the ATP-EMTP 

code [], which is already in use in the Operation Department. Because of the focus of the 

analysis it has been proposed to represent the ITS 400/220 kV system thoroughly into detail. 

This may be necessary to investigate TOVs propagation area, should any resonance occurs. 

 

4.1.  Resonance phenomena 

 
The resonance phenomenum has always attracted attention to the Power system planner 

because of its unpredictable occurrances and the corresponding system outage it can produce. 

Moreover, cascading events may also be triggered in, causing the outage to extend to a large 

part of the system. Two possibility can be singled out, a parallel resonance and a series 

resonance.  

4.1.1 Parallel 

 
Parallel resonance may occur when energy stored into the system inductance encounters 

favourable conditions to exchange with the grid capacitances, see fig. 6.  

 

4.1.2 Series 

 

 

4.2. Modelling set-up 

 
The focus of the analysis is the low frequency resonance and therefore it may be expected a 

propagation over long distances in particular in case of parallel resonance. This is a 

consequence of the lower dumping losses, which are voltage dependant, i.e. skin effect, iron 

core transformer losses, and the energy exchanges between capacitance and inductances. 

 

That said, an ATP-EMTP circuit of the 400/220 kV grid of the All Island Transmission 

System (AITS) has been implemented, see fig.2a.  
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d) 400/220 kV Transformer Model 

 

 

 
 

 

e) submarine cable model   f) underground cable model 
 

Fig.2. ATP modelling set up 

 

In figg. b, c and d model components are also shown according to ATPDRAW representation; 

in particular: 

 

1. 400 and 220 kV Overhead lines have been modelled using the J-marti frequency 

dependent option in the frequency range 0-500 kHz. 

2. Transformers have been modelled using BCTRAN option. In the area of investigation, 

the model has also been considered with the relevant magnetising characteristics.  

3. Cables have been modelled using the Cable Parmeters (CP) constant frequency option, 

using 250 Hz has tuning frequency. Has shown in fig. 2e,f, submarine cable has been 

considered as one sections with sheath solid bonded connected, whereas for 

underground cable a cross-bonded shetah connection have been considered with 

relevant minor/major cross-bonded sections.  
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4.3. Frequency Scan (FS) and Time Domain (TD) simulations 
 

An extensive N and N-1 contingency, frequency scan is performed in order to identify critical 

areas/grid assets. In particular the following criteria have been used to single out for each 

busbar the worst case scenario: 

 

1) lowest resonance frequency 

2) corresponding impedance module at that frequency   

 

At present, FS calculations have been perfomed using an alternative tool, IPSA-Power []; 

suitable additionals scripts allows the automatisation of topology and current injections 

changes, as well as the store of the results. Investigation are currently in progress to 

implement the same methodology using ATP-EMTP. 

 

Frequency Scan analysis allows to singled out, grid assets that may be prone to trigger low 

frequency resonances. These scenarios have to be submitted to a Time Domain (TD) 

simulation, where evidence of TOVs existence is given. In particular, TOVs is quantified and 

compared with IEC standards with the purpose of: 

 

1. verify the withstand of existing grid components   

2. identify suitable requirements for new components 

3. indetify field test parameter for new components  

 

Should IEC standrads limits be exceeded, the TDS can also be used to identify mitigation 

measures like: 

 

1. additional protection device, i.e. surge arresters, pre-insertion resistors, synchronised 

switching 

2. additional filtering device to detune the grid asset 

3. change in the transmission technology to detune the grid asset 

  

5. A Case of Study: an AI GES to 2030. 


The described methodology have been applied to a potential development of the AITS to 

2030. Using and 'ad hoc' Expansion Planning tool developed by Eirgrid in Cooperation with 

Ricerca sul Sistema Energetico (RSE) Italy, an offshore grid study have been performed and 

is thoroughly described in []. An onshore/offshore wind deployment of 5+5 GW has been 

assumed according to the GATE 3 process results, and information from National Offshore 

Wind (NOW) association for future offshore installation. 

 

A number of GES has been obtained, also in intermediate steps, as a result of a analysis which 

optimise Operation and Investment costs, by using a DCLF approach.  

Following, an AC analysis have been considered in order to investigate the need and location 

of var supports. With reference to fig.3, GES for 2015, 2020 and 2030 are shown. 

The onshore grid is assumed to be reinforced using OHL technology; for offshore connection 

both AC and DC technology have been allowed for connection. Selection have been 

performed by the Optimisation process.     



 
           a) 2015   b) 2020         c) 2030 

Fig.3. Grid Expansion Solution(GES) to 2030 

 

.With reference to Figg.3, in early stages, only radial connection are considered for offshore 

wind, whereas some 400 kV reinforcements have been selected onshore, South east and 

North. More interconnections is then selected towards England following increase in Wind 

deployment onshore (up to 2020) and offshore.  

By 2030, a meshed Offshore Grid id obtained, meshing the AITS on the East Cost, using AC 

technology. Moreover, an Offshore DC is also selected from the Offshore space to further 

interconnect the country using VSC technology. This latter solution is an example of how 

synergies can be exploited between Interconnections and Wind farm connections. 

 

5.1. Results 

 
An extensive FS analysis have been performed in N and N-1 conditions on the previously 

describe GES. Following, some scenarios have been selected to investigate whether any 

potential TOVs, in some switching operation occurr.  

 

5.2. Frequency Scan 
 

With reference to fig.4, the FS results are shown both for N and N-1 (worst case) conditions. 

                     
a)  Impedance Module                                               b) Natural System Frequency (NSF)  

 

Fig.4. FS results for Grid Expansion Solution(GES) to 2030 
 

From fig. 4b, it is possible to identify areas with the same beahavior in terms of NSF; in 
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particular, in Area A, NSF tend to decrease as a consequence of increase amount of 

Capacitances installed in the area, submarine cables and SVC for LCC technology.  

 

5.2.1 Criterium for Worst Cases (WC) screening 

Area A 

 
 

With reference to fig.5, all the nodes show a low 

NSF, except Dunstown in 2015, (out of scale).  

Initially, 2015 they also show high impedance 

module which make all scenarios at risk. 

In 2030 all nodes are in low NSF but alsoin  low IM, 

so no scenarios are at risk. This is due to the 

prevailing effect of network reinforcements to the 

increase capacitance (East Offshore Grid AC). 

 
Fig.5. Area A NSF vs. Ohm 

Area B 

With reference to fig.10, the NSF behaviour is the 

following for the nodes; Cavan shows a lowering of 

NSF but with a contemporary lowering of the IM, 

which keeps a safe combination parameters. 

ISLE offshore and Coleraine in NI and Offshore 

Scotland are at risk over trhe entire period of 

analysis, with a low NSF, below 100 Hz and an high 

IM, above 500 Ohm. This is due to the use of AC 

offshore cables combined with a radial structure of 

the grid. 

All the other nodes are confined in a low NSF/low 

IM area which make them not at risk during the 

system development.   

Fig.6. Area B NSF vs. Ohm 

Area C 

 

With reference to fig.7, different dynamic behaviour 

can be singled out in 2015-2030 GES: 

The Offshore development in Scotland, Argyll and 

Isle, connected to NI, shows potential risk all over 

the period with NSF as low as 300 Hz and IM 

between 800 and 1200 Ohms. 

The North Kerry, Moneypoint Area moving towards 

lower NSF it is not at risk because of the low IM; 

however temporary high IM in N-1 conditions are 

shown in some scenarios that require TD 

simulations. 

 

Fig.7. Area C NSF vs. Ohm 
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With reference to fig.12, the D grouping shows a 

starting point of potential risk, orange area, moving 

to a risk asset with low NSF and high IM, 900 Ohm 

and than evolving to a safer grid arrangement. 

The final stage is due to the large offshore meshed 

GES, cfr fig.16, a and b. 

 

Fig.12. Area D NSF vs. Ohm 

Area E 

 

With reference to fig.13, none of the nodes shows 

particular critical conditions, in particular because 

IM is kept low over the GEX 2015-2030.  

Because of the relatively low NSF, 200 Hz, an early 

stage TD is suggested 

 

 

 

Fig.13. Area E NSF vs. Ohm 

Area F 

With reference to fig.14, none of the nodes shows 

particular critical conditions, in particular because 

NSF is kept above 500 Hz over the GEX 2015-2030.  

Because of the high IM, some 2000-3000 Ohm, 

some TDs are suggested for Flagford and Cahir 380 

kV. 

 

Fig.14. Area E NSF vs. Ohm 

Area G 

With reference to fig.15, none of the nodes shows 

particular critical conditions; both NSF and IM put 

grid assets out of potential risks for resonances and 

TOVs over the GEX 2015-2030.  

 

 

 

Fig.15. Area E NSF vs. Ohm 
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Fig.16. Evolution of critical areas for Resonance phenomena 
 

5.3 Example:North-Kerry reinforcement 

 
One of the areas that can be critical, according to fig.16a is area C, in North-Kerry. 

The area is submitted to some development projects, aiming at solving congestions, 

using an extra interconnection between Moneypoint power station and Knocanurha 

This is also higlighted below in the ATP model, fig.17. 

 

The link foresees a submarine cable to 

cross the Shannon bay of about 7 km, 

from Moneypoint to Tarbert shore; 

following an OHL based solution has 

been proposed by Eirgrid to connect 

Tarbert shore with Knockanurha 

substation at 400 kV. However, 

feasibility of 400 kV cable options is 

also evaluated, should any opposition 

raise for the OHL solution. Tab.1 

describes the combination of examined 

options 

 

 

Fig.17. North Kerry reinforcement plan 

 

tab.1. Description of cases 
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5.3.1 Frequency Scan  

 

Area evidenced already conditions suitable for resonances; the additional 

reinforcements might have counteracting effects: 

 

1) reinforce the system thus increasing NSF  

2) introducing extra large capacitance, submarine cable and UGC in Case 2, thus 

decreasing NSF 

 

It is worth notice that: 

 

A. Basecase has already a low NSF, about 

180 Hz 

B. the additional reinforcement  

a. keeps resonance the same if OHL+SUBC  

b. reduces NSF to 150 Hz if it is 

UGC+SUBC 

c. reduces NSF further, increasing IM in 

contingency of a 400 kV circuit. 

 

 

 

Fig.18. FS with different options reinforcements Vs. without 

 

5.3.2 Time Domain Simulation  

 

Time domain simulation is performed in order to verify if Resonance occurs and whether 

determines TOVs that put system at risk. 

Transformer energisation is considered critical in particular weak grid assets due to low 

harmonic order injected into the system through the inrush current. This is the most severe 

case and it is likely to triggered large TOVs in system with natural frequency around the 2
nd

 

harmonics. Different switching time will be considered. 

 

From fig.19 it can be seen that no TOVs are 

triggered from the switching however a 

voltage higher the nominal, about 1.1Uo. It is 

worth notice that they are sustained for more 

than 1 second, which means that a slight 

resonance effect is hidden underneath.   

 

 

 

 

 

Fig.19. TD in the base case.Phase to Ground Voltage in Moneypoint 

 

 

When introducing the Project as mixed Submarine Xlpe cable and OHL, case1, results are 

shown in fig.3.5, with also the contingency on the OLD-WOOD. 
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Values are still around the 1.1Uo, 

sustained for more than 1 sec. In fig.20, 

same results are shown for a longer lasting 

simulation interval. 

The trend to resonate is evident from the 

picture. The voltage amplifies after 1 

second remaining however in a 1.1Uo 

range. 

 

 

 

Fig.20. TD in Case1.Phase to Ground Voltage in Moneypoint 

 

 

If TARB-KNOCKANURHA is connected using an UGC system results are shown in fig.21. 

 

It is note worthy the effect of the 

Oldstreet-Woodland contingency. In N 

conditions, the overvoltages after 

energisation is kept within 420 kV peak 

phase to ground which is 1.3p.u. This is 

acceptable with stand voltage for the cable 

provided that a suitable after laying  

testing voltage is chosen. Note that length 

of cable may determine some difficulties 

for the AC testing voltage to be performed 

in one length,i.e. 20 km. 

 

Fig.21. TD in Case2.Phase to Ground Voltage in Moneypoint 

 

A contingency on OLDStreet-Woodland make the system weaker and the amplitude to rise at 

1600 Ohm, see Frequency scan fig.18. As a consequence resonances are triggered with a 

sustaine TOVs of about 543 kV peak, about 1.7Uo. This would put the cable at risk unless 

using a 500 kV AC cable. 

 

Furthermore, insulation coordination 

review of nearby equipments has to be 

undertaken as the overvoltage spreads still 

dangerous as far as Dunstown and 

Oldstreet, see fig.22. 

 

 

 

 

 

 

Fig.22. Case2. Phase to Ground Voltage in Dunstown and Oldstreet  

 

6. Conclusions 



 

A methodology has been described aiming at identifying areas that are potentially critical for 

low frequency Electromagentic transient Overvoltages, TOVs. The methodology has been 

applied within the process a Long Term Planning Analysis to techno/economic solutions of 

Grid Expansion within years 2015 to 2030.  

An extensive Harmonic analysis have been carried on to single out potential system assets at 

risk for low frequency resonances.  

 

Results have shown that, the broad initial frequency scan indications may be suitable to focus 

on specific planned reinforcement technologies to identify feasibility of different 

Transmission technology options.  

The additional information using Time domain simultations to identify critical grid assets can 

further evaluate whether the system can be put at risk using different Transmission 

Technology options and therfore to integrate the decision making process of the planned 

reinforcement.  

It has also been verified the counteracting influence on NSF of grid reinforcements which 

depends not only on the Transmission Technology but also on the Grid topology. Infact, 

whether it is meshed or radial plays and important role in the changing of NSF for each area 

as well as whether ist is OHL or UGC based. 

As general trends for the specific GES, it looks that early stages assets are more likely to 

provide critical scenarios to be investigated. 
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