Welcome DS3 Advisory Council Members

- Please log in with Mic muted
- Questions can be logged using chat
- There will be 5 minutes at end of each topic to cover questions / comments
- *1 Plays a description of the menu options that are available during a meeting.
- *6 Mutes or unmutes your microphone

ormation Centre

DS3 Advisory Council – Meeting 28

Workingv

safe, secu

suppyof

S.W.L. 300 KG

MS Teams – Virtual Meeting 30 September 2020

Agenda

	Торіс	Time	Speaker					
	Introduction & Welcome	11:00	Jonathan O' Sullivan, EirGrid (10 min)					
	Industry Discussion (TBC)							
ο	Wind Farm Dispatch Down	11:10	Rory Mullan, MullanGrid(20 min)					
Re	lated Analysis							
	Renewable stats – historical	11:30	Jonathan O' Sullivan, EirGrid (10 min)					
	stats for last 10 years							
	DS3 Programme Update	11:40	Jonathan O' Sullivan , EirGrid (10 min)					
ο	General	11:50	Kenneth Conway (10 min)					
0	RoCoF	12:00	Mary Hennessey, EirGrid (10 min)					
0	Control Centre Tools	12.10						
ο	Procurement	12:10	Joe Deegan, EirGrid (10 min)					
ο	FlexTech	12:20	Daniel Dixon , EirGrid (10 min)					

Agenda

Торіс	Time	Speaker
REST	12:30	ALL (10 min)
Future Arrangements	12:40	Jonathan O' Sullivan, EirGrid (10 min)
DS3 Advisory Council Membership / Open positions	12:50	Jonathan O' Sullivan, EirGrid (10 min)
AOB	13:00	Jonathan O' Sullivan, EirGrid (5 min)

ormation Centre

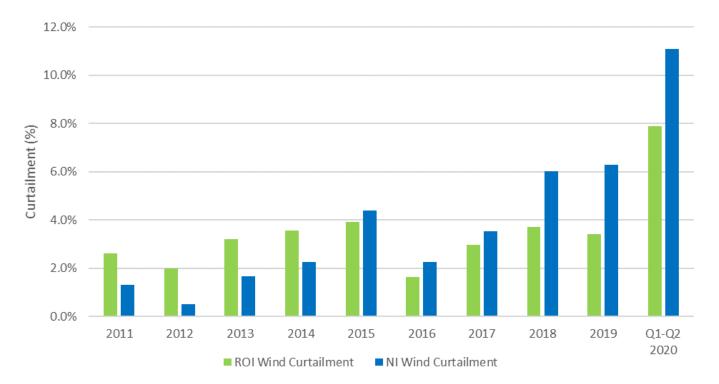
Industry Discussion

30 September 2020

Workingv

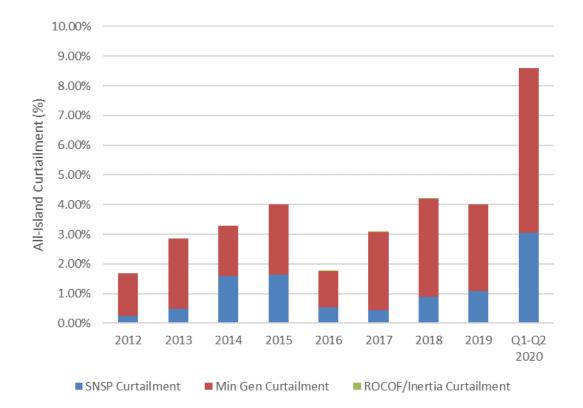
safe, secu

supplyof

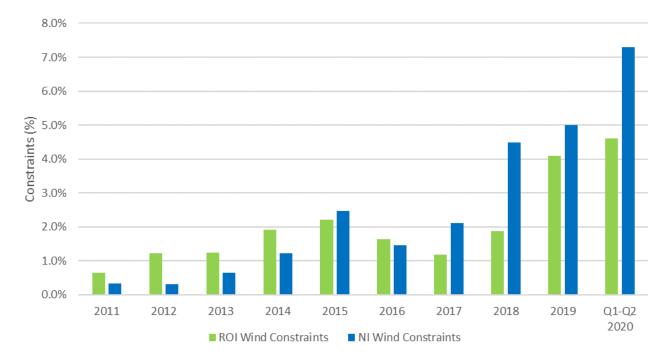

S.W.L. 300 KG

Wind Farm Dispatch Down Related Analysis

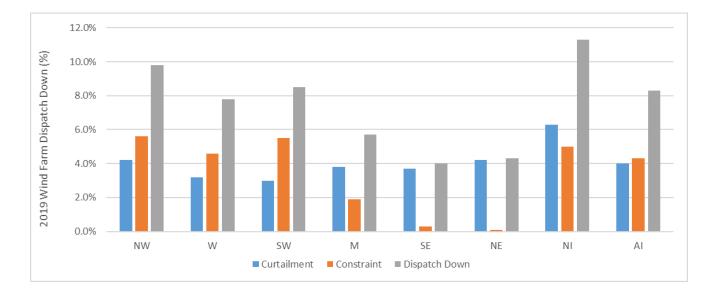
DS3 Advisory Council - Sept 2020


Historical Wind Curtailment

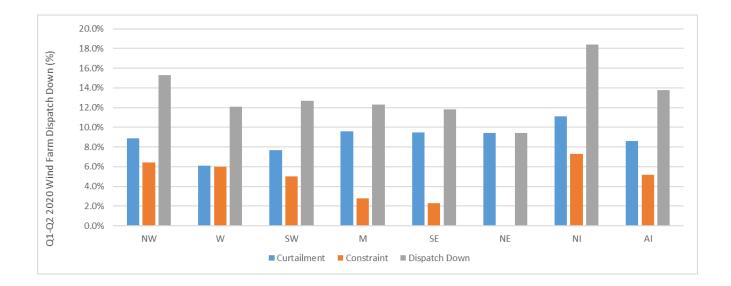
Source: EirGrid & SONI's Annual Renewable Energy Constraint and Curtailment Reports, and Wind Farm Dispatch Down Reports



Drivers of Wind Curtailment


Historical Wind Constraints

Source: EirGrid & SONI's Annual Renewable Energy Constraint and Curtailment Reports, and Wind Farm Dispatch Down Reports


Estimation of Cost of 2019 Wind Farm Dispatch Down

Wind		All Wind Farms												IWEA Working Group Wind Farms		
Region	Wind MEC	MEC Curtailment Curtailed E		Curtailed Energy Constraints		Constrained Energy Lost Curtailed		Lost Constrained		Total Lost		Wind MEC (MW)	Total Lost Revenue (€)			
Region	(MW)	(%)	(MWh)	(%)	(MWh)	I	Revenue (€)		Revenue (€)	F	Revenue (€)		Total Lost Revenue (€)			
NW	443	4.2%	37437	5.6%	49917	€	2,574,304	€	2,879,744	€	5,454,048	319	€	4,490,418		
W	1102	3.2%	80831	4.6%	116195	€	5,857,043	€	8,157,939	€	14,014,982	896	€	12,350,400		
SW	1509	3.0%	111296	5.5%	204042	€	8,361,517	€	14,891,816	€	23,253,333	1339	€	21,892,974		
М	542	3.8%	50750	1.9%	25375	€	3,919,815	€	1,959,907	€	5,879,722	454	€	5,247,610		
SE	363	3.7%	28701	0.3%	2327	€	2,063,348	€	152,662	€	2,216,010	275	€	1,792,911		
NE	180	4.2%	16173	0.1%	385	€	1,251,982	€	29,809	€	1,281,791	138	€	1,038,515		
NI*	1108	6.3%	162597	5.0%	129046	€	15,390,388	€	9,549,212	€	24,939,600	963	€	22,177,745		
AI	5247	4.0%	487786	4.3%	527286	€	39,418,396	€	37,621,090	€	77,039,486	4384	€	68,990,573		
	Estimated	Lost Wind Ener	gy as Percentage of 2	019 All-Island E	lecticity Sector CO ₂ Emi	ssions	s**	2.9%								
	Estim	ated Lost Wind	Energy as Percentage	e of 2019 All-Isla	and Electricity Demand'	***					2	.7%				

Estimation of Cost of Q1-Q2 2020 Wind Farm Dispatch Down

Wind				IWEA Working Group Wind Farms											
Region	Wind MEC	Curtailment	Curtailed Energy	Constraints	Constrained Energy	Lost Curtailed		Lost Constrained		Total Lost		Wind MEC (MW)	Total Lost Revenue (€)		
Region	(MW)	(%)	(MWh)	(%)	(MWh)		Revenue (€)		Revenue (€)	F	Revenue (€)		Total Lost Revenue (€)		
NW	443	8.9%	46819	6.4%	33667	€	2,929,166	€	1,943,247	€	4,872,413	319	€	4,009,667	
W	1127	6.1%	93358	6.0%	91828	€	6,557,322	€	6,431,114	€	12,988,436	896	€	11,152,301	
SW	1543	7.7%	172183	5.0%	111807	€	12,676,151	€	8,128,519	€	20,804,670	1368	€	19,645,841	
М	538	9.6%	75666	2.8%	22069	€	5,846,414	€	1,705,204	€	7,551,618	454	€	6,740,067	
SE	363	9.5%	43491	2.3%	10529	€	2,955,934	€	686,668	€	3,642,601	275	€	2,927,916	
NE	180	9.4%	21362	0.0%	0	€	1,654,836	€	-	€	1,654,836	138	€	1,340,978	
NI*	1108	11.1%	177492	7.3%	116729	€	12,442,387	€	7,127,780	€	19,570,167	963	€	17,338,001	
AI	5303	8.6%	630370	5.2%	386630	€	45,062,209	€	26,022,532	€	71,084,741	4413	€	63,154,772	
	Estimated Lost Wind Energy as Percentage of Q1-Q2 2020 All-Island Electicity Sector CO ₂ Emissions**								5.8%						
	Estimate	d Lost Wind En	ergy as Percentage of	Q1-Q2 2020 All	-Island Electricity Dema	nd**	*				4	.8%			

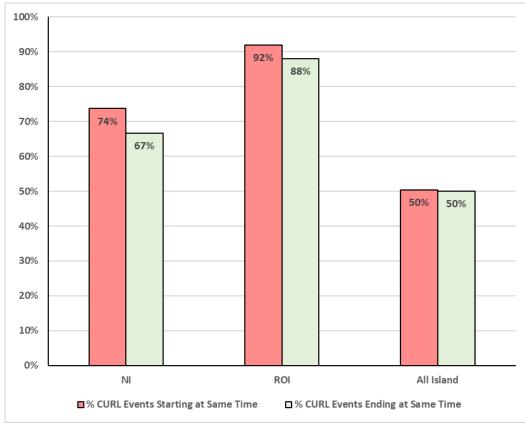
Update on Minimum Generation Levels During Curtailment Events

			MEC	Declared		Avg Gene	ration Le	vel During	g Curtailm	ent Even	ts (MW)	
	Generator	Fuel Type	(MW)	Min Gen Level (MW)	Q2 2020	Q1 2020	2019	2018	2017	2016	2015	2012-14
				_	147	150	162	228	252	257	248	271
				_	143	127	147	140	151	158	2016 2015 257 248 158 176 191 195 129 236 121 117 121 117 121 118 127 120 0 0 207 218 0 35 0 0 225 187 255 257 76 74 78 75 76 79 96 101 1403 1280 62 64 106 121 127 0 107 117 108 119 283 271	181
				_	174	154	157	141	252 257 248 151 158 176 140 191 195 123 129 236 94 121 236 94 121 117 115 224 199 115 121 117 116 121 118 121 127 120 0 0 0 216 207 218 0 0 35 0 0 35 0 0 35 0 0 35 0 0 35 0 0 35 0 0 35 0 121 187 202 225 257 71 76 74 73 78 75 74 76 79 88 96 101 1329 1403 <td>181</td>	181		
				_	125	120	117	124	123	129	248 176 195 236 199 117 118 220 0 218 35 0 187 257 74 75 75 79 101 1280 64 121 0 117 1280 64 121 0 117 119 271	242
				-	126	129	117	117	94	121	230	272
				-	214	203	206	210	215	224	199	198
	nts			_	83	84	102	119	115	121	117	121
-	Must Run Plants			_	0	0	0	112	116	121	6 2015 2017 7 248 2 8 176 1 1 195 1 9 236 2 4 199 1 1 117 1 1 118 1 7 218 2 3 0 7 7 218 2 35 0 7 5 257 7 6 74 7 5 257 7 6 74 7 7 75 8 7 101 1 13 1280 13 64 6 6 7 0 8 7 117 1 8 119 1 3 271 2	120
Republic of Ireland	un			_	0	0	107	117	28252257248271401511581761814114019119518124123129 236 2421794121117121102152241991981911512111712112116121118120171211271201151800009721620721820635003508800009220222518718893202255257070717674767073787536889610110122713291403128013113107117122	115		
Irel	st R	-	0	0	0	38	0	0	0	0		
of	Ψ	154	148	146	197	216	207	218	206			
blic	_	-						35	0	0	35	0
bu		_	38	36	36	38	0	0	0	0		
8								192	202	225	187	188
	1				185	188	175	193	202	255	257	0
				_	62	69	65	70	71	76	74	76
				-	62	68	65	70	73	78	75	76
	Priority Dispatch Plants			_	51	62	62	65	62	74	75	85
	Priority Dispatch Plants			_	44	60	58	62	74	76	79	75
				-	58	74	75	86	88	96	101	101
	Average Total ROI Min Gen	During Curtail	ment Ev	ents (MW)	1198	1222	1158	1227				
5	Its			-	78	69	71	66				-
Northern Ireland	Must Run Plants			-	148	155	118	114			2015 20 248 2 176 2 195 2 236 2 199 2 117 2 118 2 0 2 35 0 187 2 74 2 75 7 79 1 64 1 0 117 119 2 211 1	
Ire	- un			_	143	124	120	127				
ern	st R			-	96	94	104	113				
Ţ.	Aus M			-	96	94	110	115		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
۶				_	289	285	282	289				264
	Average Total NI Min Gen D	uring Curtailm	ent Evei	nts (MW)	416	395	405	419	467	488	470	411

Plants Running >20 MW Above Declared Min Gen

Update on Interconnector Activity During Wind Curtailment Events

		2014	2015	2016	2017	2018	2019	Q1 2020	Q2 2020	2014 to Q2 2020
L L	Curtailment Events(nr.)	137	119	87	103	112	135	63	25	781
men nts	EWIC Avg Net (MW)	190	-1	-64	-271	-190	-311	-326	-287	-157
tailn	EWIC Avg Net (%)	36%	0%	-12%	-51%	-36%	-59%	-62%	-54%	-30%
Curt	Moyle Avg Net (MW)	99	-46	-127	-186	-49	-72	-27	15	-49
0	Moyle Avg Net (%)	40%	-18%	-42%	-62%	-16%	-19%	-7%	4%	-15%
ds	EWIC Absolute Avg (Day) (MW)	376	213	14	-18	39	-40	-157	-69	45
erio	EWIC Absolute Avg (Night) (MW)	78	-24	-15	-171	-154	-83	-78	-104	-69
<u>م</u>	Moyle Absolute Avg (Day) (MW)	154	61	-11	41	145	98	59	78	78
AI	Moyle Absolute Avg (Night) (MW)	50	-92	-59	-76	16	67	109	-41	-3


Notes:

Moyle's permitted export capacity has varied from 250MW in 2014 and 2015, increasing to 300MW between 2016 and Q1 2019, and increasing to 380MW from Q2 2019 onwards Positive figures represents imports, negative figures represent exports

EWIC Out of Service: 2014 = 43 days, 2015 = 14 days, 2016 = 109 days, 2017 = 53 days, 2018 = 49 days, 2019 = 12 days, 2020 = 6 days Moyle Out of Service: 2014 = 65 days, 2015 = 2 days, 2016 = 46 days, 2019 = 9 days

Understand if curtailment events are starting/ending at the same time 2019

Percentage of Events Starting/Ending At Same Time in 2019

Understand if curtailment events are starting/ending at the same time Jan – March 2020

Figure 7: Percentage of Events Starting/Ending At Same Time during period Jan - March 2020

ormation Centre

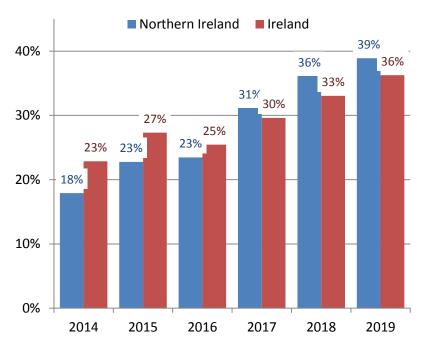
2020

DS3 Programme Updates

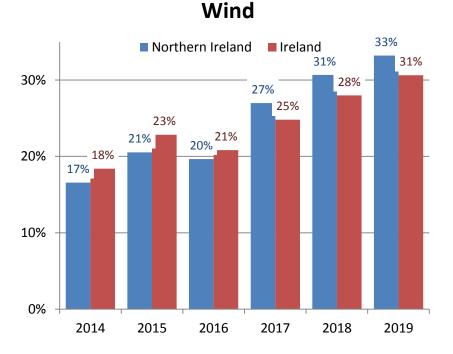
Workingv

safe, secu

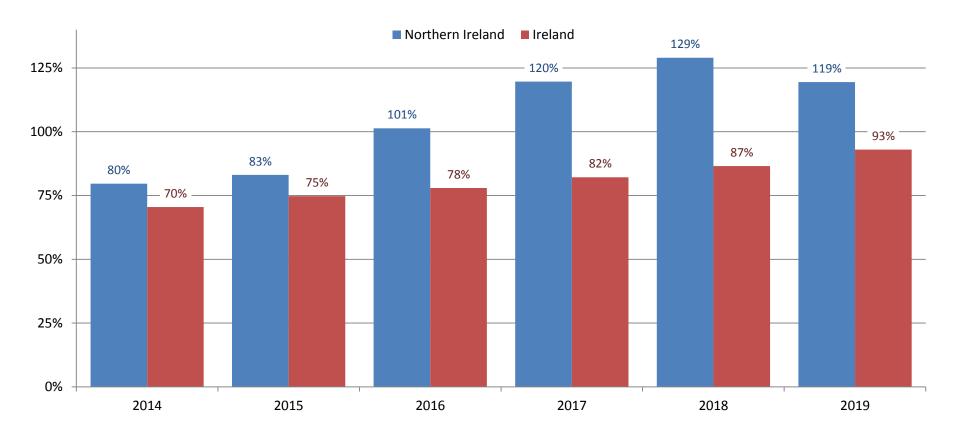
supply of


S.W.L. 300 KG

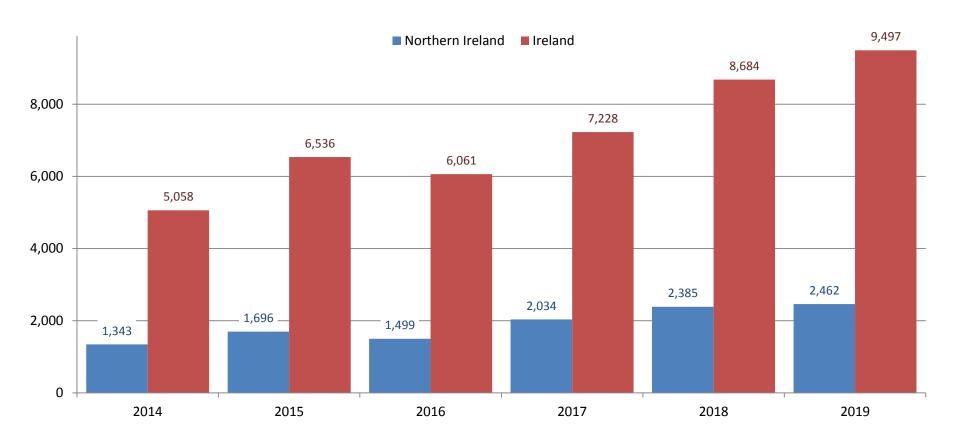
Wind Generation


- In terms of renewable electricity as percentage of demand, renewable energy accounted for average of 38% in 2020.
- SNSP has been higher than 50% for 34% of the time in 2020.
- By June 2020, a total of 5,510 MW of wind capacity was installed across Ireland and Northern Ireland.

Renewable stats – historical stats % of Demand (6 year summary)



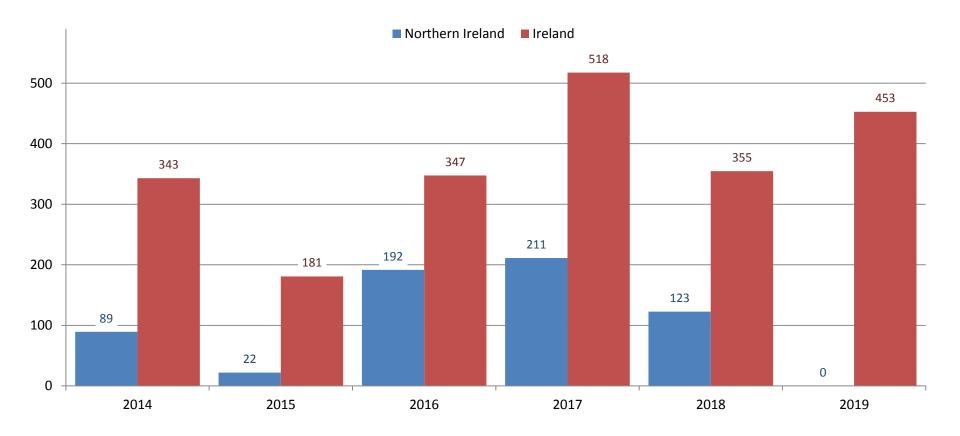
Renewable Electricity (inc. wind)



Maximum Wind Penetration as % of Demand

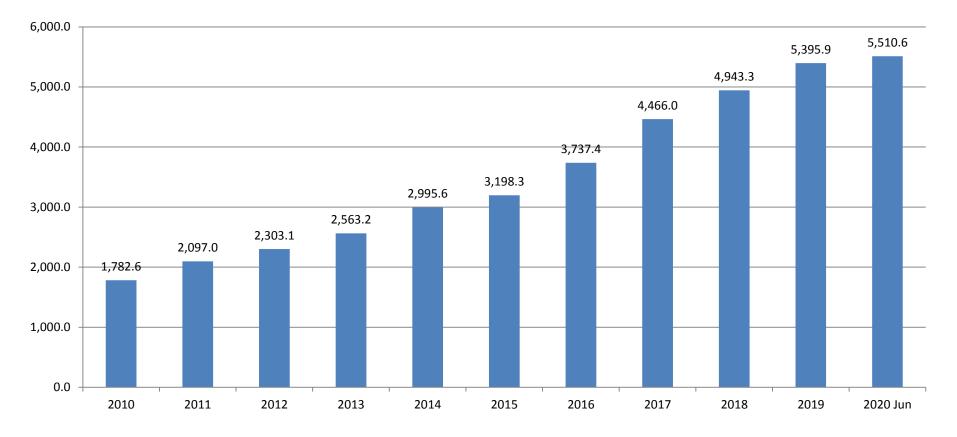


Total Wind Generation GWh

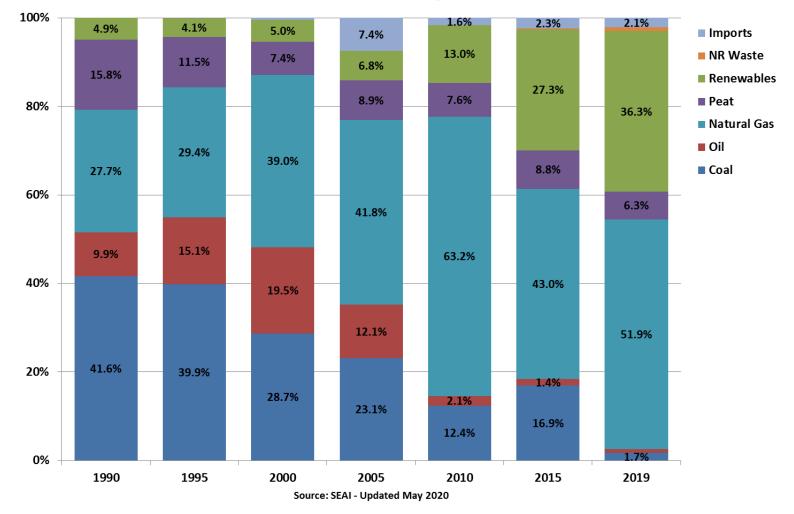


Installed Wind Capacity MW

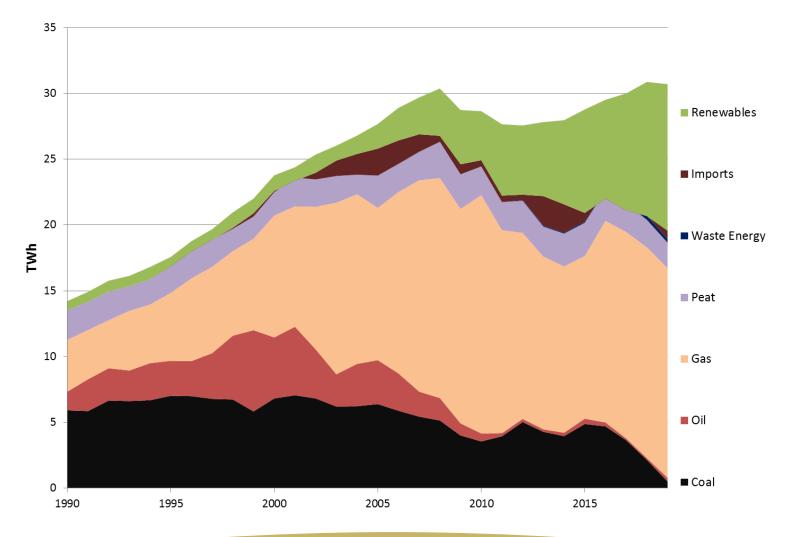
Wind Installed During Year MW



Percentage of Year with SNSP at 50% or Higher



Wind Installed Capacities (MW) All Island – 10 years



Ireland Electricity Fuel Mix

Rate of Change of Frequency (RoCoF Updates)

September 2020

RoCoF Overview

- $RoCoF = \frac{f * \Delta P}{2(Ksys Klost)}$
- Increasing RoCoF removes a limitation on the Inertia Floor
- Increasing RoCoF facilitates increased levels of renewable generation

RoCoF Trial Progress

- Phases:
 - RoCoF 1Hz/s Trial Phase 1a (Overnight): 16/06 01/07
 - RoCoF 1Hz/s Trial Phase 1b (24/7): 01/07 present
- RoCoF Trial Paused:
 - Amber Alert 05/08
 - Amber Alert 15/09
 - Louth Tandragee 2 275kV Outage 06/08 26/08
- No issues in Control Centres during the Trial

Control Centre Tools Update

Ra

Mary Hennessy, EirGrid

7

Control Centre Tools - Status Update

Look-ahead Security Assessment Tool:

- Project delivery phase commenced in Nov 2019.
- Development and Acceptance testing completed in Sept 2020.
- Go Live in both control centres complete in Sept 2020.

Ramping Margin Tool - Interim:

• Project delivery is complete with rollout in both control centres in August 2020.

Ramping Margin Tool - Enduring:

- Design for Ramping Margin Tool has been validated by third party in Dec 2019.
- Procurement completed in Sept 2020.
- Project to be initiated and go live in control centres is due in Q2 2021.

Voltage Trajectory Tool:

• Procurement is in final stage and go live in control centres is due in Q2 2021.

ormation Centre

Procurement Update

Joe Deegan, EirGrid

Workingv

safe, secu

supply of

S.W.L. 300 KG

Volume Uncapped Gate 3

- Gate 3 tender is nearing completion.
- Signing of new agreements and amendments to existing contracts is in progress.
- Expected that total number of Providing Units in Framework will increase by approximately 10% following this Gate.
- Gate 3 outcome will be published in October after contracts have been executed on 01/10/2020.

Volume Uncapped Consultation

- Consultation on procurement gates for 2021 published on 01/09/2020.
- Obtain industry view on impact of COVID-19 in ability of units to tender for System Services at previously planned for gates.
- 3 mitigating options proposed additional gate in 2021, allow for exceptional testing at gates, reschedule 2021 gates.
- Consultation closes on 25/09/2020.
- Any TSO decision will be informed by broad industry impact and feasibility of implementation.

Volume Uncapped Expenditure

- Expenditure note published on 16/09/2020 on the EirGrid and SONI websites.
- TSOs recognise the potential for an increase in the costs of System Services risk of breaching expenditure cap.
- Due to: high wind outputs in winter, new participants (with fast acting services capability) due to provide services in 2021, and the impact of lower demand resulting from COVID-19.
- TSOs will continue to monitor the situation any necessary interventions will be carried out in line with our regulatory obligations.
- No actions at this time further note to be published in April 2021.

ormation Centre

FlexTech

September 2020

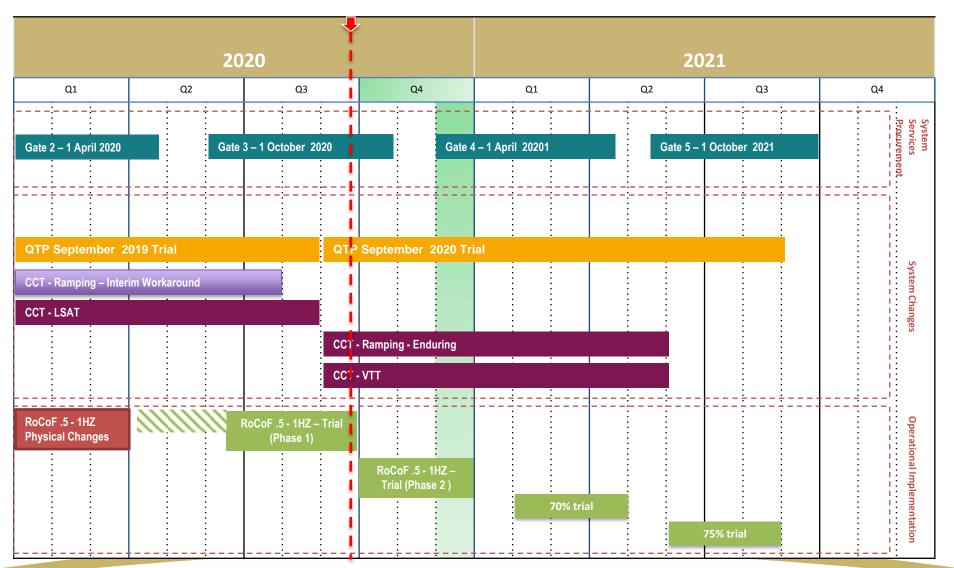
Workingv

safe, secu supply of

S.W.L. 300 KG

FlexTech Update

- FlexTech response to consultation published on **14/7/2020**
- Consultation outline priority area for the short, medium and long term of the five working group
- Multiple Legal Entities consultation published on the 03/09/2020, response open until the 12/10/2020
- Further Industry engagement planned for the end of this year.



DS3 Milestone plan

EirGrid

DS3 Revised Plan September 2020

QTP Update

• QTP 2019 trials are continuing, with some delays due to Covid19.

• QTP 2020 due for publication in October

Trial 1	Hybrid Unit/Site
Trial 2	Open Strand for providers
Trial 3	Grid Forming Technology

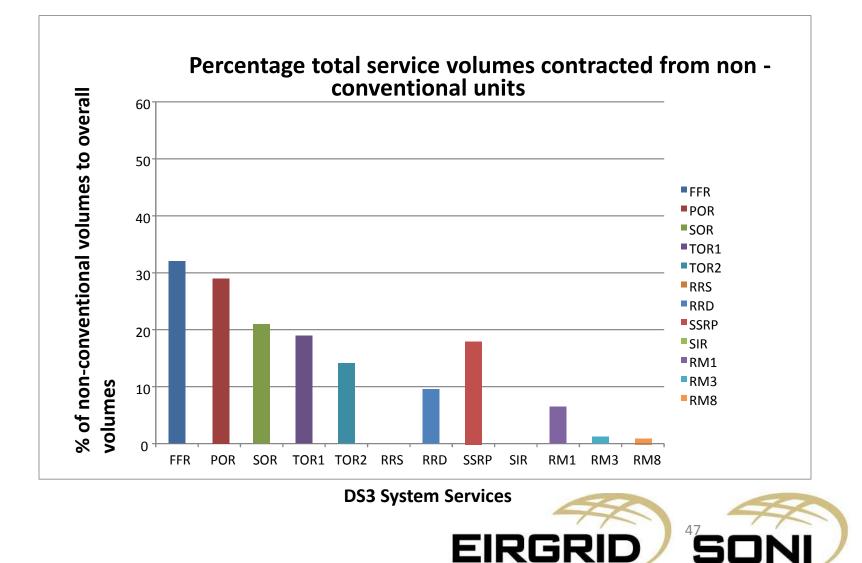
Future Arrangements

Jonathan O Sullivan, EirGrid

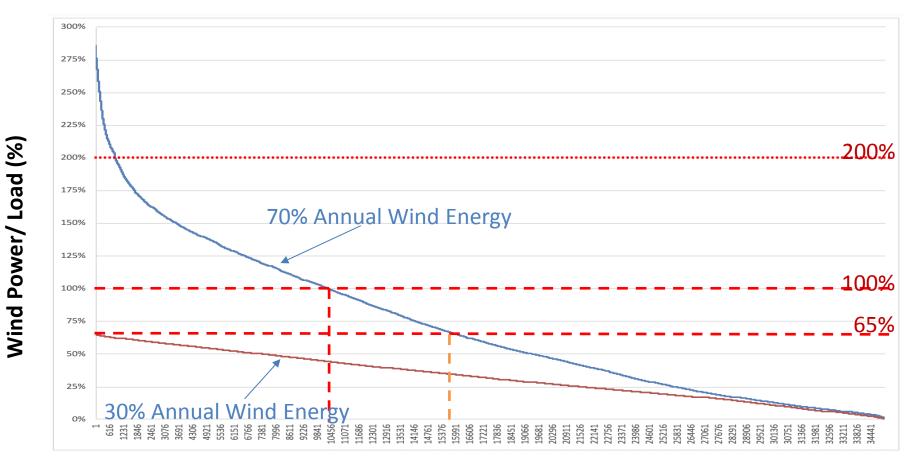
SEMC System Services Future Arrangements Scoping Paper SEMC Workshop held August 26th 2020

Introduction

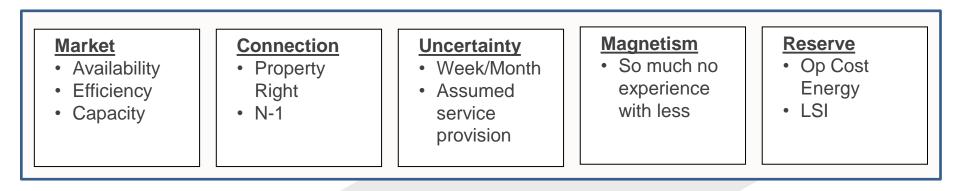
- Consultation paper context is developing a future arrangements solution that will:
 - comply with European legislative requirements
 - align with the Irish and UK governments' policies of transitioning to energy systems which are predominantly supplied by low carbon sources of electricity
- TSOs' view is that addressing future technical scarcities with appropriate services is central to delivering government policy
- Services will need to be procured using arrangements that
 - are transparent and have the necessary characteristics for investment
 - align with operational practice
 - are an evolution of System Services work to date



So why change DS3 System Services..?

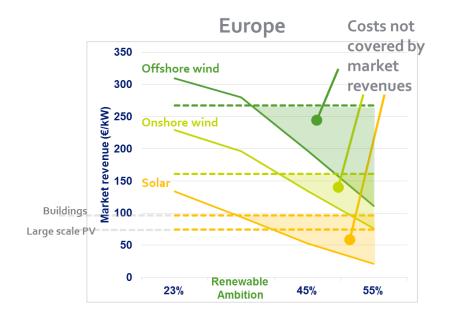

- 12 System Services have been procured to date
 - 1073 individual services have been contracted from 179 service providers (136 in Ireland and 43 in Northern Ireland)
 - 64% of the currently contracted service providers are nonconventional units.
 - 53% of the FFR and 42% of POR service volumes are contracted from new technologies
- SNSP has gradually been increased initially to 55%, to 60% in March 2017 and since April 2018 to 65%

When we are getting the investment....!


But the scale of challenge to 2030 is big!!

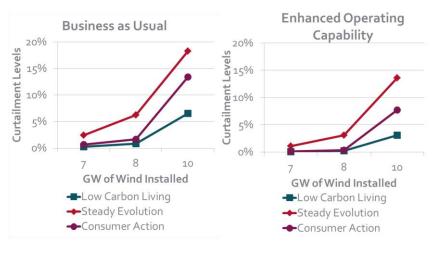
2030 wind was estimated by multiplying 2018 wind availability by 2.1612 to achieve an energy balance of 70% wind.

Which creates old and new challenges



And we are leading in seeing these issues...

No Scarcity	Evolving Characteristic	Concern	Scarc	ity	
	Continental Europe	Ireland & Northern Ire	land	Nordic	System
RoCoF (dimensioning incident)	Localised concern	Inertia scarcity		Evolving characteristic	
RoCoF (system split)	Global concern	N/A		Not analysed	
Frequency containment (dimensioning incident)	Evolving characteristic	Evolving characteristic		Evolving characteristic	
Frequency containment (system split)	Global concern	N/A			
Steady State Voltage Regulation	SS reactive power scarcity	SS reactive power sca	rcity		
Fault Level	No scarcity	Dynamic reactive injection scarcity			
Dynamic Voltage Regulation	No scarcity	Dynamic reactive injection	n scarcity		
Critical Clearing Times	Evolving characteristic	Evolving characteris	tic	Not an	alysed
Rotor Angle Margin	Not analysed	Localised concern	oncern		
Oscillation Damping	Damping scarcity	Damping scarcity	amping scarcity		
System Congestion	Global concern	Transmission capacity s	Transmission capacity scarcity		
System Restoration	Not analysed	Evolving characteristic			



.. And the value of the right services is significant

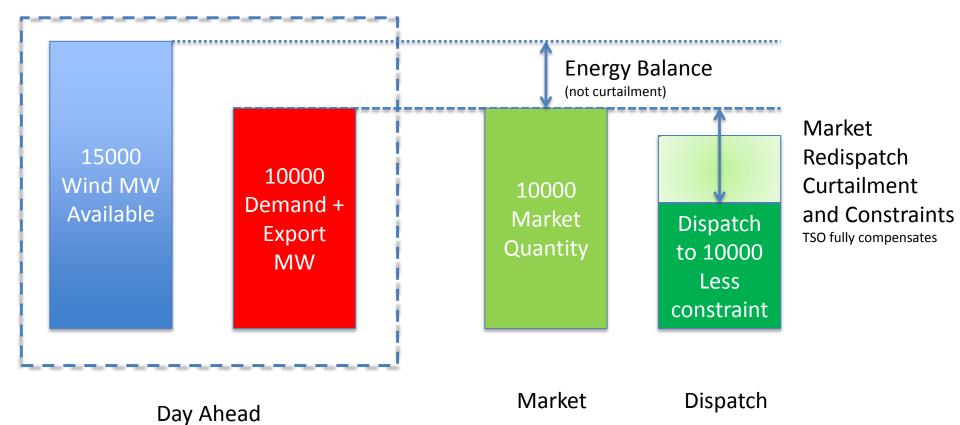
Scenario	Financial Gap (millions)	Value (millions)
Steady Evolution	€297 - €594	€300 +
Low Carbon Living	€285 - €1000	€740 +
Consumer Action	€170 - €419	€600 +

- Power system is transformed by the large-scale deployment of RES
- Energy only market will not provide sufficient revenue

• System services could be one of a range of mechanisms to support mitigation of the technical and financial challenges

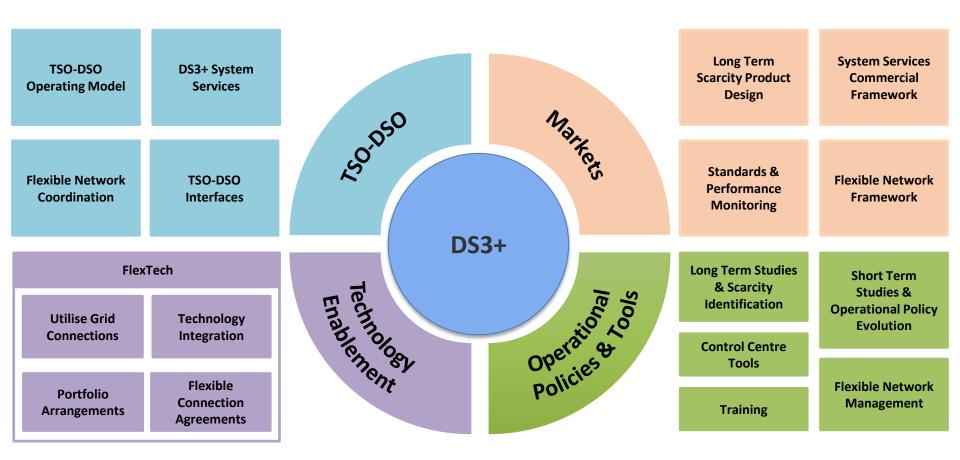
But this includes the whole system -DSO and DNO critical to Future Arrangements

- An increasing number of service providers are, and will in future be, distribution connected
 - Currently 35% of service providers in Ireland and 60% of service providers in Northern Ireland are distribution connected
 - On average providers are contracted for 4 services (mainly reserves)
- Services will be required both on transmission and distribution levels to address future scarcities on both networks
 - Congestion management may be a particular concern
- Development of mitigation approaches should be aligned
 - CEP Article 31 highlights the need for this alignment
- Network usability will be a key issue



So how do Future Arrangements look

- Essential Elements
 - <u>Alignment</u> of pioneering operational practice with market outcomes (PD paper)
 - TSO make <u>Commitment</u> to change operational practice in line with public policy objectives
 - Create <u>Confidence</u> in arrangements to drive investment



Alignment of markets to operational limits

<u>Commitment</u> to change operational practice

Operational Policy Commitment

- Long Term Policy for Scarcity Valuation and Product Design
- Medium Term Policy to demonstrate benefit of new investment
- Short Term Policy for Daily Auction Volumes

Building Confidence for 3rd party investment

- Transparency of arrangements
- Length of time that the arrangements are in place
- Design of Auction
- Governance

Governance

- Paper suggests possibility of governance via a "Ruleset or Code document"
- The TSOs have a specific responsibility for the procurement of ancillary services to ensure operational security as noted in DIRECTIVE (EU) 2019/944 Article 40 Tasks of transmission system operators. Any governance arrangements must consider the context of this. Fulfilling this responsibility requires the TSOs to have a significant governance role.
- The funding for system services is not the same as for the energy or capacity market. If the TSOs are to manage a budget with an upper limit, they must be able to exercise funding controls within the governance structure.

Alignment with EU legislation

- CEP and EGBL requirements for current products are listed in the paper
 - Need for existing and new services indicated from technical studies
 - DSO/DNO may also have need for new products

Additional relevant areas of EU legislation

- Need to maintain an awareness of the progression of MARI and TERRE
- EBGL stipulates characteristics of a standard product bid with which balancing capacity products must comply
- further work will be required to examine the application of balancing capacity requirements in light of the proposed future arrangements
- Article 15 of EBGL referring to the DSO restricting the provisions of services from distribution connected units for system reasons is relevant
- System Operator Guideline (SOGL, EU 2017/1485) Article 182 is also relevant with regard to other aspects of TSO/DSO co-operation in facilitating reserve provision from distribution-connected units

TSO Future Arrangement Foundations

- Should adhere to volume-based auctions for services where suitable
- Having the widest range of products in the auction provides the largest choice to participants. This is critical for success
- Segmentation of the market and removing products from a daily auction to separate "tender" competitions needs careful consideration. This restricts choice and if not well understood may lead to poor outcomes for the consumer.
- However complications in auction design for some products could lead to difficulties in implementation. These could undermine appropriate investor certainty.
- Locational aspects to some services further complicate these issues:
 - Possible Tender for locational rates rather than running a separate competition.
- Energy and System Services should not be combined into the one tender
 - If there is a need this indicates some market failure or barrier(s) that need to be removed

General Options TSO considering

- 1. Hold an auction which co-optimises energy and system services within the cost objective
 - Energy and system service bids submitted
 - Objective minimises the cost of the aggregate of energy and system services
- 2. Run an auction which co-optimises energy and reserves.
 - Energy bids only subject to BCOP. Services position derived from the Long Term Schedule run including Transmission Constraint Groups (TCG)
- 3. Use the Ex-Ante energy market as starting point and sequentially auction the services with distinct daily bidding by providers
 - Leverage existing Ex-Ante market (capped for PD)
 - Facilitate post ex-ante bidding clearing auctions to determine the service providers to be paid each day

Possible Daily Auction Outcomes

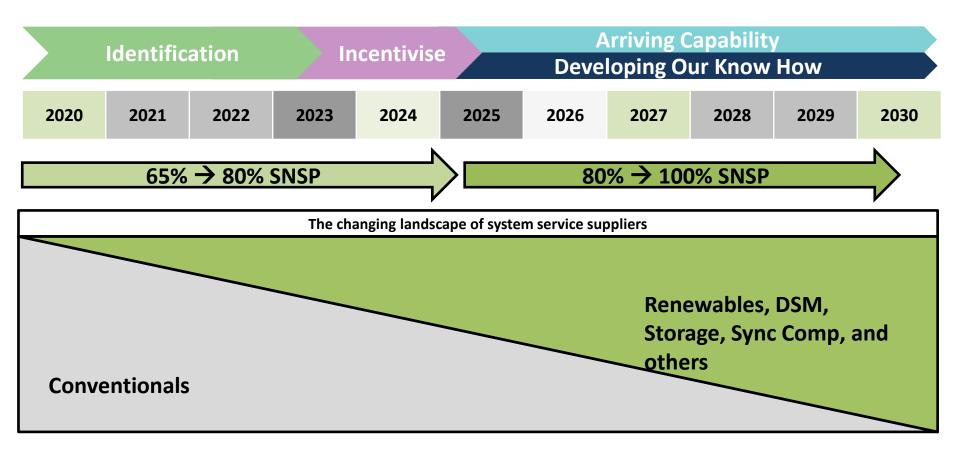
- **Right Volume for now not for the future** (e.g. reserves 200 MW but 400 MW needed for 2030)
 - Use future volume and show scarcity (regulated bid price); OR
 - Let auction results stand but send medium term expectations with new service capability;
- **Right volume for now and the future but wrong technology (**e.g. right reserves for future but all from conventional)
 - Run auction with limit on service from existing technology; OR
 - Let auction results stand but send medium term expectations with new tech investment;
- Right volume for now and the future and right technology
 - Auction results stand

...and if we dispatch differently ...?

- But we have a central dispatch model and we often dispatch away from the position (Alignment will significantly reduce the need to do this)
 - Pay Dispatched on Minimum (Price Cap, Bid price) for dispatch on Pay for additional useable needed services above Market Position (but not all);
 - Pay Dispatched down Market position revenue; AND
 - Pay for additional useable needed services at Physical Position (but not all);

Market Power and Price Caps

- Market Power needs market abuse
 - Caution that market power in energy is simpler than services
 - Having market power is not a problem; abuse of it is
- Bigger challenge is the interactions and needs of system
 - System Services Non-linear, inter temporal and Interactions lead to inadvertent outcomes
- Best approach is price caps informed by Value for all services
 - Apply similar exercise as we did for DS3 System Services
 - Where risk lies may need to increase these to acknowledged RISK profile



Miscellaneous but important issues

- Barriers to new technology need to be addressed
 - Qualifier Trailing Barrier Breaker DS3+ FlexTech
 - No load motoring energy contracts
- Useable Service provision
 - Pay for what is useable
 - If not useable need to clarify risk
 - E.g. Network Firm / Non firm long term flexible network..?
- Performance Scalers
 - Apply to daily revenues for providers
 - Use as Auction and Schedule prohibition

The Journey for the next decade

ormation Centre DS3 Advisory Council Membership / Open positions

Jonathan O Sullivan, EirGrid

Workingv

safe, secu

supplyof

S.W.L. 300 KG

DS3 Advisory Council meeting dates				
2020/2021				

Q1	26 February 2020
Q2	20 May 2020
Q3	30 September 2020
Q4	20 January 2021

Dates may be subject to change

