

Priority Dispatch in Real Time Operation

Marie Hayden

Presentation

 Reasons for dispatching units with Priority Dispatch

Changes in approach with SEM-62

Who has Priority Dispatch Today?

Unit Type	MW
Interconnector Trading Units	450
Peat	344
CHP	170
Hydro	217
Windfarms	1,935
TOTAL	3,116MW

Reasons For Dispatching PD Units

- Managing Demand ~ Supply Balance
 - Supply must equal demand at all times
 - All Island Demand Ranges from 2400MW 7000MW
- Manage System Inertial Stability
 - No more than 50% of Generation can be supplied by Non Synchronous Generation Units
 - All Island Non Synchronous Generation totals 2385MW today
- Constraints
 - Prevent Transmission Lines from breaching Design Limits for Voltage & Current

Example - Curtailment

- At 4:00am tomorrow system demand will be ≈ 3000MW
- Available Priority Dispatch will make up ≈ 1700MW
- Of this Non-Synchronous PD ≈ 1300MW
 - ➤ 50% Rule does not apply
- Constrained on Conventional Generation ≈1350MW
 - There is enough "room" for all Priority Dispatch units
- There should be little or no CURTAILMENT of Priority Dispatch units tonight
- With high levels of wind there may be CONSTRAINTS in parts of the country

Example - Constraints

- Managing System Constraints
 - Control Centre constantly monitor Contingency
 Analysis Software in real time
 - Software tells them if any item of plant is at risk of operating outside of its design limits
 - The snapshot on the following slide was taken at 10:00 this morning
 - It indicates a need to constrain generation which feeds into the network North of Cathaleen's Fall

Screens at 11:00

- Control Centre dispatched down wind units which impacted on the constraint
- Manual "Pro-Rata" calculation
- Applied via a dispatch program

Real Time Power Flow

SEM-011-62 Decision

- Key Messages of the Decision from a Dispatch Perspective:
 - TSOs should only dispatch down Priority Dispatch for system security reasons
 - A specific order is to be utilised when choosing between different types of units with Priority Dispatch
- Order of Priority Dispatch
 - Interconnector via Counter Trading (NEW)
 - Peat
 - Hybrid
 - CHP/Biomass/Hydro
 - Windfarms (New Order)
 - Interconnector via NTC reduction
 - Hydro (Flood Risk)

Interconnector Flows Counter Trading

- Flows on Interconnectors are determined by the SEM Market Schedule Day Ahead
- Control Room assess in advance if it is likely that PD units will need to be dispatched down
- Where this seems likely they will attempt to Counter Trade
- Counter Trading on the Interconnector to preserve Priority Dispatch
 - Previously counter trading was only used to manage system security
 - Now TSOs will counter trade before dispatching down priority dispatch units
 - Counter Trading with National Grid is only available on a firm basis 2 hours before real time
 - Power Exchange options being investigated

Interconnector Flows Net Transfer Capacity Reduction

 EU Directive on Congestion Management states that capacity can only be reduced by a TSO if there is a system security constraint

 Capacity (NTC) Reduction is not allowed if internal redispatch resolves the issue

Wind Unit Dispatch

- Order in which wind units are dispatched down
 - Previously Market Classification was used
 - Variable Price Takers (VPTs) were dispatched down before Autonomous
 - Now based solely on controllability
 - All wind units lie in one of three categories

Controllable Wind Units

- Level 1 Units: Should be controllable but are not
 - Have previously passed controllability testing but not working
- Level 2 Units: These units have
 - Working Active Power Dispatch controls
 - Valid Availability Signal
- Level 3 Units: Units not required to be controllable
 - Are exempt e.g. Pre-Gate or Less than 5MW
 - Are still undergoing commissioning
 - TEMPORARY SITUATION
 - Units which were allowed onto the system with controls untested
 - This backlog will be cleared by end of 2012

EirGrid TSO Wind Dispatch Program

Key Features

- Allows simultaneous dispatch of selected wind units for Curtailment Purposes
- Does pro-rata calculations to apportion curtailment on the basis of Availability
- Differentiates between Level 2 and Level 3 units

DROMADA PLC1

▲ HAYDEN MA@EGOWEB1:50 - [from egoems2]

STH WEST LEVEL 3

ON

OFF

29.0

0.0

1.9

29.0

28.6

OK

21/11/2011 09:23:59

П

46.0

ď

29.0

Where Can I Find Out More?

The TSOs
 recently published
 two papers which
 explain in more
 detail how SEM
 62 is being
 implemented

QUESTIONS WILL BE TAKEN AFTER NEXT PRESENTATION

THANK YOU FOR LISTENING

