

eastwest interconnector

Moyle Interconnector

Proposed East West Interconnector

Liverpoo

Dublin 🔍 Irish Sea 🔧

Benefits of Interconnection

- Security Of Supply
- Promote Competition in The Electricity Sector
- Accommodate Growth Of Renewable Energy
- Reduce Dependence on Imported Fuels
- Downward Pressure on Price
- Achievement of National and European Objectives

East West Interconnector Background

Key Strategic Project

- Priority Interconnector Project DG TREN January 2007
- '..Critical National Strategic Importance..' NDP 2007-2013

CER to arrange for design of competition for construction of a 500MW interconnector at earliest possible date (2012 or earlier)

Upon completion, I/C to be owned by EirGrid

Work on selection of sub sea route and sites and associated grid reinforcement to proceed in parallel with selection of developer process

Project Risk Register and Program

Top 3 Generic Risks to a large energy infrastructure project

- 1. Planning
- 2. Infrastructure Access
- 3. Procurement lead times

Pick a route and begin route surveys?

Planning will take time?

2-3 years to build a HVDC scheme once we press the go button and design and route is finalised?

>2 year lead time for cable slots with manufacturers?

Procurement including competition design, specification ,evaluation and contract negotiations under the negotiated procedure of a complex scheme takes 2 years?

Project Scoping

Concept to Reality

- Need a well defined route to get comparative offerings and value
- Need Planning to secure Finance
- Need Grid Access to deliver benefits

Competition in the HVDC market is limited with long lead times for equipment

- Turnkey versus multi-contract
- Newer Technology versus more established Technology
- Lots approach to cables and converter stations

Can it be done for 2012? Yes, if we parallel* Ø Route development /selection with procurement Ø Planning with contract negotiations and design

* subject to planning and procurement

Irish Land Route

Welsh Land Route

Marine Routing

Recent Milestones

 Government Approval / Contract Award 	March 2009
Planning Permission in Britain	Sep 2009
 Planning Approval Granted in Ireland 	Sep 2009
 European Investment Bank funding secured 	Sep 2009
Granted Foreshore Licence in Britain	Oct 2009
 Commencement of Works in Wales 	Nov 2009
EU Grant secured	March 2010
Full Notice to Proceed	March 2010

North Ocean 102 Cable Laying Vessel ABB HVC Karlskrona

Road works in Wales

Facts & Figures

EIRGRID

- 500MW Continuous Rated Power
- Overload Capacity Up To 550MW
- DC Cable Voltage ±200kV
- Reactive Power Capability
- Total Estimated Losses At Rated Power – 30MW
- Completion Date Q3 2012

EWIC – Technical Presentation

- LCC and VSC Converters
- ABB VSC Projects
- VSC Main Circuit Plant
- EWIC Converter Station Layout
- EWIC Bridge Operation
- EWIC Control Interface
- Questions

ABB HVDC Light© - Features

- Inherent Capability To Operate In A Weak Or Dead AC Network
 - Has Black Start Capability
 - Block load pick-up, frequency droop (VSC is the swing bus)
- Can Control Active and Reactive Power Flows Fast and Independently
- Can Be Operated As Static VAr Compensators
- Less Shunt Capacitance Required For Filtering
- Very Reliable With Redundancy Provided For All Parts
- Will Be Operated Remotely From National Control Centre (NCC) In Dublin

Other HVDC Light© Interconnectors

• ABB has Significant Operational Experience with HVDC Light

Project	Country	In Service (Year)	Power (MW)	DC Voltage (kV)	Distance (km)	Connection
HÄLLSJÖN	Sweden	1997	3	+/- 10	10	Over head
GOTLAND	Sweden	1999	50	+/- 80	70	Cable
DIRECTLINK	Australia	2000	180 (3 x 60)	+/- 80	65	Cable
TJÆREBORG	Denmark	2000	7.2	+/- 9	4.4	Cable
EAGLE PASS	USA	2000	36	+/- 15.9	0	Back to Back
CROSS SOUND	USA	2002	330	+/- 150	40	Cable
MURRAYLINK	Australia	2002	220	+/- 150	180	Cable
TROLL A	Norway	2005	82 (2 x 41)	+/- 60	67	Cable
ESTLINK	Estonia to Finland	2006	350	+/- 150	105	Cable
VALHALL	Norway	2010	78	150	292	Cable
NORD E.ON 1	Germany	2009	400	+/- 150	203	Cable
CAPRIVI LINK	Namibia	2010	300	350	970	Over head
EWIC	Ireland to UK	2012	500	+/- 200	260	Cable

HVDC - LCC "Classic" and VSC "Light ©"

Capability	LCC	VSC
Bulk Power Transmission	Up to 3000 MW	Up to 500 MW (present)
Black start	No	Yes
Weak networks	No	Yes
Dynamic reactive control	No	Yes
Reactive damping	No	Yes
Power reversal (time)	Limited	Fast
Dynamic power control (including run-back)	Yes	Yes
Real-power damping	Yes	Yes
Frequency response	Yes	Yes
Harmonic filters required	Yes	Yes (less)
Losses	Yes (less)	Yes

ABB HVDC Light© - Converter Components

- Bridge
- IGBT with anti-parallel diode
- Optical triggered IGBT's
- 2, 3 and Multi Level Bridges
- Phase Reactor
- Energy Storage, LP Filter
- Filters
- Shunt higher harmonics
- Transformer
- Match system voltage to filter bus voltage
- Extend reactive power range with tap-changer
- EWIC: 400kV/260kV

Voltage Source Converter Technology

- LCC Utilise Thyristors
- VSC Utilise Solid State Devices IGBTs (Insulated Gate Bipolar Transistors)
 - Low Voltage Drop
 - Rated For High Currents
 - Robust under short circuits
- Not reliant on line or external circuit to force commutation
- Means VSC can be used to supply dead or weak networks
- Can Achieve Full Power Reversal Almost
 Instantly

VSC Converter Technology

- Voltage Source Converter:
- Diagram shows a 2-level Pulse Width Modulation (PWM) bridge
- Fundamental frequency formed by filtering high frequency PWM voltage
- With PWM, it is possible to control both active & reactive power independently
- With OPWM, reduce losses, eliminate low-order harmonics

VSC – Voltage Representation

Vector representation:

- Relates switch positions to phase potentials
- Relates phase potentials to zerosequence free phase voltage
- Relates DC side current and voltage to AC side phase voltages
- For 3-phase 2-level bridge 8 realisable switch positions, 6 used for generating phase voltages

VSC – Harmonics

Square Wave Modulation:

By Fourier analysis:	_
Positive Sequence	1, 7, 13, 19, 25, 31, 37
Negative Sequence	5, 11, 17, 23, 29, 35
Zero sequence	3, 9, 15, 21, 27, 33

VSC - Harmonic Elimination with OPWM

By increasing switching frequency:

- Increase degrees of freedom for harmonic elimination
- 1/4 wavelength symmetric switching
- Eg. for 2-Level Bridge:
- A= 5 (eliminate up to 4 harmonics)
- Reduce need for filters, size of filters

ABB HVDC Light© - Typical Operator Interface

Questions?

Further info:

EirGrid website: Project website: Planning websit ABB HVDC:

www.eirgrid.com www.interconnector.ie www.eirgrideastwestinterconnector.ie www.abb.com/hvdc