### What is Transmission Infrastructure?

### **Gemma McCarthy**

WYG / CESI / SeriousPR RIDP Project Manager



### **Electrical Networks**

#### **Distribution Networks**



### **Electrical Networks**





### **Electrical Networks**

**Transmission** 

Transport large amounts of electrical energy

High Voltage: generally above 100kV

In Ireland: 110kV, 220kV, 275kV and 400kV



#### ... but first...

## Why High Voltage?

#### When electrical energy is transported, heat is given off relative to the current => Losses

### **Power = Voltage X Current**

## Voltage 🕇 = Current 🖡



### **High Voltage**

#### **Environmental Benefits of Higher Voltage Transmission**



345 kV Three Double Circuit Towers (450 ft. Right-of-Way)

Transmission voltage selection significantly affects performance, cost and the environment.





### **Components of Transmission Infrastructure**

#### A power transmission system is composed by a series of elements such as:

- Overhead lines
- Underground cables
- Submarine cables
- Substations
- Converter stations







← Tower composed by metallic elements In some cases (typically for parts of 110 kV) → wooden poles can be used



#### Familiarisation with transmission components: overhead lines

Foundations, with a variable depth depending on the characteristic of the soil





← Conductors: usually in aluminium alloy; they represent about 1/3 of the line cost





Case of a 275 kV line



## Familiarisation with transmission components: overhead lines



- Visual Impact
- Land occupation: tower supports take up a variable area
  Irish reference: 275kV: 7.3 – 12.2 m<sup>2</sup>





## Familiarisation with transmission components: overhead lines

#### Construction







#### **Methods for laying cable**



Trench (various solutions)



**Tubes** 

e langua of tinto than i terman mondo to nettimo polarica pola tendencia by tinet (netrollic cto (other plantice or each anical). There can be interest or attent socientering there the set subsequently politick in (Languar 1-10). This is more differentive framerrations have



## Tunnel (normally in urban areas)





#### **Joints chamber**

Figure 4: Example of a 400 kV joint bay directly buried into the ground; Typical dimension: length 10-25 m, width 2.5 m, depth 2.1 m





Trench and associated "site" for laying cables along a road





Impact on the land having buried the cables in the countryside





### **Familiarisation with transmission components: submarine DC cables**



1000 mm² <u>Copper conductor</u> Semiconducting paper tapes Insulation of paper tapes impregnated with viscous compound Semiconducting paper tapes Lead alloy sheath Polyethylene jacket Metallic tape reinforcement Syntetic tape or yarn bedding Double layer of flat steel wire armour Polypropylene yarn serving Diameter 118 mm Weight 44 kg/m Submarine cables are laid down directly from the ship - Section of cables having a length exceeding 100 km – submarine joint only for long submarine links





# Familiarisation with transmission components: Substations

#### **AC Substations:** •AIS Substation Color Key: Step Down Black: Generation Subtransmission Transformer •GIS Blue: Transmission Customer ..... Green: Distribution Transmission lines Hybrid Generating Station Primary Customer ..... Secondary Customer Transmission Customer â Generating Step Up Transformer

#### **DC Converter Stations**



## Familiarisation with transmission components: AIS substations



## Familiarisation with transmission components: GIS substations





## Familiarisation with transmission components: Substation Design





### Substation switchgear technology: hybrid solutions









## Familiarisation with transmission components: converter stations



Example of the new converter station (500+500 MW) of the HVDC link between Sardinia and Continental Italy, commissioned in 2009-2010



# Familiarisation with transmission components: converter stations



