DS3 Advisory Council

Crowne Plaza Hotel, Northwood Park, Santry, Dublin 9, D09 X9X2 16 October 2019

Agenda - Morning

Торіс	Time	Speaker					
Introduction & Welcome	09:30	Jon O'Sullivan, EirGrid (10 mins)					
Industry Discussion	09:40	Recent UK Incident (Graham Stein) Interconnector operation is influencing curtailment (Noel Cunniffe)					
DS3 Discussion	10:45	Wind Statics					
		Curtailment					
Rate of Change of Frequency	11:00	NIEN (David Hill)					
		ESBN (Tony Hearne)					
(RoCoF)		TSO					
	11:30	Control Centre Tools					
DS3 Programme Status Update		Qualification Trial Process					
(including System Services)		Wider Programme Update					
		Procurement					
Priority Dispatch / CEP	12:00	Jon O'Sullivan, EirGrid (10 mins)					

Agenda - Morning

Торіс	Time	Speaker							
Over Frequency Generation Settings	12:15	Peter Wall							
Oscillations	12:30	Peter Wall							
EirGrid Group Strategy	12:45								
DS3 +	12:50								
AOB	12:55	All (10 mins)							
Closing Remarks and Actions	13:00	Jon O'Sullivan, EirGrid (5 mins)							
Sessi	Session Closed (13:00) followed by Lunch in Upper Foyer								

Industry Discussion

October 2019

Wind Integration Week

Graham Stein

Contents

4	Introduction to National Grid
I	ESO

2 9 August Incident Technical Report

Our mission

We enable the transformation to a sustainable energy system and ensure the delivery of reliable affordable energy for all consumers

Success in 2025 looks like:

- An electricity system that can operate carbon free
- A strategy for clean heat, and progress against that plan
- Competition everywhere
- The System Operator is a trusted partner

nationalgridESO

Operability Strategy Report

Back to home

Evolving year-on-year

Through extensive industry interaction, the SOF evolves year-on-year to meet changing operational and stakeholder needs.

Growth of low carbon and renewable generation, closures of conventional thermal power stations and changing interactions across the whole of the power system are just a few of the areas considered in the context of a rapidly changing power system.

Operability Strategy Report update 2019

We have published an update to our Operability Strategy report which summarises how we are meeting future operability challenges, the link to our zero carbon ambition and how stakeholders can participate in achieving this.

Operability Strategy Report update 2019

Topics

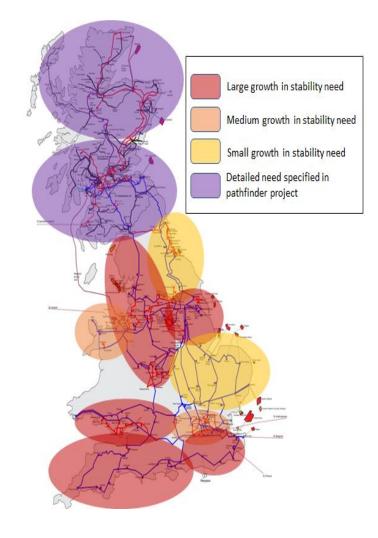
- Frequency Control
- Voltage Control
- Restoration
- Stability
- Thermal

New Stability Support Product

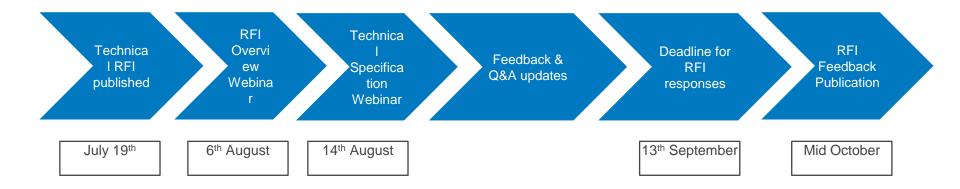
Stability support product description

Transient voltage dip, short circuit level and inertial support.

Immediate post fault response to limit voltage deviation, and contain voltage angle movement.

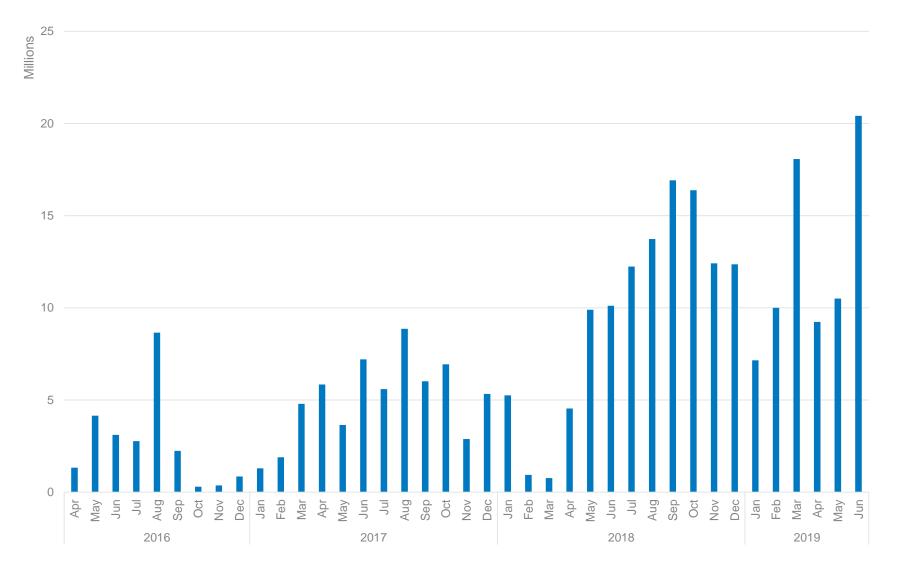

Potential providers are expected to meet the technical specification criteria specified in the Attachment 1 of the stability pathfinder RFI.

Some performance criteria are:


- Short circuit level contribution (MVA) ≥ 1.5 p.u. of MVA available in steady state operation
- Inertia (MVA.s) ≥ 1.5 p.u. of MVA available in steady state operation
- Transient voltage stabilisation and support capability
- Fast fault current injection
- Performance across range of minimum Short Circuit Levels

Areas of Stability Focus

- Our assessment shows that our need for stability products is different across the country.
- High-Voltage pathfinders in Mersey and Pennine are addressing static high voltage requirement which is separate to our stability needs in these areas.
- For Stability Pathfinder, we have carried out detailed assessment of Scotland and high-level assessment of England & Wales (E&W)
 - Scotland solutions are our priority and we set out timeline proposals for these later in this pack.
 - For E&W, we will set out priority areas for solutions based on RFI responses and our needs for stability growth. We will set out next steps for E&W post RFI feedback.


Stability Pathfinder Request for Information (RFI)

- For first webinar, 180 stakeholder signed up
- For second webinar 100 stakeholders signed up
- Webinar slides (including recording of technical webinar) and Q&As are available on our website
- Our RFI feedback closed on 13th September

Loss of Mains

nationalgridESO

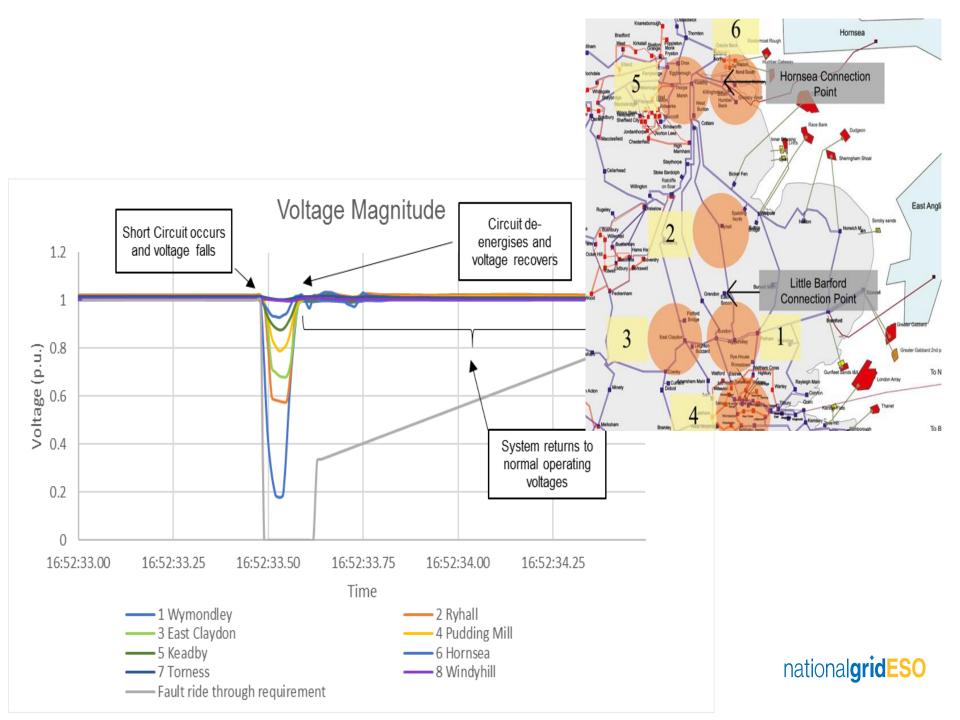
Accelerated Loss of Mains Change Programme

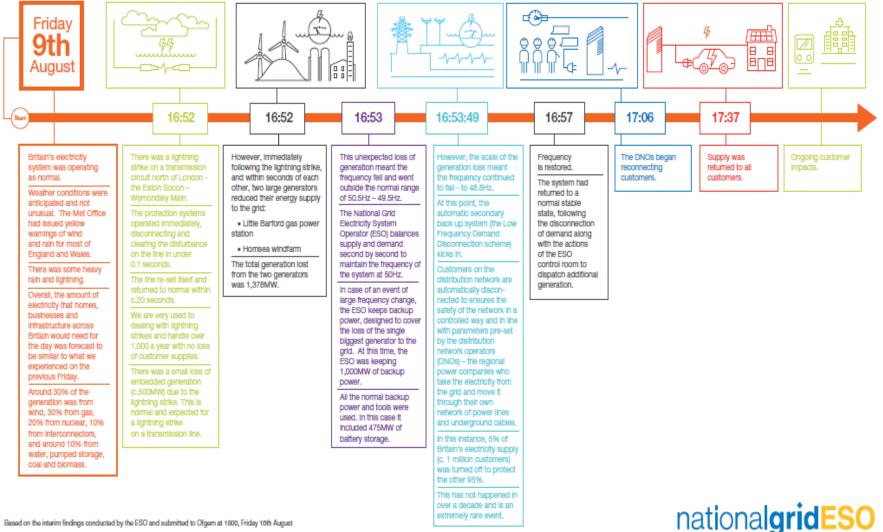
Designed to implement Distribution Code change DC0079

Features include:

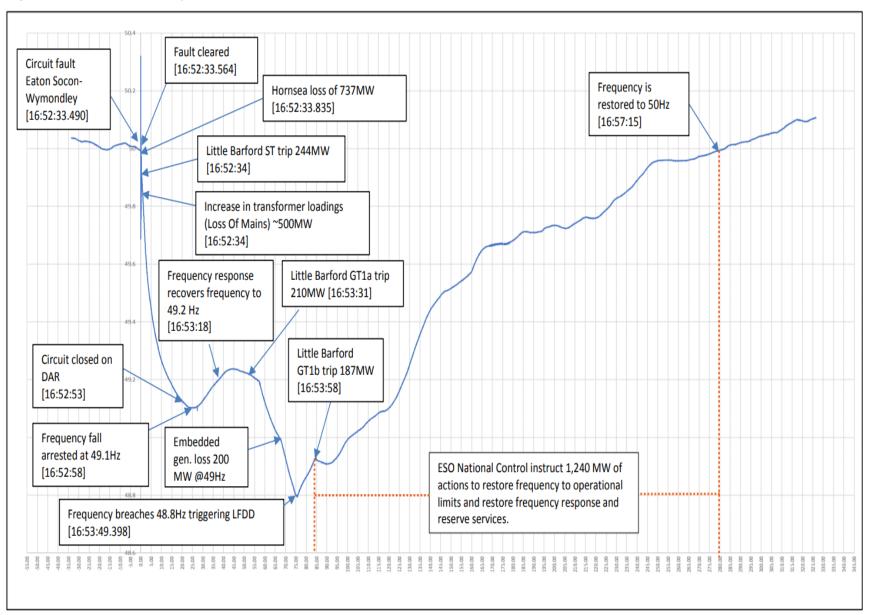
- payments to generators
- delivery assurance
- stakeholder involvement

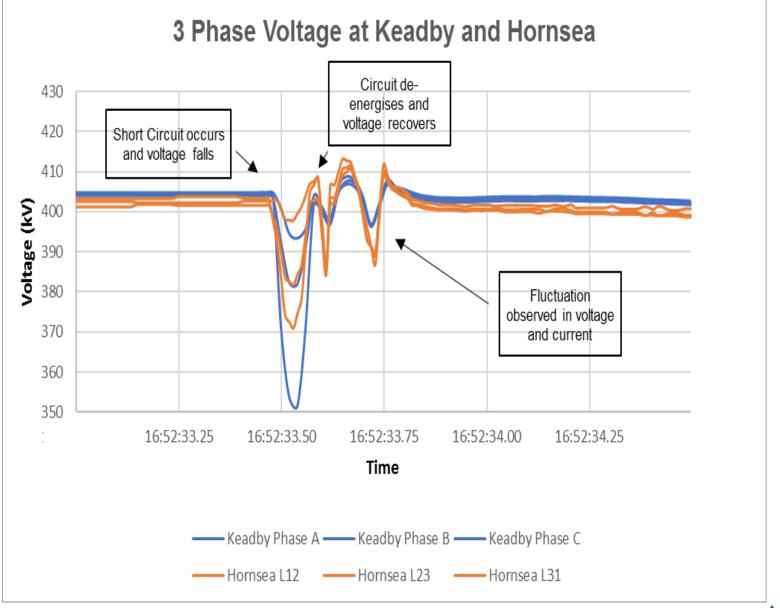
🔇 National Grid ESO LFDD 09/08/21 🗙 🛛 🔇 Natio	nal Grid ESO LFDD 09/08/2 x 🔤 Our ambition - RED-2 National x 🔤 System Operability Framework (; x 🕲 download x 🔤 Accelerated Loss of Mains Onen; x 🕂									
← → C (i) Not secure ena-eng.org/	ALOMCP/ 🖈 📮 🍳 🔴 🗄									
Accelerated Loss of Mans Change Programme MC nutroupidESO										
Actions	Welcome to the ENA's Accelerated Loss of Mains Change Programme									
Log In 🞝	The Energy Networks Association (ENA) represents the interests of all energy network companies in the UK. For more information about the ENA, please visit the corporate website.									
Register 👇	For more detail on the Accelerated Loss of Mains Change Programme, please click here.									
	Registered users can login here. Unregistered users should register here.									
	The first user at a generator company is self-registered but subsequent users registering to an existing generator company are vetted by existing users at the company. Generator company users can only view/edit information regarding the sites that they operate. There is no anonymous access to the system.									
	If you intend to register multiple sites, please read the guidance here.									
	In order to facilitate liaison between generators and the DNOs and IDNOs that their installations are connected to, the system does request basic contact information from generator users. This is held and shared in accordance with our privacy policy, which is detailed here.									
	If you have any queries, please direct them to:									
	Energy Networks Association Ltd 4 More London Riverside London. SE1 2AU									
	Contact: Lauren Fisher									
	Tel: +44 (0)20 7706 5100									
	Email: lauren.fisher@energynetworks.org									
	If you have any problems or issues with the site or have any comments or suggestions for improvements, please let us know via our feedback page. We aim to respond to any feedback within 24 hours.									
	Energy Networks Association Ltd; Reg. Office: 4 More London Riverside, London SE1 2AU, Reg. in England No. 4832301 Context Us. [Prince/Petry] Cookles We being: Research									


javascriptWebForm_DoPostBackWithOptions(new WebForm_PostBackOptions("Ink_Login", "", false, "", "index.aspx?action=login", false, true))



Technical Report


The sequence of events of Friday 9th August 2019



Based on the interim findings conducted by the ESO and submitted to Ofgern at 1800, Friday 10th August

3.4. Impact on Frequency

Figure 2 – Annotated Frequency Trace of the Event

nationalgridESO

9 August incident

- Our investigations show that the system responded exactly how we would have expected it to behave
- We made the following recommendations in our technical report:
 - Communication processes and protocols should be reviewed across ESO, DNOs, TOs, Government, Ofgem and media
 - The list of facilities connected to the LFDD scheme should be reviewed
 - The settings on the internal protection systems on electric trains should be reviewed
 - National Grid ESO will be following up with any reserve provider who fell short of their contracted position
 - A wider industry review of the Security Standards needs to take place
 - System standards for critical infrastructure and hospitals should be looked into
 - Timescales for the Accelerated Loss of Mains Change programme should be reviewed

nationalgrideso.com

National Grid ESO, Faraday House, Warwick Technology Park, Gallows Hill, Warwick, CV346DA

Interconnector Operation & Curtailment Noel Cunniffe, Head of Policy

16 October 2019 DS3 Advisory Council

RES Curtailment Events & Interconnector Operation

		2014	2015	2016	2017	2018	Q1 2019	Q2 2019	2014 to Q2 2019
ŗ	Curtailment Events(nr.)	137	119	87	103	112	48	19	625
ment its	EWIC Avg Net (MW)	190	-1	-64	-271	-191	-357	-202	-87
Curtailm Events	EWIC Avg Net (%)	36%	0%	-12%	-51%	-36%	- 67 %	-38%	-16%
urt.	Moyle Avg Net (MW)	99	-46	-127	-186	-50	-71	-107	-65
0	Moyle Avg Net (%)	40%	-18%	-42%	- 62 %	-17%	-24%	- 2 1%	-23%
ds	EWIC Absolute Avg (Day) (MW)	376	213	14	-18	30	-41	7	110
j.	EWIC Absolute Avg (Night) (MW)	78	-24	-15	-171	-146	-52	-125	-59
Pei	Moyle Absolute Avg (Day) (MW)	154	61	-11	41	138	122	88	79
All	Moyle Absolute Avg (Night) (MW)	50	-92	-59	-76	23	107	10	-23

Notes:

Positive figures represents imports, negative figures represent exports

<u>EWIC Out of Service</u>: 2014 = 43 days, 2015 = 14 days, 2016 = 109 days, 2017 = 53 days, 2018 = 49 days, 2019 = 12 days <u>Moyle Out of Service</u>: 2014 = 65 days, 2015 = 2 days, 2016 = 46 days, 2019 = 9 days

- Review of interconnector activity during curtailment events indicates that generally exports increased over 5-year period
- Noted that SO countertrading had ceased at the start of I-SEM but increased recently
- Still potential for greater exporting on existing interconnectors during curtailment events
- Uncertainty on future export capacity of Moyle interconnector

Source: MullanGrid analysis for IWEA Dispatch Down Working Group

Interconnector Operation during Curtailment post I-SEM

		Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Oct - Jun
Curtailment Events	Curtailment Events(nr.)	6	15	19	9	23	16	7	6	6	107
	EWIC Avg Net (MW)	-273	-218	-180	-411	-290	-368	-108	-92	-406	-261
	EWIC Avg Net (%)	-52%	-41%	-34%	-1	-1	-1	0	0	-1	-49%
	Moyle Avg Net (MW)	-30	-54	18	-96	-89	-29	-72	-117	-133	-67
0	Moyle Avg Net (%)	-10%	-18%	6%	-19%	-18%	-6%	-14%	-23%	-27%	-25%

Positive figures represent imports, Negative figures represent exports

EWIC Capacity=530MW

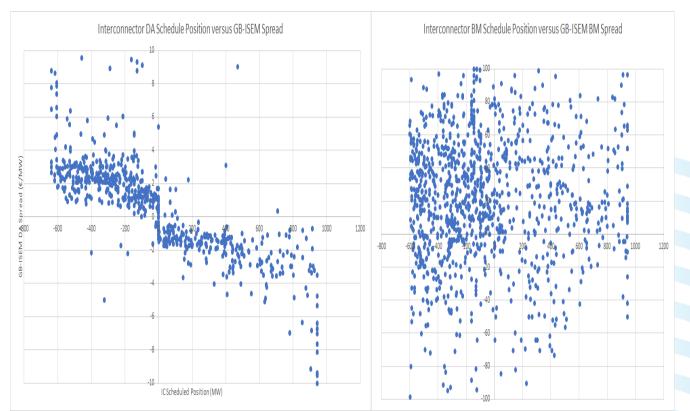
Moyle Capacity=300MW(2018),500MW(2019)

Issues with Moyle operation during Constraint events

		Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Oct - Jun
rai ts	Constraint Events (nr.)	12	15	13	6	10	13	12	7	3	91
nstr nt vent	Moyle Avg Net (MW)	200	-23	294	378	160	178	284	19	9	167
ыß	Moyle Avg Net (%)	67%	-8%	98%	76%	32%	36%	57%	4%	2%	33%
Curtailm ent Events	Curtailment Events (nr.)	6	15	19	9	23	16	7	6	6	107
	Moyle Avg Net (MW)	-30	-54	18	-96	-89	-29	-72	-117	-133	-67
	Moyle Avg Net (%)	-10%	-18%	6%	-19%	-18%	-6%	-14%	-23%	-27%	-25%

Positive figures represent imports, Negative figures represent exports

EWIC Capacity=530MW


Moyle Capacity=300MW(2018),500MW(2019)

Source: MullanGrid analysis for IWEA Dispatch Down Working Group

Interconnector Operation in I-SEM

 1^{st} – 30^{th} August shows interconnector scheduled to flow in the opposite direction to price signal in the Balancing Market

45% of the time during curtailment events

Interconnector Operation in I-SEM – How to improve?

• There are a number of potential policy fixes to improve this alignment and reduce curtailment

Long Term Solution

- Integrate SEM closer with the GB market 3 possible methods:
 - a. Introduce XBID as soon as possible XBID is the European Commission's target model for facilitating cross border trading in the intra-day markets it will help renewable penetration as it facilitates the movement of the interconnectors scheduled flow up to 1 hour before real-time
 - **b.** Move IDA2 market closer to real-time allows use of more accurate weather forecasts and result in a more efficient market schedule
 - c. Couple IDA3 with GB using the Euphemia algorithm IDA3 currently not coupled with GB meaning that the periods of the trading day from 5pm to 10:55pm are last coupled at 8am, 9-14 hours beforehand coupling allows for improved forecasting and more efficient market operation

Short Term Solution

• EirGrid carries out increased SO to SO trades to minimise renewable curtailment

The benefits are clear

- Removing barriers to renewables across all sectors will reduce future consumer costs to 2030
- Cheaper auction bids as a result of lower curtailment forecasts
- Important to address these concerns now before further interconnection this decade
- May become a bigger issue in a post-Brexit world in a 'no deal' scenario Day-Ahead Market Coupling with GB ceases

DS3 Discussion

October 2019

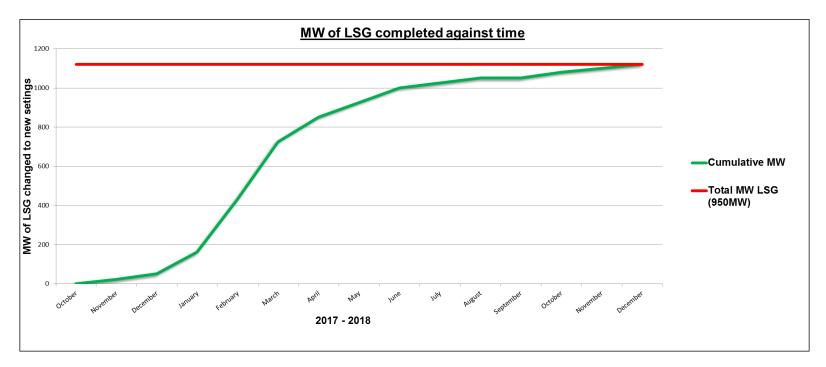
Wind Generation (Jan – September 2019)

- Wind Generation accounted for 32% of All-Island system demand, a record 47% of demand was provided by wind in February,
- At times, wind generation provided up to 84% of All island demand with the maximum output of 3872 MW in April. With an average of 1,289 MW across January to September 2019,
- The Power System was operated above 50% SNSP for **21%** of the time and between 25% and 50% for **50%** of the time, an increase of 10% from 2018.
- In 2019, 1GWh of additional wind energy was generated compared to the same reporting period in 2018. This is expected to increase in the Q4 of 2019.

Rate of Change of Frequency (RoCoF Updates)

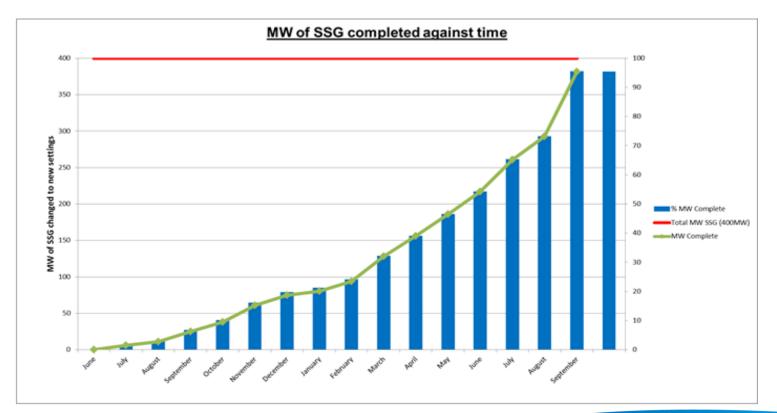
October 2019

ROCOF IMPLEMENTATION PROGRAMME

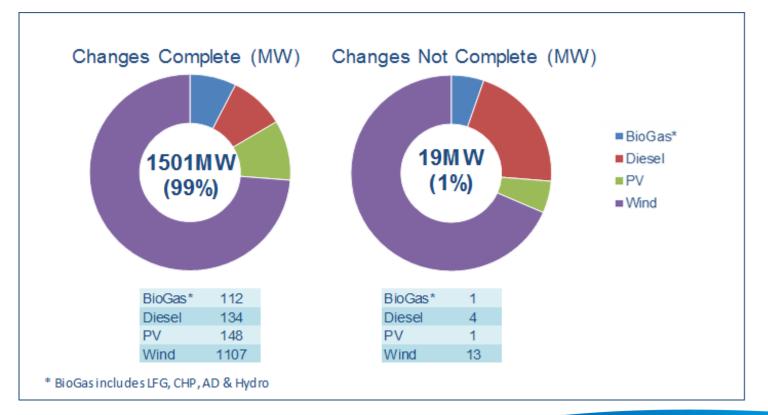

DS3 Advisory Council Update 16/10/19

David Hill

LSG RoCoF – Complete



- All LSG sites >5MW have been changed to new RoCoF setting
- 1120 MW changed to 1Hz/s RoCoF setting (including new LSG's connected during the programme)


- 1221 SSG's (87%) have been changed to new RoCoF setting
- 381 MW (95%) SSG now changed to 1Hz/s RoCoF setting

Total RoCoF (LSG & SSG) – Current Status

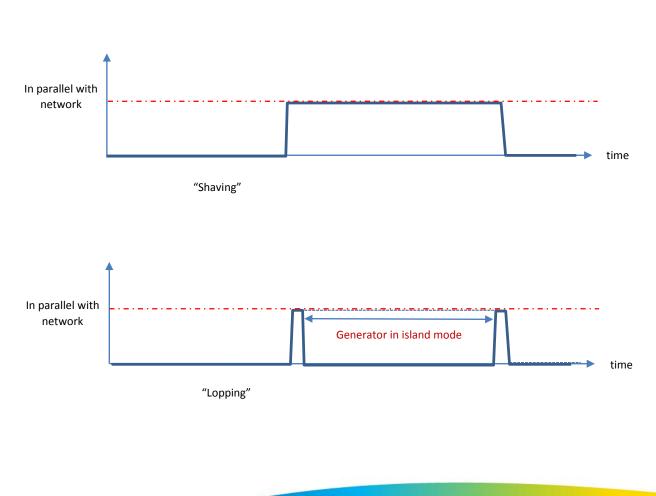
- 1289 Generators (88%) have been changed to new RoCoF setting
- 1501 MW (99%) Generators now changed to 1Hz/s RoCoF setting

ROCOF Implementation Programme

DS3 Advisory Group meeting 16/10/19

Tony Hearne

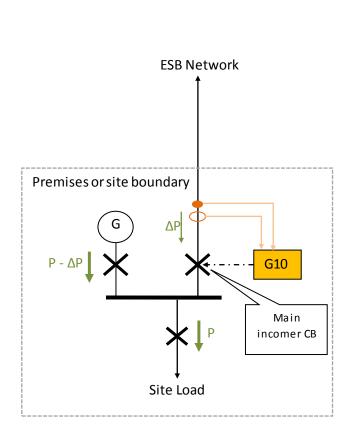
TSO-DSO Interface Manager


Non-wind, Non-exporting: High vs low risk

High Risk:

- High likelihood of running
- Operating in "shaving" mode ie operates in parallel for entire duration of running

Low Risk


- Lower likelihood of running
- Operating in "lopping" mode ie only operates in parallel for some minutes when going into and out of island mode

Emergence of "Trickle Feed" sites

- During engagements with Non-wind , Non-exporting Generators, the occurrence of a particular kind of site – setup, was encountered.
- Where this arrangement exists, the generator can take the whole site load and could go into island mode but instead, they choose to keep a small trickle import (typically ~30KW).
- Also, crucially, the Main Incomer CB opens.
- From ESBN perspective, this makes detection of a genuine local island more difficult – hence a tendency to leave legacy ROCOF settings in place
- From EirGrid perspective, system impact of CB opens is quite benign, with a loss of demand load of the trickle only.
- Where confirmed, these sites were deemed to be completed

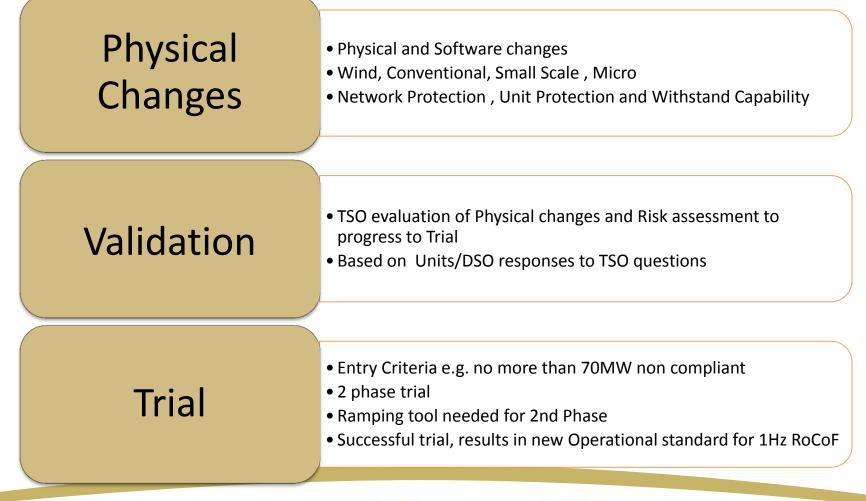
All new wind connections since 2016, with RoCoF compliant settings

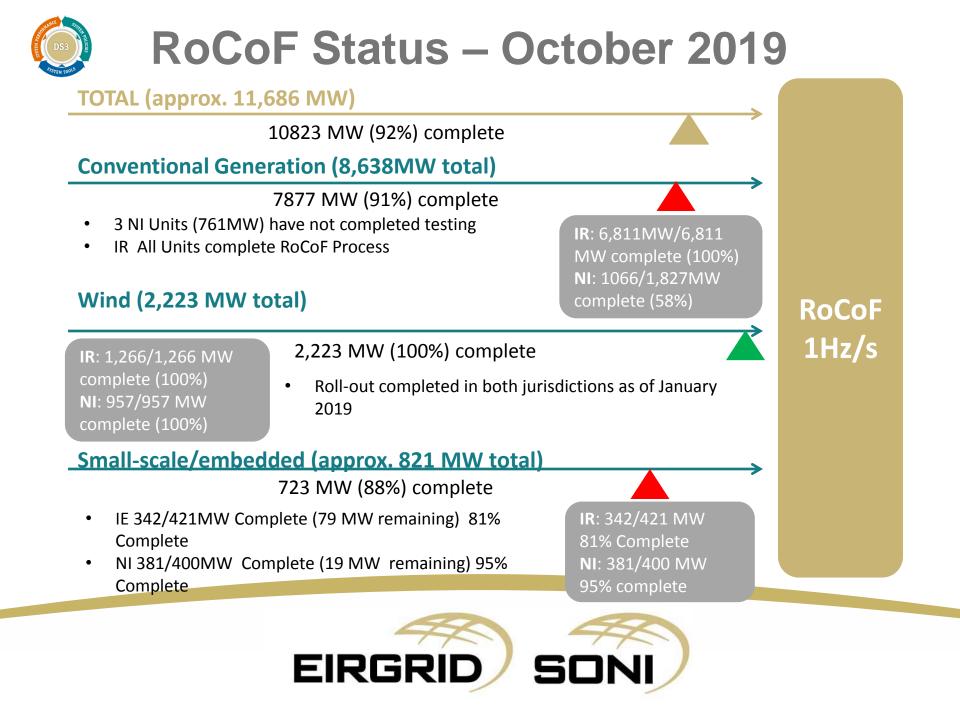
Non- wind, Non- exporting	Continuous and duration paralleling [MW] [High Risk]	Total complete ¹	Incomplete as of June 2019
MW	421.9	342.9	79
%	100	81.2	19.8

Status of	High	Risk	Non-wind,	Non-exporting
-----------	------	-------------	-----------	----------------------

	Settings Changed [MW]	Confirmed as Trickle feed topology [MW]	Sub-total [MW]
Diesel	56	79.8	135.8
СНР	151.3	5.2	156.5
LFG	26.3	0	26.3
W2E	23.5	0	23.5
Biogas	0	0	0
Hydro	0.8	0	0.8
Sub-total [MW]	257.9	85	
		Total [MW]	342.9

	Uncompleted as of June 2019						
	MW	No of units					
Diesel	54	28					
CHP	16.3	16					
LFG	5.1	6					
Biogas	0.27	2					
Hydro	3.5	8					
Total [MW]	79	60					




Questions?

RoCoF Status – October 2019

RoCoF Programme Impacts

- RoCoF trial planned for Oct 2019 start can not take place.
- Revised Plan proposes a 6 month delay to RoCoF trial – now start (April 2020)
- Delay due to level of non-compliance at this stage across NI gen and DSOs.

DS3 Programme Update

October 2019 Ian Connaughton

DS3 Control Centre Tools

October 2019

DS3 Control Centre Tools Overview

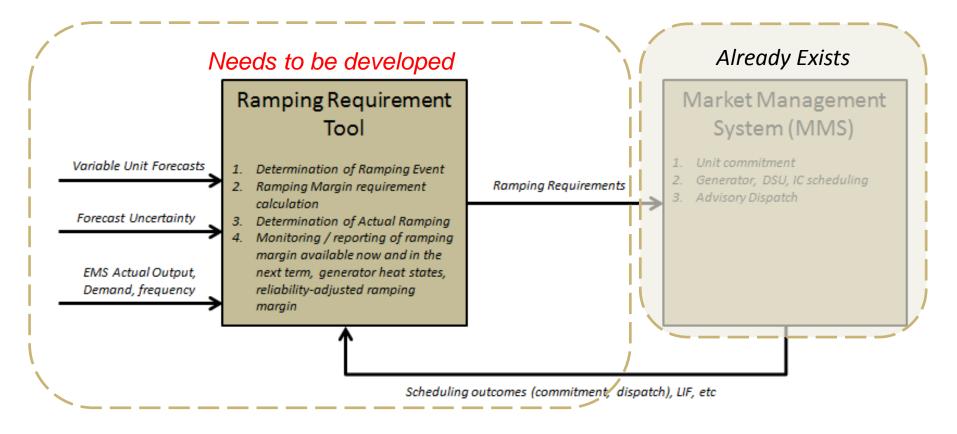
Design, procure & deliver enhanced capability to the Control Centres

Fully capitalised, approved by both RA, will increment opex in FY2020

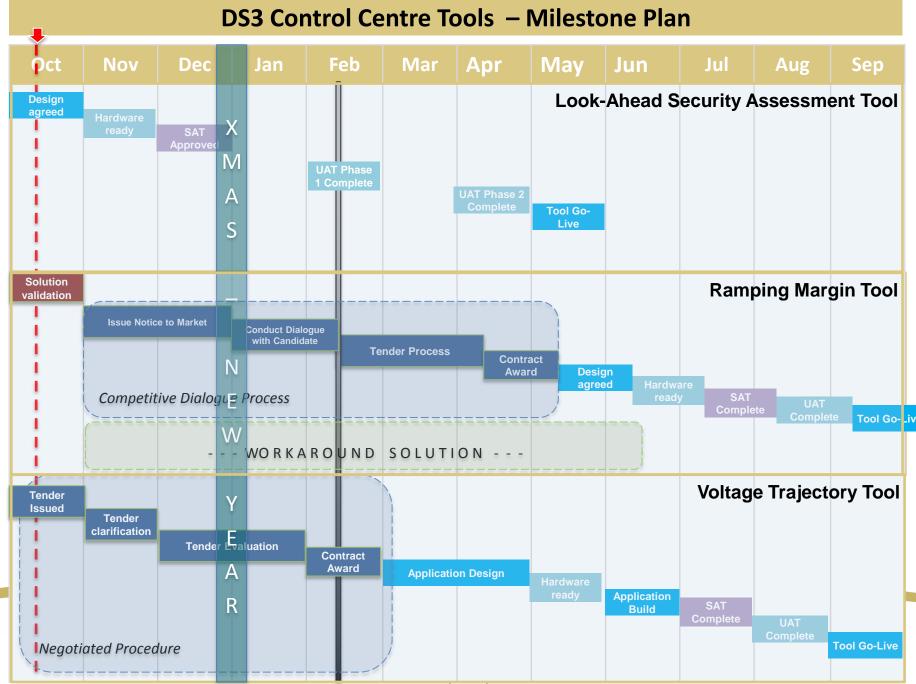
Collaborate with external vendors to deliver, supported by internal business partners

Key pillar of DS3 project & essential to increasing SNSP

Key Deliverables


Ramping Margin Tool Enhanced Frequency Control

Look-Ahead Stability Assessment Tool Enhanced Stability Analysis


Voltage Trajectory Tool Enhanced Voltage Control

Ramping Margin Tool - Overview

Data Feeds from MMS Delivered (CR94)

LSAT Status – Project Mobilisation

- LSAT notification of success sent to Vendor on 3rd October
- Standstill from 4th October to 18th October legal documents ready to be sent
- Project Mobilisation commences 18th October...

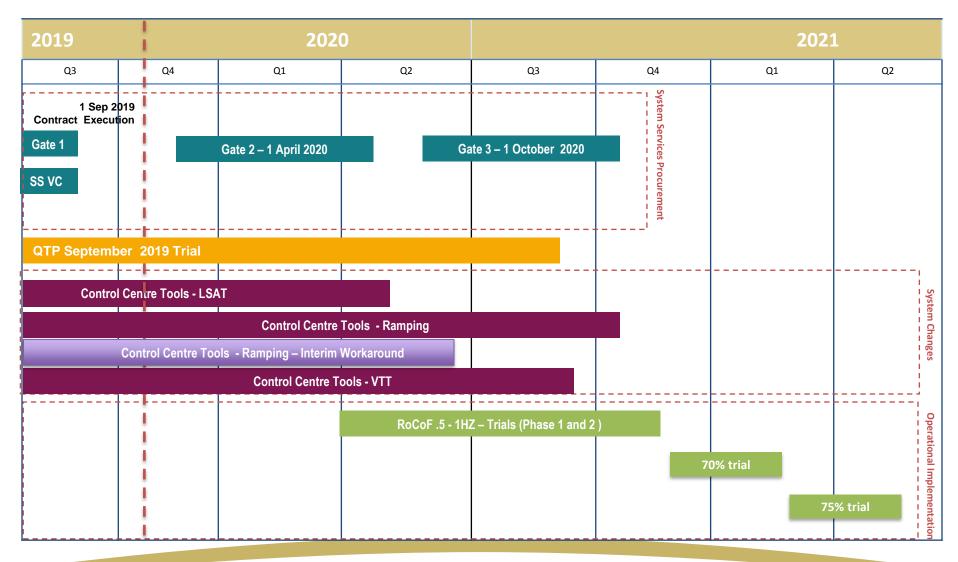
Date	Milestone
Oct-19	Project Kick Off
	Scope of Work signed off
Nov-19	Infrastructure ready
Dec-19	SAT approved
Jan-20	
Feb-20	Phase 1 UAT
Mar-20	
Apr-20	Phase 2 UAT
May-20	Tool Go-Live

Voltage Trajectory Tool - Status

- Two Vendors were qualified in the PQQ stage next step is to complete the tender request
- Tender preparation underway with expected submission End October, which would allow for contract award in Feb 2020
- Planned Go-Live September 2020

DS3 Task Plan

Task	2019 Q3	2019 Q4	2020 Q1	2020 Q2	2020 Q3	2020 Q4
Studies		Phase B RoCoF Studies	70% SNSP lower inertia limit study	Reserve studies		75% lower inertia study with reserves
Policies	Cat 1&2 Gen Studies	RoCoF -> 1 Hz/s	1 Hz/s Min sets: 7 17,500 MW.s	Reserve Policy FFR New Tech Dispatch Policy	Revised FFR, POR policies Min sets: 6?	Voltage control Policy
Control Centre Tools	Studies 5 min WSAT SS Tools FFR monitor	Robust WSAT	Look Ahead SAT Ramping	Scheduling Reserves Wind/DSM/Inter		Voltage Trajectory
Perf.	Interim OFGS	New Tech. Trials LoM settings	Enduring OFGS	Renewables Variation	Reserves from New Tech	
Capability	RoCoF changed	New FFR			DRR FFAPR	



Future Operational Metrics

	2020 Q1	2020 Q2	2020 Q3	2020 Q4	2021 Q1	2021 Q2
SNSP	65%	65%	65%	70%	70%	75%
RoCoF	0.5 Hz/s	0.5 -> 1 Hz/s	0.5 -> 1 Hz/s	1 Hz/s	1 Hz/s	1 Hz/s
Inertia	23,000 MW.s	23,000 MW.s	20,000 MW.s	20,000 MW.s	17,500 MW.s	17,500 MW.s
Min Sets	8	8	8 *	8 *	7 *	7*
Ramping			In the Control Centre	In the Control Centre	In the Control Centre	In the Control Centre
Reserve	POR: 75% FFR: 47%	POR: 75% FFR: 47%	Updated reserve policy implemented in Control Centre			

Revised DS3 Plan October 2019

Qualification Trial Process

October 2019

2019 Trials, Enhancing the portfolio In 2019...

Solar Technology - The overall objective is to prove solar technology capable of providing a range of the DS3 System Services

Aggregated Residential Services -The aim of the trial is to focus on the provision of DS3 System Services from residential heat and transport with a focus on large electrical appliances.

Alternative Communication Method - industry participants that are interested in utilising a new telecommunications protocol.

2019 Trials, Enhancing the portfolio

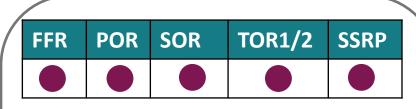
Solar Technology Trial – 12 month Trial taking place in Northern Ireland trialling the provision of

Focus Areas for learnings

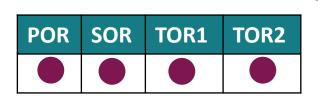
- Provenability of services,
- Forecast v Actual response.
- Operational Complexities for Solar Integration.

2019 Trials, Enhancing the portfolio

Residential Technology Trial – 18 month Trial


• 2 Service Providers - taking place in Ireland & Northern Ireland,

Focus Areas for learnings


- Provenability of services,
- Forecast v Actual response.
- Operational Complexities & Barrier of Integration
- TSO DSO impact

2019 Trials, Enhancing the portfolio Participant 1 Participant 2

- 34 customer sites
- Localised Response
- Battery Storage, EV's, Solar

- 20 customer Homes
- Aggregated response
- Focus on Battery & Solar

Communication Trial – 12 month Trial

 2 Service Providers - taking place in Ireland & Northern Ireland, on two separate technology types

Area of Focus

- Remote Terminal Unit (RTU) interface device and IEC101 telecommunications protocol to exchange data with the TSO.
- The system trial will be completed on the TSO proposed telecommunication protocols and hardware under the QTP trial process.
- The trial participants will work with the TSO to examine a number of factors such as the visibility, implementation, cyber security and reliability when compared against the current standards.

Publications

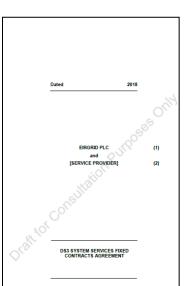
- PID Publications scheduled for end of October
- Progress reports published every Quarter
- Close out reports September 2019 for Solar and Communication trial

19/20 Qualification Trial Input

 QTP trial included as part of FlexTech consultation seeking input for focus areas – Responses open until 4/11/2019

Volume Capped Procurement update

October 2019


Procurement outcomes

Overview

- 18 Service Providers
- 110 MW procured from Battery Storage

Results

- 1 x 50MW
- 2 x 30MW
- All located in Ireland
- Estimated Contract Value of 35m over 6 years,
- Equivalent Regulated arrangement value of up to 210m

Status

• All contracts have been signed

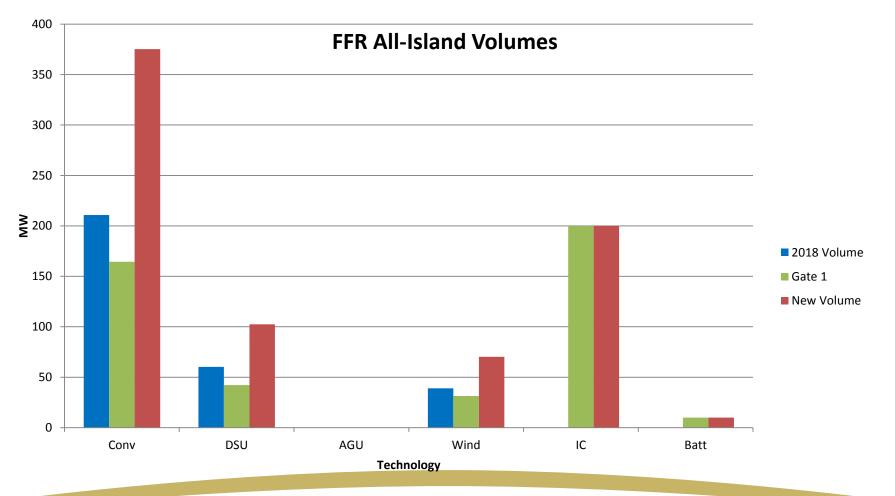
Volume Uncapped update 16 October 2019

Gate 1 Outcome

Gate 1 Outcome - Reserve

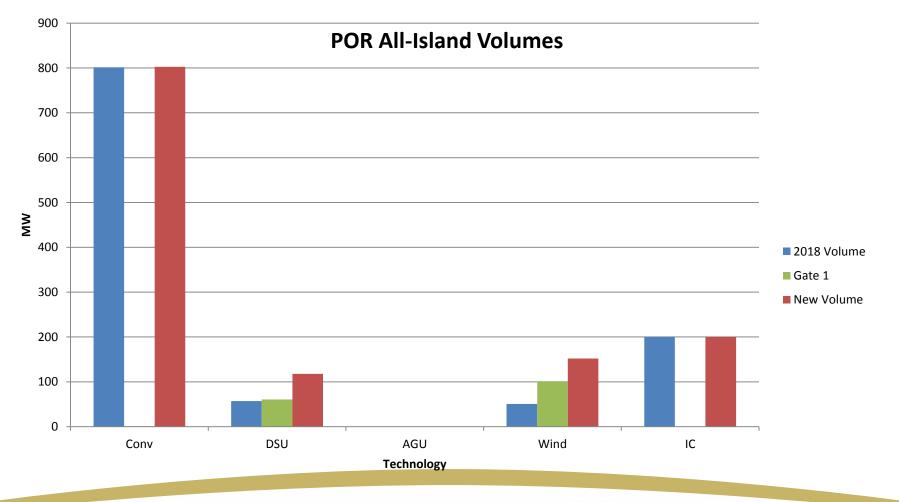
	FFR (MW)			POR (MW)		SOR (MW)			TOR1 (MW)			
	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1
Total Vol	755.21	309.83	445.38	1289.07	1129.04	160.03	1711.46	1533.67	177.79	2027.66	1762.44	265.22
Total Units	50	32	18	116	79	37	124	82	42	130	82	48
EirGrid Vol	608.46	301.25	307.21	850.54	713.56	136.98	1244.59	1090.25	154.35	1486.69	1315.32	171.37
EirGrid Units	39	27	12	86	57	29	92	60	32	98	64	34
SONI Vol	146.75	8.57	138.18	438.53	415.49	23.05	466.87	443.42	23.45	540.97	447.12	93.85
SONI Units	11	5	6	30	22	8	32	22	10	32	18	14

	TOR2 (MW)			R	RRS (MW)			RRD (MW)			
	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1		
Total Volume	2386.37	2291.77	94.61	4757.50	4590.70	166.80	2722.95	2629.17	93.78		
Total Units	84	76	8	63	61	2	68	62	6		
EirGrid Vol	1681.60	1605.11	76.49	3547.90	3391.10	156.80	1979.66	1915.07	64.59		
EirGrid Units	64	58	6	49	48	1	52	47	5		
SONI Vol	704.77	686.65	18.12	1209.60	1199.60	10.00	743.29	714.10	29.19		
SONI Units	20	18	2	14	13	1	16	15	1		

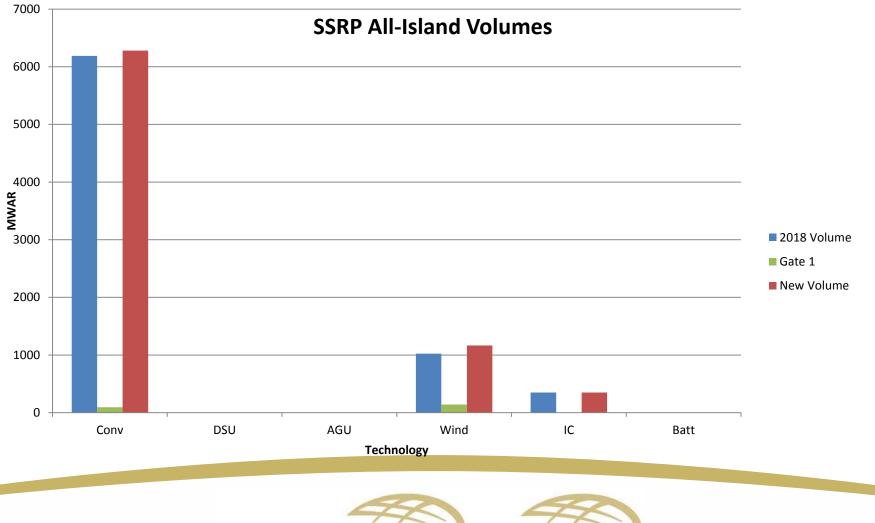

Gate 1 Outcome – SSRP, SIR, Ramping

	SS	RP (MVa	ır)	SIR (MWs ²)				
	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1		
Total Volume	7798.45	7562.42	236.04	669859.21	627866.65	41992.56		
Total Units	97	92	5	43	42	1		
EirGrid Vol	6569.99	6387.54	182.45	562493.42	521805.67	40687.75		
EirGrid Units	83	78	5	31	31	0		
SONI Vol	1228.46	1174.87	53.59	107365.79	106060.98	1304.82		
SONI Units	14	14	0	12	11	1		

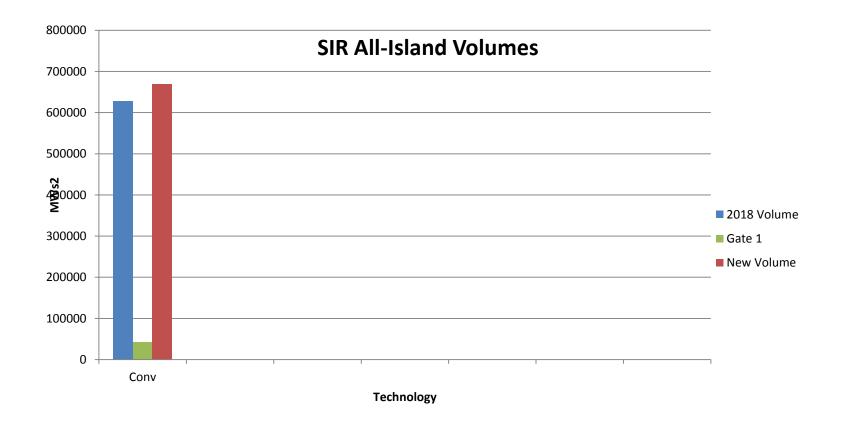
	RM1 (MW)			R	RM3 (MW)			RM8 (MW)			
	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1	Sep-19	2018	Gate 1		
Total Volume	7507.24	6733.31	773.93	8526.80	8492.92	33.88	9148.12	9114.24	33.88		
Total Units	92	82	10	73	71	2	73	71	2		
EirGrid											
Volume	6010.16	5253.24	756.92	6644.86	6627.36	17.50	7223.79	7206.29	17.50		
EirGrid Units	72	63	9	56	55	1	56	55	1		
SONI Volume	1497.08	1480.07	17.00	1881.94	1865.56	16.38	1924.33	1907.95	16.38		
SONI Units	20	19	1	17	16	1	17	16	1		



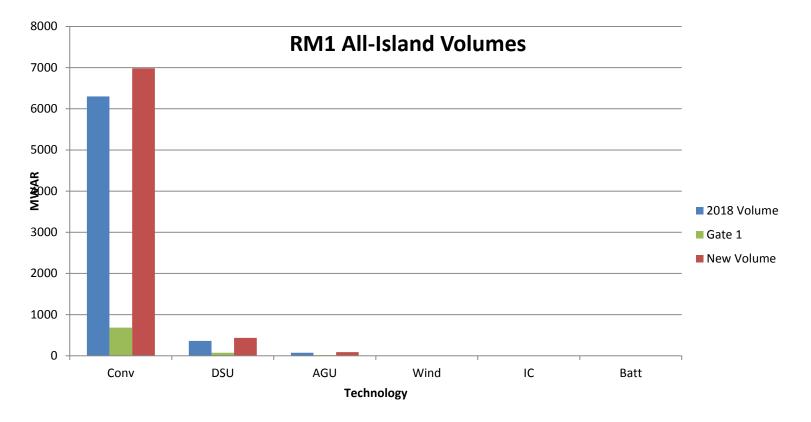
Gate 1 – Sample Outcome – FFR



Gate 1 – Sample Outcome – POR

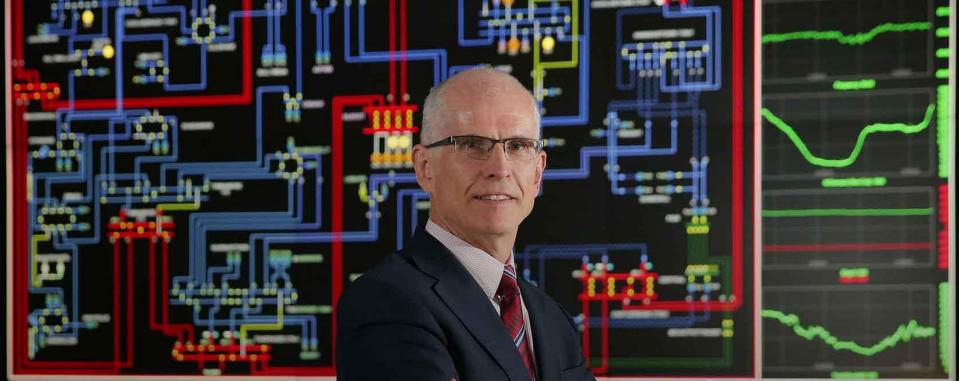


Gate 1 – Sample Outcome – SSRP



Gate 1 – Sample Outcome – SIR

Gate 1 – Sample Outcome – RM1

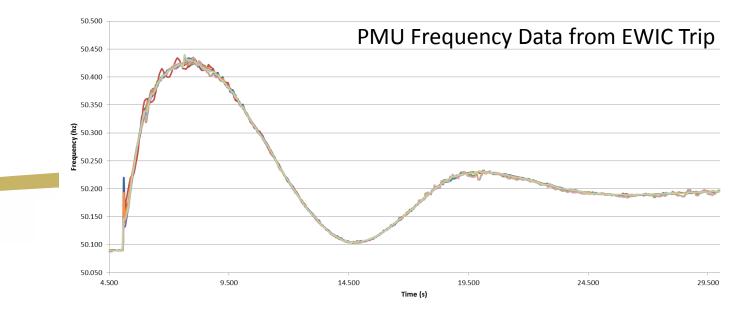


Priority Dispatch/CEP

October 2019 Jonathan O' Sullivan

Over Frequency Generation Settings

October 2019 Peter Wall


Over Frequency Generation Shedding

Summary of Study and Recommendations

Background

- High export on EWIC raises issue of a significant over frequency event in case of EWIC trip on export
- Over Frequency Shedding Scheme in place to contain this
 - Combination of wind tripping and generator runback scheme was implemented as an interim scheme to limit frequency to 50.5 Hz
 - Has successfully contained an EWIC export trip
 - EWIC Trip on 472 MW export at 02:47 on 28/02/18

Background

- Generator runback scheme rarely activated and EirGrid committed to remove this scheme
 - This can be achieved by including more wind tripping
 - This wind only scheme is the enduring scheme
- Studies had been performed to design this enduring scheme; however a redesign was required due to changed assumptions
 - 2015 settings assumed legacy wind that trips at 50.8 Hz had moved to at least 52 Hz (1GW of wind)
 - provide required shedding using WFs that have existing TSO O/F relays
 - NI settings for system separation have already been adopted

Objectives

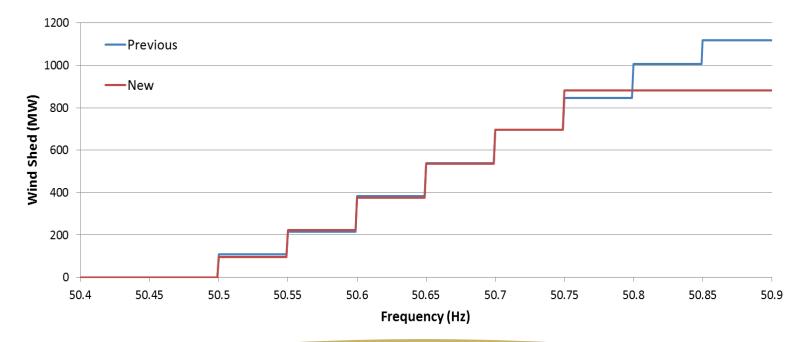
- Define a new tripping schedule that, using the wind farms that are available to trip, mimics the previous schedule, as far as is reasonable;
- Assess the potential for an EWIC trip on high export at times of low wind;
- Use TSAT studies to verify the effectiveness of the new enduring scheme;
- Study restricted to IE wind farms and EWIC trip as NI settings for system separation already implemented; and
- Changed assumptions do not impact system separation on NI/IE export

Review of WFs with O/F relays

- 16 wind farms have TSO O/F relays in IE
- 8 WFs in interim tranches and 8 set to 52.1Hz
- Concentration of resource in south west

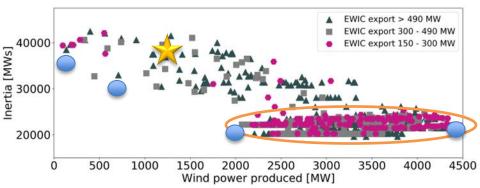
Region of Resource	MW O/F	Count
South West	545	10
South East	135	3
North	201	3
Total	881	16

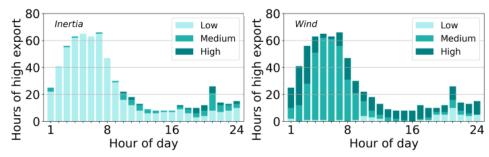
- 2018: 16 wind farms and 881MW available to shed
- 2015: 27 wind farms and 1063MW shed


Methodology for Selecting Settings

- Maximum allowable frequency 50.8Hz
- First and final trigger frequency 50.5 Hz and 50.75 Hz
- Ensuring wind in one sub-region was not tripped in adjacent stages (to minimize likelihood of voltage issues),
- Reasonably balanced tripping stages to limit the impact of any one stage tripping,
- Where necessary, larger stages of tripping appear later in the schedule to reduce consequences of unnecessary tripping, and
- Ensuring wind farms in areas with known voltage issues on tripping are only tripped in later stages.

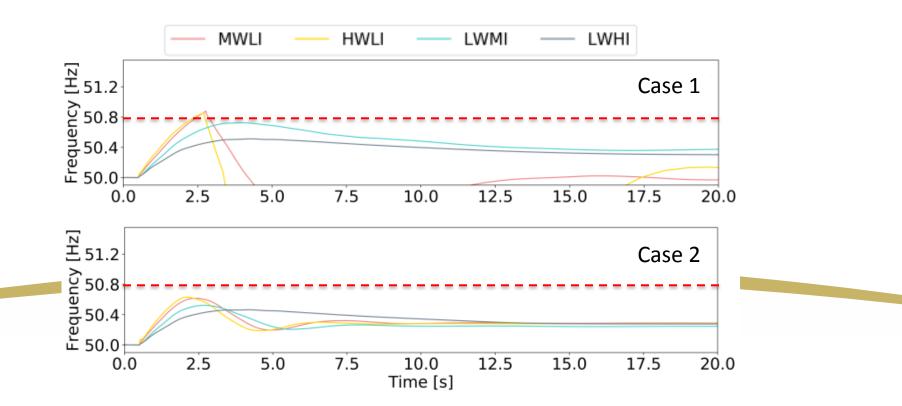
Tripping Schedule


- Close match to 2015 profile was achieved
 - Above 50.8 Hz no tripping planned due to legacy wind

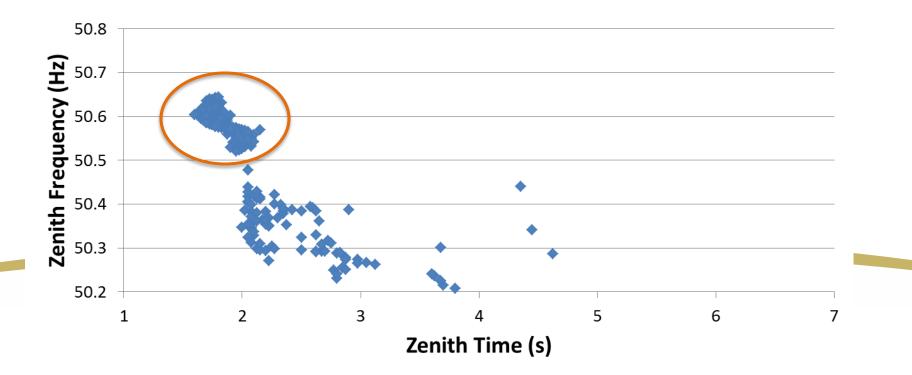


Case Selection

- 75% SNSP, 1Hz/s, 20 GWs future operation studied
- Inertia and wind for EWIC export levels have a clear envelope that is independent of export
- Clear concentration of export for low inertia medium to high wind
- High export (>490) primarily occurs overnight for low Inertia and medium wind


Medium Inertia is 25 GWs to 35 GWs Medium Wind is 2250 MW to 3250 MW

Snapshot Studies


- All snapshots are secure if scheme is in place
- Cases: Case 1: no OFGS

Case 2: Wind tripping and wind in APC (50%)

Study Results with Enduring Scheme

- Frequency secure for all hours for all cases studied
 - All cases with export in excess of 490 MW
 - Zeniths separated into *natural* zeniths and *trip* zeniths

When to Review Study

- 1. Reduced inertia floor to 17,500 MWs,
- 2. Any increase in the SLO above 500 MW,
- 3. Any indication that the loss of EWIC could cause the sympathetic tripping of Dublin Area data centres,
- 4. Any connection of very large demand sites (~500MW) may require a more detailed review of the low inertia, low wind hours of operation, and
- 5. A significant change in the correlation between EWIC export and wind/inertia (boundary of high export operation).

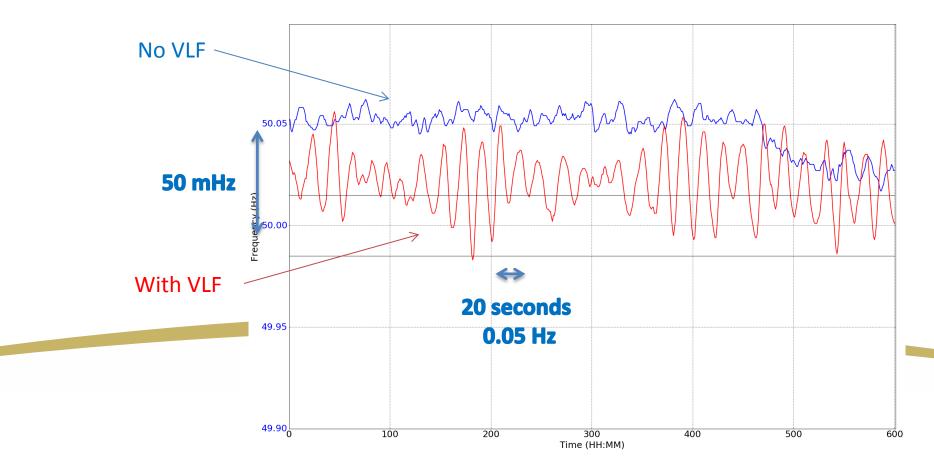
Next Steps

- 1. Implement new enduring settings in Ireland
- 2. Remove generator runback SPS
- Incorporate OFGS review studies into future program of work. To be performed within at least two years of last studies approval, or if any of the changes highlighted in the recommendations occur
- 4. Review opportunities to, wherever possible, reduce legacy wind as incremental reduction would be beneficial
- 5. Draft new Negative Reserve operational policy

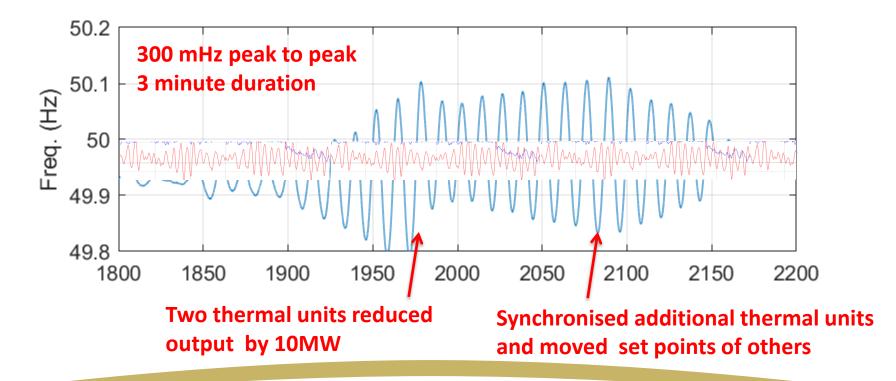
Oscillations

October 2019 Peter Wall

Very Low Frequency Oscillations on the All-Island System

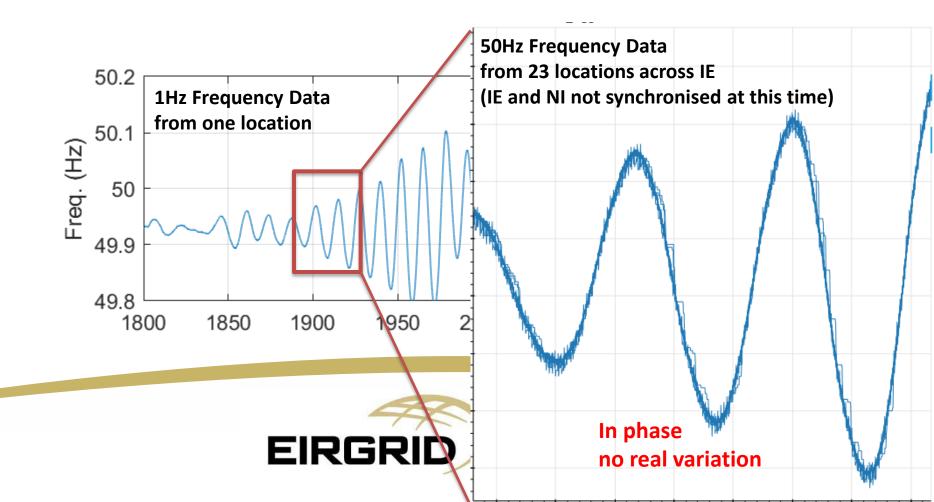

Outline

- 1. Introduction to VLF oscillations
- 2. Outcomes of past work
- 3. Conjecture on root cause
- 4. Ongoing Monitoring
- 5. Next Steps


VLF Oscillation

- Modulation of system frequency
- Usually has oscillatory frequency of approx. 0.05Hz

VLF Oscillation


• Can result in significant events (no clear exciting event)

VLF Oscillation

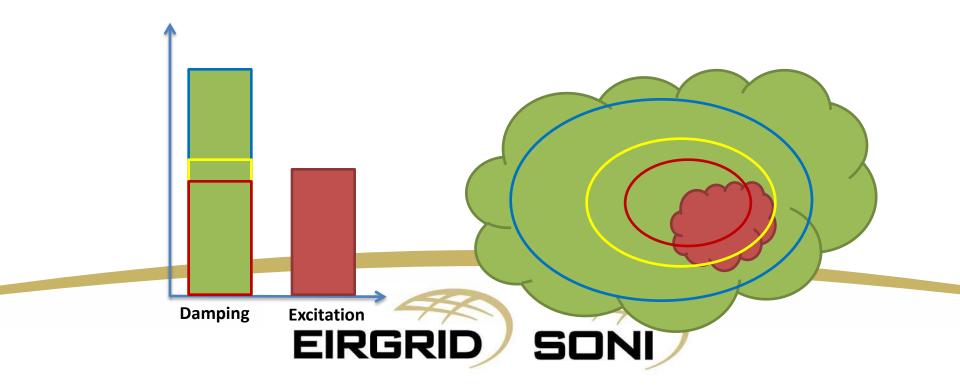
Common Mode Oscillation

Outcomes of Past Work

What do we know so far?

Outcomes of Past Work

- No significant system level correlation
- Occurs in clear sensitised blocks not continuously
- Strongly linked to generator governor behaviour
- Unlikely to be linked to a single unit or small set of units
- Likely driven by specific unit commitments and dispatches
- Occurs within generator deadband of +/- 15mHz
- Wind following behaviour of turbines may be sensitising the system to the oscillation (very low frequency noise)


Conjecture

- Oscillations are linked to specific unit commitments and dispatches
 - i.e. if certain combinations of units are on and running in a certain way then oscillations will occur
 - Some of these will give rise to more severe oscillations than others
 - Likely that there are units that help supress the oscillation
- The severity of any oscillation is a combination of
 - The severity of the root cause conditions (mode stability margin)
 - The size of any system event (excitation)
 - The amount of inertia and regulation on the system (mitigation)

VLF as a Feature of the System

- This VLF issue may be a feature of operating a very low inertia system and not due to new control issues
 - Using fewer synch gen at more extreme operating points may be exposing a long standing issue

Next Steps for VLF Management

Defining the Root Cause and Mitigating it

Workstreams

- 1. Ongoing monitoring based on signal processing
 - Tools for ongoing analysis and historical review
- 2. Detailed correlation to system operation

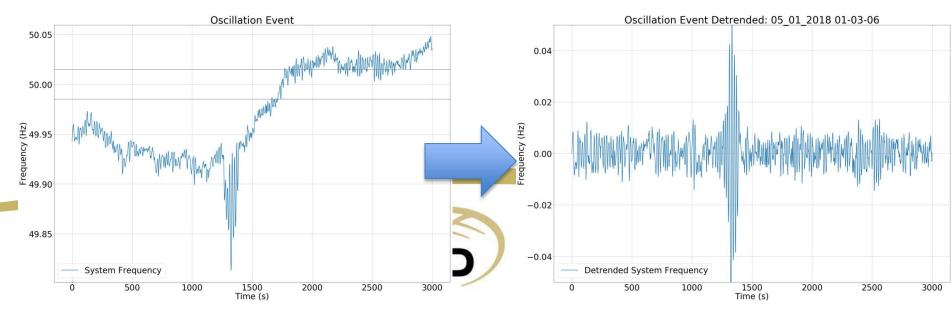
EIRG

- Learning machine based correlation of events to unit commitment and dispatch
- 3. Detailed Model based studies
 - Remodel system to enable small signal analysis and accurate time domain study of events with multi-minute duration

Almost Complete In Progress

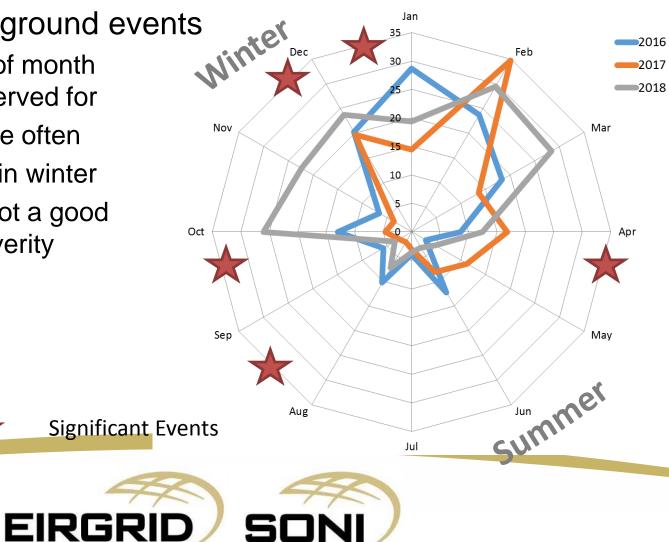
Just Started

Target completion late 2020

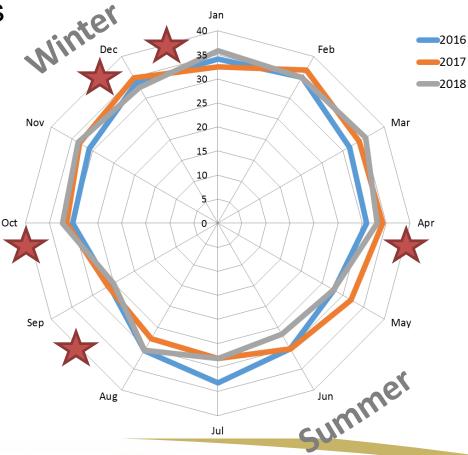

Ongoing Monitoring

Is VLF getting worse?

Ongoing Monitoring Tools


- Create tools to allow the monitoring and trending of the oscillation over time
 - Developing effective automatic magnitude estimation was focus
- Signal processing of 1Hz data
 - Tool uses a detrending process developed at UCC to identify oscillations from the data and determine their magnitude

Ongoing Monitoring


Review of background events

- Plot shows % of month oscillation observed for
- Appearing more often
- More frequent in winter
- Occurrences not a good indicator of severity

Ongoing Monitoring

- Review of background events
 - Plot shows median pk-pk magnitude in mHz
 - Very uniform magnitude
 - Occurrence not a good indicator of severity

Small Signal Modelling

Enable Detailed Study of VLF

Why do we need a new model?

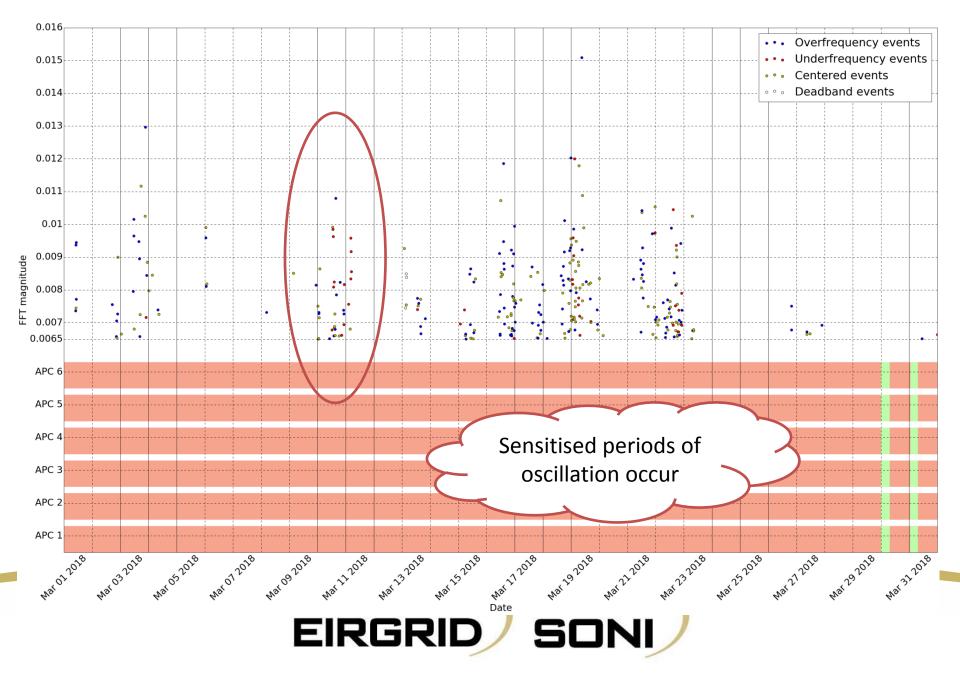
- WSAT model not intended for studying oscillations that take several minutes
 - Focus is steady state and dynamic security
 - So does not capture the oscillation and its drivers
- Small signal analysis is a key tool for mode stability analysis and controller tuning
- Small Signal analysis requires linearisable models and we are also attempting to model in more detail

New Information and Engagement

- Looking to engage more with generator owners (wind and synch.) on this issue
- Exact queries will be guided by initial model development and outcomes of learning machine
- Likely new information:
 - Any vulnerability to VLF
 - Frequency domain analysis of wind farm export
 - PSS on/off and when
 - Alternative modes of governor operation
 - When unit is/isn't frequency sensitive
 - Any reports or information on observed oscillations in generators

Options for Future Management Long Term Plan

Options for Future Management


- Severity of future management depends heavily on quality of outcome
- Possible mitigation plans:
- 1. Requiring operation with a certain level of damping of the mode based on detailed understanding
- 2. Limiting dispatch on certain units (narrow forbidden regions) based on understanding of source
- 3. Avoiding certain unit commitment combinations
- 4. Requesting controller changes

Questions?

Events distributed against time – March 2018

Our Purpose Transform the power system for future generations

EirGrid's role is to: Develop Manage Operate

the electricity system throughout the island of Ireland. Transforming the power system for future generations.

