

Delivering a Secure Sustainable Electricity System

Ensuring a secure, reliable and efficient Power System in a Changing Environment

Delivering a Secure Sustainable Power System

17th August 2011

Outline Agenda

Chair: Dick Lewis, Manager, Grid Operations Planning

10.00 a.m. Registration (Tea and Coffee) 10.30 a.m. Introduction and welcome Fintan Slye, Director Operations 10.40 a.m. Overview of previous studies – Context Jon O'Sullivan, Manager, Sustainable Power Systems 11.00 a.m. Report on "Ensuring a Secure, Reliable and Efficient Power System" Shane Rourke, Sustainable Power Systems 11.40 a.m. Programme & Advisory Council Yvonne Coughlan, Sustainable Power Systems 12.00 a.m. **Questions from Audience** 12.20 a.m. Closing comments followed by Lunch

European NREAP 2020 Wind Figures

Wind as % of Total Electricity Demand (2020 Targets)

∫ ^{electricity} DS³ Delivering a Secure Sustainable System

Delivering a Secure Sustainable Electricity System

	All Island Grid Studies	 Infrastructure Requirements and Resource Assessment
	Facilitation of Renewables Studies	 Power System Operational Needs
	Sustainable Power Systems Report	 Ensuring the needs of the future power system

Ireland and Northern Ireland Wind Statisitcs

	Ireland	Northern Ireland
Installed	1425 MW	314 MW
Maximum Output	1259 MW	314 MW
Highest Instantaneous %	52.3 %	50 %
Highest Daily Energy	37%	29%
Annual Output % 2010	10%	7.2%

Wind Capacity Factor

Capacity Factor

Operational Boundaries

Operational Boundaries

Key findings

- RoCoF capability and protection
- Conventional Generator
 Reserve performance
- Windfarms controllability and reactive power capability
- New operating procedures including embedded windfarms

Impact on Renewable Targets and Individual Wind Curtailment - 6000 MW Installed

% Annual Energy from Wind

% Individual Wind Curtailment

Follow Up Analysis – System Services

Methodology

- Analysis builds on the results of the FoR
 - Using out-turn data and observed behaviour
- Three type of analysis carried out
 - Portfolio capability (theoretical maximum)
 - Actual availability (dispatch dependent)
 - Performance analysis
- Two timeframes considered:
 - Current: 2010
 - Future: 2020

Portfolio evolution

- 2010 portfolio 2011 GCS
- 2020 portfolio credible evolution of current portfolio
 - Complementary to renewables targets
 - Sufficient investment to ensure capacity adequacy

Technology	Net capacity change (MW)		
Wind	+ 4400		
Interconnection	+ 500		
CCGT	+ 700		
OCGT	+ 800		
Conventional thermal	- 2000		

Portfolio evolution

Example of Incident

Frequency Response: Inertia (daily range)

Frequency Response: Inertia

Frequency Response: Inertia

Example of Incident

Frequency Response: Operating Reserve

- Automatic generator response to frequency deviation
 - Timescales: Primary, Secondary, Tertiary ...
 - Primary the most onerous
- Grid Code requirement (Primary): at least 5% Reg Cap
- Portfolio has 8% capability overall
 - Some generators with >> 5%
 - Other generators with < 5%

Operating Reserve – Capability

Operating Reserve – Capability (Ireland only)

Operating Reserve – Performance

- Performance improvements observed since the introduction of HAS
- Preliminary analysis of 2010 low frequency disturbances
 - Generators in Ireland classified based on Primary Operating Reserve performance vs declared capability

Achieved 80% response	No of generators
Good: > 80% events	7
Average: > 40%, < 80% events	10
Poor: < 40% events	11
Unknown / limited data	23

Note: Ireland only

Frequency Response	Synchronous InertiaOperating Reserve	<u>Key Findings</u> Reduced Synchronous Inertia
Voltage Control	Reactive Power CapabilityDynamic Reactive Power	Reserve capabilities less than Grid Code Poor Generator
Ramping Services	 Generator Ramping Wind Variability & Forecasting 	Reserve Performance

Frequency Response	Synchronous InertiaOperating Reserve	
Voltage Control	Reactive Power CapabilityDynamic Reactive Power	
Ramping Services	Generator RampingWind Variability & Forecasting	

Voltage Control – Reactive Power

Reactive Power – Portfolio Capability

Reactive Power Availability – Synchronised

Reactive Power Availability

Reactive Power Available – 2010 vs 2020

 Table shows average Mvar availability (i.e. from on-line generation) in 2010 and 2020 (with percentage increase/decrease)

	Lagging Mvar		Leading Mvar	
2010	3510		1570	
2020 (conventional)	2650	(-24%)	1310	(-16%)
2020 (Tx wind)	3240	(-8%)	2000	(+21%)
2020 (all wind)	3830	(+9%)	2480	(+58%)

Reactive Power – Windfarm Control

Frequency	Synchronous Inertia	<u>Key Findings</u>
Коронос	Operating Reserve	Portfolio shortfall for leading RP (30%)
Voltage Control	Reactive Power CapabilityDynamic Reactive Power	Synchronous RP will reduce (25%)
		Only ¼ of windfarms provide RP control
Ramping Services	Generator RampingWind Variability & Forecasting	Dynamic RP is critical for stability

System Operator for Northern Ireland

Frequency Response	Synchronous InertiaOperating Reserve
Voltage Control	Reactive Power CapabilityDynamic Reactive Power
Ramping Services	Generator RampingWind Variability & Forecasting

System Ramping Requirements

<u>Variability</u>

- Demand
- Wind
- Interconnector
- Disp Generation

Forecast Error

- Demand
- Wind
- Interconnector
- Disp Generation

Ramping Requirement

System Ramping Requirements

Illustration

Wind Variability (1 hour)

Ramping Requirement

Generator Ramping Availability

- Ramping deficit = requirement availability
- 2010: system is dispatched to ensure requirement is met
 - Deficits arise following disturbances
- 2020: few instances of deficit
 - Due to assumed portfolio evolution (additional "flexible" generation)
 - Sensitivity studies illustrate potential issues

Wind – Ramping Capability

- Wind generation can contribute to ramping requirement
 - Capable of being curtailed \rightarrow can ramp down
 - When being curtailed \rightarrow can ramp up **or** down
- Wind contribution to ramping requirement reduces requirement from conventional generation
 - Lower curtailment
- Reliable active power control is essential

Wind – ramping capability

Frequency Response	Synchronous InertiaOperating Reserve	Key Findings Ramping requirement will
Voltage Control	Reactive Power CapabilityDynamic Reactive Power	Increase with increasing wind Both <u>variability</u> and <u>uncertainty</u> influence ramping requirement
Ramping Services	Generator RampingWind Variability & Forecasting	Active Power Control of windfarms is essential

Delivering a Secure Sustainable Electricity System

DS³ – Delivering a Secure Sustainable System

System Issues

Key Action Areas

Frequency Response Reduced Synchronous Inertia Poor Generator Reserve Performance RoCoF Protection Relays

Voltage Control

Portfolio Reactive Power Capability Wind farm Controllability Type of Reactive Power Capability

Ramping Services Windfarm active power control Need for Ramping Capability Forecast and Variability of portfolio output

Delivering a Secure Sustainable Electricity System

Knowledge of System Performance Enforcement of performance standards Incentivise greater performance capability Management of complexity, uncertainty

System Operator for Northern Ireland

electricity

Delivering a Secure Sustainable Electricity System

Programme	Key Actions	Timeline	Actor(s)	System Performance
Commercial Design	Consultation paper on Ancillary Services	2011	EirGrid & SONI	
	Financial valuation of system services	2011/12	EirGrid & SONI	
	Commercial Mechanisms	2011/12	EirGrid & SONI	Ancillary Services
	All island consultation on proposed ancillary services payment structures	2012	EirGrid & SONI	
	Decision on future ancillary services funding	2012	Regulatory Authorities	
	Decision on ancillary services implementation methods	2012	EirGrid & SONI / Regulatory	
	Implementation of new ancillary services arrangements	2013	EirGrid & SONI	

Grid Code

Reserve Capability of Generators (Ireland only)

Generator Performance Incentives

- Improvements observed since the introduction of GPIs
 - Particularly in Ireland (see table)

Characteristic	Improvement (as of Dec 2010)
Reactive Power (Leading)	100 Mvar
Reactive Power (Lagging)	100 Mvar
Primary Operating Reserve	25 MW
Secondary Operating Reserve	40 MW
Minimum load for reserve provision	50 MW

Delivering a S Electri	DS3 ecure Sustainable city System	Sy: Rar	System Policies
Programme	Key Actions	Timeline	Actor(s)
Frequency Control	Review of RoCoF protection settings and capability	2011	EirGrid & TSO/DSO
	Engagement with the DSO on RoCoF protection settings	2011	EirGrid & SONI / DSOs RoCoF
	Agree new settings for RoCoF relays/Agree to disable RoCoF relays	2011/2012	EirGrid & Standards, SONI / DSOs / Regulatory Authorities
	Implementation of changes to RoCoF settings	2012	Industry
	Review system reserve policy for Control Centres in the context of high levels of variable renewable generation	2012	EirGrid & SONI
	Investigate the system ramping requirements (long term reserve) and associated policy	2012	EirGrid & SONI

Frequency Response: Inertia

Delivering a Secure Sustainable Electricity System – DS³ Programme

System Operator for Northern Ireland

Advisory Council

- A forum to facilitate wide stakeholder input across the electricity sector in Ireland and Northern Ireland
- Independent panel of experts that help to guide the DS³ programme
- Members of the group participate as individuals and not as representatives of organisations
- Deadline for expressions of interest: 31 August 2011
- Kick off meeting: October 2011

END

Ramping illustration

System Ramping: drivers

System Ramping: drivers

System Ramping: drivers

Ramping Duty

System Operator for Northern Ireland

Ramping Duty

Ramping Duty

System Operator for Northern Ireland

Ramping Requirement = Duty + Errors

System Operator for Northern Ireland