Operations Seminar

Managing Dispatch Balancing Costs

26th May 2011

- Introduction
- Overview of Dispatch Balancing Costs (30 mins)
- Ongoing Management of Dispatch Balancing Costs (15 mins)
- Forecasting Dispatch Balancing Costs (15 mins)
- Q&A

1: Introduction

Introduction

- Managing Dispatch Balancing Costs (DBC) is a TSO Role
- Operations: Cross TSO Function
 - EirGrid: Operational Services & Performance (OSP)
 - SONI: Near Time Operations
 - Significant interaction with other groups within Operations

Operations Organisation Chart

2: Overview of Dispatch Balancing Costs

Dispatch Balancing Costs

SEM Structure

Merit Order

SEM: Market Schedule

- Market Scheduling and Pricing (MSP) Software
 - Transmission and Security constraints not taken into account
 - Uses Generator commercial and technical data
 - Uses Generator Availabilities
- Objective: Minimise Production Costs
 - 30 hour optimisation time horizon
- Output
 - Price (SMP) for each half hour
 - Market Schedule Quantity (MSQ) for each Generator for each half hour

Generator Payments & Charges

- Energy payments
- Constraint payments
- Uninstructed Imbalance payments
- Testing Tariffs
- Make-Whole payments

BBC

Energy Payments

- Energy Payments to all Generator Units based on:
 - Market Schedule Quantity (MSQ)
 - Market Price (SMP)

Example

Example

Energy Payment

Energy Payment

- Apply if Market Schedule Quantity ≠ Dispatch Quantity
- T&SC calculation:

 $CONPuh = TPD \times \begin{bmatrix} (DQLFuh \times DOPuh + DNLCuh + DQCCLFuh) \\ -(MSQLFuh \times MOPuh + MNLCuh + MSQCCLFuh) \end{bmatrix} + DSUCuh - MSUCuh$

Constraint Payment

- = Production Cost (Dispatch) Production Cost (Market)
- Principle: Generators kept financially whole

- Constraint payments can be positive/negative
 - If DQ > MSQ, Generator receives a payment
 - If DQ < MSQ, Generator makes a payment back
- Production Cost includes:
 - incremental costs
 - start-up costs
 - idling costs
- TSOs determine dispatch

Example

Example

Uninstructed Imbalance Payments

- Uninstructed Imbalance Payments apply if Actual Output differs from Dispatch Quantity
- Tolerance bands set annually
 - Take actual system frequency into account, thus allowing for regulation
 - Within tolerance band:
 - Uninstructed Imbalance Payments based on Imbalance amount
 - Outside tolerance band:
 - Uninstructed Imbalance Payments based on Imbalance amount with an additional factor included

Example

Example

Uninstructed Imbalance Payments

Testing Charges

- For a Generator Unit that is under test in SEM
- Testing Charges apply per MWh of output
- Testing Tariff is based on registered capacity

Testing Charge = Max (Metered Gen, 0) * Testing Tariff

Make Whole Payments

- Ensures that all Generator Unit Operating Costs are met
- If costs are *NOT* met through other market payments, make whole payments apply:

Make Whole Payment = Max (Operating Cost - Payments received, 0)

- Calculated on a Billing Period basis (1 week)
- Make Whole Payments only necessary in exceptional circumstances - SMP should generally cover all operating costs.

Dispatch Balancing Costs

What Causes Constraints?

- Generators receive constraint payments to keep them financially neutral for the difference between the market schedule and actual dispatch.
- The main drivers of constraints costs are:
 - Reserve
 - Transmission
 - Perfect foresight
 - Market modelling assumptions
 - System security constraints
 - SO Interconnector Trades

1: Reserve Constraints

 Reserve: Additional power capacity available from generators or through reduction in load

1: Reserve Constraints

- Reserve required to ensure continuity of supply in the event of a generator/interconnector trip
- Part loading generators frees up spare capacity for quick response
- In-merit generators are constrained down
 Additional generators constrained on
- The market schedule does not account for reserve requirements

Merit order illustration

2: Transmission Constraints

See Cork Area

See Belfast Area

Dublin

2: Transmission Constraints

- Required for safe and secure operation of the transmission network
 - power flows on transmission circuits and system voltages must remain within limits
- Generators constrained on/up
 - E.g. to support voltages in weaker parts of the network
- Generators constrained off/down
 - E.g. when a line outage means that there is insufficient capacity to export all available power
- Market schedule does not account for these physical limitations on the transmission system

Merit order illustration

3: Market Modelling Assumptions

- Due to limitations of market software
 - approximations and assumptions made in the MSP software
 - market schedule will not always be physically feasible
- TSOs and generators: bound by the technical realities of operation
- Actual dispatch will differ from the market schedule regardless of any transmission and security constraints

4: Perfect Foresight

 The market schedule is calculated ex-post by MSP Software

TSOs

4: Perfect Foresight

- MSP Software has 'perfect foresight' of changes to:
 - Demand
 - Generator availability
 - Unforecast wind variability
- TSOs do not have the advantage of this 'perfect foresight'
 - Must plan and operate the system to account for possible variations in these parameters.
 - Must react instantly to changes.
- Actual dispatch will be less economically efficient

Perfect Foresight Example

5: Other Constraints

- System Security Constraints:
 - Capacity tests for system security
 - Verify availability of generators
 - Grid Code Testing and Performance Monitoring
 - Verify compliance with Grid Code
 - E.g. secondary fuel testing

- SO Interconnector Trades
 - Moyle Low/High Frequency Service

What Causes Constraints?

- Reserve
- Transmission
- Perfect foresight
- Market modelling assumptions
- System security constraints
- SO Interconnector Trades

3: Ongoing Management of Dispatch Balancing Costs

DBC: TSO & SEMO Roles

- SEMO:
 - Settlement for SEM, including all DBC
 - All payments/charges
 - Collect the Imperfections Charge which funds DBC

- TSOs:
 - Dispatch Generation in real time
 - Manage DBC on an ongoing basis
 - Forecast DBC for setting the Imperfections Charge

DBC Analysis

- Purpose of DBC Analysis
- Timeframe for Analysis
- Cross-functional involvement
- Data and Tools
- Managing DBC across the Tariff Year

Purpose of DBC Analysis

- Review of actual out-turn Dispatch Balancing Costs against forecast for current year
 - Determine position versus forecast
- Identify trends and drivers
- Analyse issues affecting DBC
- Provide information for teams carrying out operational planning and dispatch
- Assist SEMO and EirGrid Finance to manage cashflow across the year versus Imperfections recovery

DBC Analysis Timeline

• DBC Analysis is carried out in weekly blocks after SEM invoicing has been completed so that all relevant data is available from the market database

Cross-Functional Input

- Analysis carried out by EirGrid (OSP) and SONI (Near-Time) teams on a weekly basis
- Input from other teams across the EirGrid group
 Operations departments in SONI and EirGrid

DBC Analysis – Data Tools

• EDIL

- unit availability changes, trips, within-day testing
- Control Centre Logs
 - information on dispatch, prevailing transmission conditions, impact of forecast changes, wind dispatch
- Reserve Provision
 - reports on unit response to frequency changes on the system
- Performance Monitoring Data
- Modelling software
 - PLEXOS for Power Systems

Data Sources and Tools

SEM Market Database

Weekly Analysis

- Analyse half-hour data from SEM database in weekly blocks
- Compare unit availability, market schedule, unit dispatch and actual output
- Identify instances where large or unexpected costs arise
- Understand reasons
- Analyse impacts of system events on DBC

Analysis – Unit Constrained Down

- Typically in-merit plant
 - Constrained down to provide reserve
 - Dispatched down at times of lower load and / or high wind generation

Analysis – Unit Constrained On/Up

- Units may be required to:
 - Provide Reserve
 - Alleviate a Transmission Constraint
 - Provide local voltage support
 - Replace MW from constrained down generation

Weekly Analysis

DBC for Week 19

Analysing Recent Trends

2009/10 Tariff Year

2010/11 Year to Date

Sample Incremental Costs (as bid)

Since Market Start in 2007

Longer-term Analysis

- Changes to Unit Availability
 - Forced outages
- Impacts of Outage Season
 - Transmission
 - Generation
- Timing of Units Commissioning
- Fuel costs and trends
- Unforeseen Events e.g. weather
- Looking forward
- Forecasting

4: Forecasting Dispatch Balancing Costs

DBC Forecasting

DBC & Imperfections Timelines

DBC Forecasting

- Objective: Produce forecast of DBC for future tariff year for the setting of the Imperfections Charge
- Annual Project
 - 6 months: Runs from November to April
 - DBC Forecast submitted to CER & NIAUR in April
- Joint project between SONI and EirGrid
- Cross-departmental: Planning and Operations

Steps in the TSO DBC Forecasting process

- 1. Input data and assumptions
- 2. Build and validate DBC model
- 3. Development of supplementary modelling
- 4. Review of results
- 5. Drafting of submission

DBC Forecasting

Step 1 Input data & Assumptions

- Forecast Generator Information
- Forecast System Demand
- Forecast Fuel Costs

Step 1: Input data & Assumptions

- Exchange rates
- Forecast dispatch policies
- Forecast system security constraints

Forecast Generation Information

- New generation commissioning
- Generator closures
- Planned outages
- Forced outages
- Technical & commercial parameters e.g.
 - Max/Min Generation Levels, ramp rates
 - Heat rates
- Renewable generation profiles
- Interconnector profiles

Sources of Input data & Assumptions

- Trading & Settlement Code
- All-island Generation Capacity Statement
- Transmission Forecast Statement
- RA published data sets
- SEM data
- Ancillary Services data
- Transmission & Generator Outage Plans
- Long term fuel forecasts
- TSO Experience

Step 2: Build and validate DBC model

- The DBC model is developed by the Generation Analysis group
- Use PLEXOS software
 - production cost and market modelling tool
- 2 models are developed:
 - Unconstrained model
 - Constrained model

2: Build and validate DBC model

- Unconstrained model:
 - Models SEM
 - No transmission or reserve constraints
- Constrained model:
 - Model of the transmission and generation systems across the whole island
 - Key reserve and transmission constraints included
- Constraint cost = difference in production costs between unconstrained & constrained model

Step 3: Supplementary modelling

- Certain causes of constraint costs are NOT captured by the plexos model:
 - Perfect foresight
 - Changes in forecast demand or wind
 - Changes in generator availabilities
 - Market modelling effects
 - System security constraints
 - SO Interconnector Trades

Step 3: Supplementary modelling

- Separate provisions developed to account for these components
 - Based on further analysis
 - Historical information
 - Operational experience
 - Uses inputs from the plexos model

Step 4: Review of results

- Review of outputs of plexos model & supplementary modelling
- Review against
 - Historical power flows and dispatches
 - Operational experience
- Sensitivity studies
- Internal workshops to review and debate issues

Step 5: Draft Submission

- Subject to internal review and sign off
- Submitted to the RAs by 30th April each year
- Subsequent meetings with RAs
 - Present the forecast
 - Answer any questions
 - Sensitivity studies

DBC & Imperfections Timelines

Setting the Imperfections Charge

- Major component is the DBC Forecast
- Other key inputs:
 - Forecast Make Whole Payments
 - Forecast Energy Imbalances
 - Forecast system demand from TSOs
 - K factor from SEM: Imperfections over/under recovery
- Imperfections Charge is a per MWh charge.
 - Published prior to the start of the tariff year

Imperfections

Gate 3 – PGOR & Constraint Reports

Possible Generator Output Reductions Report for Area F (2011 – 2022)

- Reports assess the 'physical' levels of curtailment and constraint that generators might expect to experience in the period from 2011 through 2022
- Useful for generators thinking of connecting on a non-firm basis
- Whether a generator is compensated for this curtailment/constraint and the amount of any such compensation is not examined in the reports.

