Synchro Phasor Monitoring System

Ray Doyle

Generator Forum 15th May

Presentation Content

- Update on status of SPM system
- Use of SPM system during North-South Separation
- Use of system during Storm Darwin
- Use of SPM to observe generator behaviour during
 Testing
- Recent Power System Events of Concern

SPM System Status Update

• 19 PMU's now operational

- 14 in Ireland
- 4 in Northern Island (Coolkeeragh * 2, Moyle & Castlereagh House)
- 1 in UK on East West Interconnector
- Additional Units planned for NI
- Additional recorders installed in Ireland with PMU capability will be connected to the SPM system as bandwidth required to stream data becomes available
- Real Time Phasor Data now available to NCC and will be available to CHCC in near future

See Belfast Area

TRANSMISSION SYSTEM 400, 275, 220 AND 110kV JANUARY 2014

- 400kV Lines

 275kV Lines

 220kV Lines

 110kV Lines
- 220kV Cables
- 110kV Cables
- HVDC Cables
- 400kV Stations
- 275kV Stations
- 220kV Stations
- 110kV Stations

Transmission Connected Generation

- Hydro Generation
- Thermal Generation
- Pumped Storage Generation
- Wind Generation

Control Centre Frequency Oscillation Monitoring Display

North-South system Separation 28th Nov 2013

Forced Outage of Louth-Tandragee 275 kV Interconnector

North-South Re-Synchronisation 30th Nov 2013

System Frequencies during System Re-synchronisation

North-South Re-Synchronisation 30th Nov 2013

The Synchro-phasor Monitoring System Provides Control Centre With

- Immediate Identification of System Splits
 - Information of the state of each sub system
 - Means to direct efforts when re-synchronising two parts of the system
- Generator MW & MVAr output
- Bus Voltages / Frequencies / Phase angles
- Oscillation magnitudes and frequencies
- Indication of Faults, Fault Types and Durations
- Partial Backup for Scada/EMS failure

Use of Phasor Monitoring system during Storm Darwin 12th February

- 67 faults on 110 kV System from 11:36 to 16:21
 - Seven 110 kV load stations disconnected
 - Three 110 kV wind farms disconnected
- Eight lines forced out of service at end of storm
- All generators rode through all faults

Voltage Dips Across the Network 11:30 to 15:30

Impact at various networks nodes available to operators seconds after fault

Line Trip, Auto-Reclose & Trip 1 Ph to E fault, line structure okay, attempt restoration

1 s per division

Line Trip, Auto-Reclose & Trip

Ph to Ph fault, possible structural damage, no restoration attempt

Fault evolving from 1 to 2 to 3 phase

(suggest structure failure thus no attempt to restore)

Use of Phasor Monitoring system during Storm Darwin 12th February

- SPM system can provide detailed fault information to control centre in real time
- This supplements existing information such as
 Protection relay signals
- New information is graphical thus faster and easier to interpret
 - In many instances can reduce decision making time

Use of SPM to observe generator behaviour during Testing

- The SPM now allows observation of generator testing in real time
 - Any issues the machine is causing for the system or other generators can be observed
- Should allow for more secure operation of the system when tests with significant impact potential are being carried out
- Allows decisions to be made on continuing with test programme or pausing to investigate issues

Example of Setpoint Step Change to AVR

Reaction of Generator MVAr output to Disturbance introduced by Transformer Switching

Reaction of Generator MW Output Disturbance introduced by Transformer Switching

Recent Incidents

- Two Major Incidents currently under Investigation
 - 22nd April Under-frequency Load Shedding following generator trip
 - 27th April Major System Oscillation following generator trip

System Frequency 22 April 2014 17:31 to 17:46

Comparison Event

- 357 MW Trip 27 May 2013
- Frequency recovered to 49.9 Hz ~ 9 seconds post Nadir

System Frequency 27 April 2014 21:40

- 370 MW Trip 27 April 2014
- Severe Oscillation in generator outputs around Nadir

Frequency & Voltage Oscillations

Looking Ahead

- Trend is to have fewer conventional units committed than in the past
- No Margin for underperformance of any unit
 - In terms of reserve provision, stability, fault ride through, voltage support

• EirGrid & Generators to Collaborate on

- More robust testing of machine capability and dynamic performance
- Enhanced Performance Monitoring
- Linking payments to actual performance with the potential for declaring services unavailable following evidence of under performance
- Incentives to deliver the required performance

Thanks for your Attention

Questions

